Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Non-Hermitian hybrid silicon photonic switching

Abstract

Leveraging the entire space of complex dielectric permittivity, non-Hermitian photonics has fundamentally altered wave propagation with complex optical potentials and has ushered in a host of new photonic applications. Through parity–time symmetry and its breaking—a delicate interplay between gain and loss—even the interaction between just two entities becomes counter-intuitive and intriguing. Here we realize, through hybrid III–V/Si integration, a scalable non-Hermitian switching network on a two-layer integrated photonic chip. Our platform is a hybrid, with a bottom silicon layer and a top InGaAsP layer that provides optical gain. By tuning the gain level in the top layer, vertically coupled waveguides operate below or above the exceptional point, where light is switched across two layers, among different input–output ports. For a single switching unit, the switching dynamics are ultrafast, on the order of 100 ps. In a large switching network, non-blocking and other diverse connectivities are established in single-wavelength and wavelength-selective switching, with high extinction ratios. Our approach adds scalable non-Hermitian switching to photonic design toolkits to simultaneously boost the switching time and bandwidth density to cutting-edge levels, therefore paving the way for compact and ultrafast monolithic integrated silicon photonics in next-generation optical information networks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: III–V/Si hybrid photonic switch.
Fig. 2: Characterization of a single switch unit.
Fig. 3: Characterization of an 8 × 8 switch.
Fig. 4: Demonstration of WSS.

Similar content being viewed by others

Data availability

Source data are provided with this paper. All other data that support other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Lu, L. et al. 16 × 16 non-blocking silicon optical switch based on electro-optic Mach–Zehnder interferometers. Opt. Express 24, 9295–9307 (2016).

    Article  ADS  MATH  Google Scholar 

  2. Zhao, S. et al. 16 × 16 silicon Mach–Zehnder interferometer switch actuated with waveguide microheaters. Photonics Res. 4, 202–207 (2016).

    Article  MATH  Google Scholar 

  3. Qiao, L., Tang, W. & Chu, T. 32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units. Sci. Rep. 7, 42306 (2017).

    Article  ADS  Google Scholar 

  4. Shen, Y. et al. Deep learning with coherent nanophotonic circuits. Nat. Photonics 11, 441–446 (2017).

    Article  ADS  MATH  Google Scholar 

  5. Sherwood-Droz, N. et al. Optical 4 × 4 hitless silicon router for optical Networks-on-Chip (NoC). Opt. Express 16, 15915–15922 (2008).

    Article  ADS  Google Scholar 

  6. Cheng, Q. et al. Ultralow-crosstalk, strictly non-blocking microring-based optical switch. Photonics Res. 7, 155–161 (2019).

    Article  ADS  MATH  Google Scholar 

  7. Cheng, Z. et al. On-chip silicon electro-optical modulator with ultra-high extinction ratio for fiber-optic distributed acoustic sensing. Nat. Commun. 14, 7409 (2023).

    Article  ADS  MATH  Google Scholar 

  8. Seok, T. J., Quack, N., Han, S., Muller, R. S. & Wu, M. C. Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers. Optica 3, 64–70 (2016).

    Article  ADS  Google Scholar 

  9. Kim, D. U. Programmable photonic arrays based on microelectromechanical elements with femtowatt-level standby power consumption. Nat. Photonics 17, 1089–1096 (2023).

    Article  ADS  MATH  Google Scholar 

  10. Haffner, C. et al. Low-loss plasmon-assisted electro-optic modulator. Nature 556, 483–486 (2018).

    Article  ADS  Google Scholar 

  11. Haffner, C. et al. Nano–opto-electro-mechanical switches operated at CMOS-level voltages. Science 366, 860–864 (2019).

    Article  ADS  MATH  Google Scholar 

  12. Midolo, L., Schliesser, A. & Fiore, A. Nano-opto-electro-mechanical systems. Nat. Nanotechnol. 13, 11–18 (2018).

    Article  ADS  Google Scholar 

  13. Wonfor, A., Wang, H., Penty, R. V. & White, I. H. Large port count high-speed optical switch fabric for use within datacenters [invited]. J. Opt. Commun. Netw. 3, A32–A39 (2011).

    Article  Google Scholar 

  14. Stabile, R., Rohit, A. & Williams, K. A. Monolithically integrated 8 × 8 space and wavelength selective cross-connect. J. Lightwave Technol. 32, 201–207 (2014).

    Article  ADS  Google Scholar 

  15. Davenport, M. L. et al. Heterogeneous silicon/III–V semiconductor optical amplifiers. IEEE J. Sel. Top. Quantum Electron. 22, 78–88 (2016).

    Article  ADS  MATH  Google Scholar 

  16. Cheng, Q., Wonfor, A., Wei, J. L., Penty, R. V. & White, I. H. Monolithic MZI–SOA hybrid switch for low-power and low-penalty operation. Opt. Lett. 39, 1449–1452 (2014).

    Article  ADS  Google Scholar 

  17. Konoike, R. et al. SOA-integrated silicon photonics switch and its lossless multistage transmission of high-capacity WDM signals. J. Lightwave Technol. 37, 123–130 (2019).

    Article  ADS  Google Scholar 

  18. Matsumoto, T. et al. Hybrid-integration of SOA on silicon photonics platform based on flip-chip bonding. J. Lightwave Technol. 37, 307–313 (2019).

    Article  ADS  MATH  Google Scholar 

  19. Feng, L., El-Ganainy, R. & Ge, L. Non-Hermitian photonics based on parity–time symmetry. Nat. Photonics 11, 752–762 (2017).

    Article  ADS  MATH  Google Scholar 

  20. Zhao, H. et al. Non-Hermitian topological light steering. Science 365, 1163–1166 (2019).

    Article  ADS  MATH  Google Scholar 

  21. Liao, K. et al. On-chip integrated exceptional surface microlaser. Sci. Adv. 9, eadf3470 (2023).

    Article  MATH  Google Scholar 

  22. El-Ganainy, R., Makris, K. G., Christodoulides, D. N. & Musslimani, Z. H. Theory of coupled optical PT-symmetric structures. Opt. Lett. 32, 2632–2634 (2007).

    Article  ADS  MATH  Google Scholar 

  23. Guo, A. et al. Observation of \(\mathcal{P}\mathcal{T}\)-symmetry breaking in complex optical potentials. Phys. Rev. Lett. 103, 093902 (2009).

    Article  ADS  Google Scholar 

  24. Rüter, C. E. et al. Observation of parity–time symmetry in optics. Nat. Phys. 6, 192–195 (2010).

    Article  MATH  Google Scholar 

  25. Ge, L., Makris, K. G. & Zhang, L. Optical fluxes in coupled \(\mathcal{P}\mathcal{T}\)-symmetric photonic structures. Phys. Rev. A 96, 023820 (2017).

    Article  ADS  Google Scholar 

  26. Deng, H. & Khajavikhan, M. Parity–time symmetric optical neural networks. Optica 8, 1328–1333 (2021).

    Article  ADS  MATH  Google Scholar 

  27. Moiseyev, N. Non-Hermitian Quantum Mechanics (Cambridge Univ. Press, 2011).

  28. Zhang, Z. et al. Ultrafast control of fractional orbital angular momentum of microlaser emissions. Light Sci. Appl. 9, 179 (2020).

    Article  ADS  MATH  Google Scholar 

  29. Sun, B. Q., Gal, M., Gao, Q., Tan, H. H. & Jagadish, C. On the nature of radiative recombination in GaAsN. Appl. Phys. Lett. 81, 4368–4370 (2002).

    Article  ADS  MATH  Google Scholar 

  30. Uzdin, R., Mailybaev, A. & Moiseyev, N. On the observability and asymmetry of adiabatic state flips generated by exceptional points. J. Phys. A 44, 435302 (2011).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Doppler, J. et al. Dynamically encircling an exceptional point for asymmetric mode switching. Nature 537, 76–79 (2016).

    Article  ADS  MATH  Google Scholar 

  32. Goldzak, T., Mailybaev, A. A. & Moiseyev, N. Light stops at exceptional points. Phys. Rev. Lett. 120, 013901 (2018).

    Article  ADS  MATH  Google Scholar 

  33. Moiseyev, N. & Šindelka, M. Transfer of information through waveguides near an exceptional point. Phys. Rev. A 103, 033518 (2021).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Liao, K. et al. Spintronics of hybrid organic–inorganic perovskites: miraculous basis of integrated optoelectronic devices. Adv. Opt. Mater. 7, 1900350 (2019).

    Article  Google Scholar 

  35. Roelkens, G. et al. III–V/silicon photonics for on‐chip and intra‐chip optical interconnects. Laser Photon. Rev. 4, 751–779 (2010).

    Article  ADS  MATH  Google Scholar 

  36. Fang, A. W. et al. Electrically pumped hybrid AlGaInAs-silicon evanescent laser. Opt. Express 14, 9203–9210 (2006).

    Article  ADS  Google Scholar 

  37. Liang, D., Huang, X., Kurczveil, G., Fiorentino, M. & Beausoleil, R. G. Integrated finely tunable microring laser on silicon. Nat. Photonics 10, 719–722 (2016).

    Article  ADS  Google Scholar 

  38. Huang, D. et al. High-power sub-kHz linewidth lasers fully integrated on silicon. Optica 6, 745–752 (2019).

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the Army Research Office (ARO) (W911NF-21-1-0148 and W911NF-22-1-0140), the Office of Naval Research (ONR) (N00014-23-1-2882) and the National Science Foundation (NSF) (ECCS-2023780, DMR-2117775, DMR-2326698 and DMR-2326699). This work was carried out in part at the Singh Center for Nanotechnology, which is supported by the NSF National Nanotechnology Coordinated Infrastructure Program under grant no. NNCI-1542153.

Author information

Authors and Affiliations

Contributions

L.F. and X.F. designed the experiment. X.F., T.W., Z.G., L.G. and L.F. designed the photonic switch. X.F., T.W. and L.G. constructed the theoretical model. X.F. performed numerical simulations and fabricated the sample. X.F., T.W., Z.G., H.Z. and Y.Z. performed the measurements. X.F. and S.W. performed the data processing. X.F., S.W., L.G. and L.F. prepared the manuscript. All the authors contributed to the discussions.

Corresponding author

Correspondence to Liang Feng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1

Fabrication flow of the III-V/Si hybrid photonic switch.

Extended Data Fig. 2 Schematic of experimental setup.

Blue line: pump beam. Red line: signal beam. ND: neutral density. HWP: half-wave plate. PBS: polarizing beamsplitter. BPF: bandpass filter. FM: flip mirror. BS: beamsplitter. SPAD: single photon avalanche diode.

Supplementary information

Supplementary Information

Supplementary Figs. 1–14 and discussion.

Source data

Source Data Fig. 2

Source data for Fig. 2b–d.

Source Data Fig. 3

Source data for Fig. 3e–g.

Source Data Fig. 4

Source data for Fig. 4b–e.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, X., Wu, T., Gao, Z. et al. Non-Hermitian hybrid silicon photonic switching. Nat. Photon. 19, 264–270 (2025). https://doi.org/10.1038/s41566-024-01579-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41566-024-01579-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing