Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Eutectic molecule ligand stabilizes photoactive black phase perovskite

Abstract

Formamidinium-rich triiodide perovskites show great promise as light-absorption layers for next photovoltaic technology. However, the intricate process of phase transformation during the crystallization of this perovskite typically results in the presence of undesired hexagonal phases, leading to a degradation in solar cell efficiency and stability. Here we report the use of a hydrogen-bonded eutectic molecule (EM) as a [PbI6]4 octahedra ligand to promote the dominant formation of corner-sharing octahedra. Our results demonstrate that the increased ratio of corner-sharing octahedra to face-sharing octahedra can prompt a complete phase transformation and facilitate the formation of pure cubic structure perovskite. Perovskite solar cells based on EM-fabricated films provide a power conversion efficiency of 25.8% (certified 25.7%) and excellent stability with a T95 lifetime of ~2,000 h.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: EM facilitated phase transition of perovskite.
Fig. 2: Characterization of perovskite film.
Fig. 3: Efficiency of PSCs.
Fig. 4: Stability of perovskite film and devices.

Similar content being viewed by others

Data availability

All data are available in the main text or the Supplementary Information. Additional information can be obtained from corresponding authors upon reasonable request.

References

  1. Kim, J. Y., Lee, J.-W., Jung, H. S., Shin, H. & Park, N.-G. High-efficiency perovskite solar cells. Chem. Rev. 120, 7867–7918 (2020).

    Article  MATH  Google Scholar 

  2. Azmi, R. et al. Damp heat-stable perovskite solar cells with tailored-dimensionality 2D/3D heterojunctions. Science 376, 73–77 (2022).

    Article  ADS  MATH  Google Scholar 

  3. Chen, H. et al. Quantum-size-tuned heterostructures enable efficient and stable inverted perovskite solar cells. Nat. Photon. 16, 352–358 (2022).

    Article  ADS  MATH  Google Scholar 

  4. Li, G. et al. Highly efficient p-i-n perovskite solar cells that endure temperature variations. Science 379, 399–403 (2023).

    Article  ADS  MATH  Google Scholar 

  5. Al-Ashouri, A. et al. Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science 370, 1300–1309 (2020).

    Article  ADS  MATH  Google Scholar 

  6. Saliba, M. et al. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9, 1989–1997 (2016).

    Article  MATH  Google Scholar 

  7. Mariotti, S. et al. Interface engineering for high-performance, triple-halide perovskite-silicon tandem solar cells. Science 381, 63–69 (2023).

    Article  ADS  MATH  Google Scholar 

  8. Huang, Y., Lei, X., He, T., Jiang, Y. & Yuan, M. Recent progress on formamidinium-dominated perovskite photovoltaics. Adv. Energy Mater. 12, 2100690 (2022).

    Article  Google Scholar 

  9. Hui, W. et al. Stabilizing black-phase formamidinium perovskite formation at room temperature and high humidity. Science 371, 1359–1364 (2021).

    Article  ADS  MATH  Google Scholar 

  10. Shi, P. et al. Oriented nucleation in formamidinium perovskite for photovoltaics. Nature 620, 323–327 (2023).

    Article  ADS  MATH  Google Scholar 

  11. Bisconti, F. et al. Blocking wide bandgap mixed halide perovskites’ decomposition through polymer inclusion. J. Mater. Chem. C 11, 12213–12221 (2023).

    Article  Google Scholar 

  12. Bravetti, G. et al. Solution aging promotes the formation of hexagonal polytypes in mixed-cation/-halide perovskites. Chem. Mater. 36, 3150–3163 (2024).

    Article  MATH  Google Scholar 

  13. Macpherson, S. et al. Local nanoscale phase impurities are degradation sites in halide perovskites. Nature 607, 294–300 (2022).

    Article  ADS  MATH  Google Scholar 

  14. Doherty, T. A. S. et al. Performance-limiting nanoscale trap clusters at grain junctions in halide perovskites. Nature 580, 360–366 (2020).

    Article  ADS  MATH  Google Scholar 

  15. Nan, Z.-A. et al. Revealing phase evolution mechanism for stabilizing formamidinium-based lead halide perovskites by a key intermediate phase. Chem 7, 2513–2526 (2021).

    Article  MATH  Google Scholar 

  16. Zhang, W. & Zhou, H. Perovskite intermediate phases fundamentally address the urgent stability issue. Chem 7, 2862–2865 (2021).

    Article  MATH  Google Scholar 

  17. Wang, R. et al. Caffeine improves the performance and thermal stability of perovskite solar cells. Joule 3, 1464–1477 (2019).

    Article  MATH  Google Scholar 

  18. Kim, H., Lee, J. W., Han, G. R., Kim, S. K. & Oh, J. H. Synergistic effects of cation and anion in an ionic imidazolium tetrafluoroborate additive for improving the efficiency and stability of half-mixed Pb-Sn perovskite solar cells. Adv. Funct. Mater. 31, 2008801 (2020).

    Article  Google Scholar 

  19. Zhang, Y. et al. A strategy to produce high efficiency, high stability perovskite solar cells using functionalized ionic liquid‐dopants. Adv. Mater. 29, 1702157 (2017).

    Article  Google Scholar 

  20. Lin, Y.-H. et al. A piperidinium salt stabilizes efficient metal-halide perovskite solar cells. Science 369, 96–102 (2020).

    Article  ADS  MATH  Google Scholar 

  21. Bai, S. et al. Planar perovskite solar cells with long-term stability using ionic liquid additives. Nature 571, 245–250 (2019).

    Article  ADS  MATH  Google Scholar 

  22. Li, F. et al. Hydrogen-bond-bridged intermediate for perovskite solar cells with enhanced efficiency and stability. Nat. Photon. 17, 478–484 (2023).

    Article  ADS  MATH  Google Scholar 

  23. Kim, M. et al. Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule 3, 2179–2192 (2019).

    Article  MATH  Google Scholar 

  24. Hansen, B. B. et al. Deep eutectic solvents: a review of fundamentals and applications. Chem. Rev. 121, 1232–1285 (2021).

    Article  MATH  Google Scholar 

  25. Hammond, O. S., Bowron, D. T. & Edler, K. J. Liquid structure of the choline chloride-urea deep eutectic solvent (reline) from neutron diffraction and atomistic modeling. Green Chem. 18, 2736–2744 (2016).

    Article  Google Scholar 

  26. Yuan, C. et al. Temperature- and pressure-induced phase transitions of choline chloride-urea deep eutectic solvent. J. Mol. Liq. 291, 111343 (2019).

    Article  MATH  Google Scholar 

  27. Smith, E. L., Abbott, A. P. & Ryder, K. S. Deep eutectic solvents (DESs) and their applications. Chem. Rev. 114, 11060–11082 (2014).

    Article  MATH  Google Scholar 

  28. Ashworth, C. R., Matthews, R. P., Welton, T. & Hunt, P. A. Doubly ionic hydrogen bond interactions within the choline chloride-urea deep eutectic solvent. Phys. Chem. Chem. Phys. 18, 18145–18160 (2016).

    Article  Google Scholar 

  29. Zhang, J. et al. 1D choline-PbI3-based heterostructure boosts efficiency and stability of CsPbI3 perovskite solar cells. Angew. Chem. Int. Ed. 62, e202303486 (2023).

    Article  Google Scholar 

  30. McMeekin, D. P. et al. Intermediate-phase engineering via dimethylammonium cation additive for stable perovskite solar cells. Nat. Mater. 22, 73–83 (2023).

    Article  ADS  MATH  Google Scholar 

  31. Fiuza-Maneiro, N. et al. Ligand chemistry of inorganic lead halide perovskite nanocrystals. ACS Energy Lett. 8, 1152–1191 (2023).

    Article  MATH  Google Scholar 

  32. Udayabhaskararao, T. et al. A mechanistic study of phase transformation in perovskite nanocrystals driven by ligand passivation. Chem. Mater. 30, 84–93 (2018).

    Article  Google Scholar 

  33. Wang, S., Du, L., Jin, Z., Xin, Y. & Mattoussi, H. Enhanced stabilization and easy phase transfer of CsPbBr3 perovskite quantum dots promoted by high-affinity polyzwitterionic ligands. J. Am. Chem. Soc. 142, 12669–12680 (2020).

    Article  MATH  Google Scholar 

  34. Snaith, H. J. et al. Anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 5, 1511–1515 (2014).

    Article  MATH  Google Scholar 

Download references

Acknowledgements

W.C.H.C. thanks the project of the University Grant Council of the University of Hong Kong (grant number 202011159254), General Research Fund (grant numbers 17211220, 17200021 and 17200823), Collaborative Research (grant number C5037-18G) from the Research Grants Council of Hong Kong Special Administrative Region, China, and Innovation and Technology Fund (grant numbers MRP/040/21X and GHP/245/22SZ) from Innovation and Technology Commission of Hong Kong Special Administrative Region, China. Y.W. thanks the National Science Fund for Excellent Young Scholars (Overseas), Top Talent Project of West Lake Pearl Project, National Natural Science Foundation of China (grant number 52302315), National Natural Science Foundation of China (grant numbers 52302315 and 62474157) and the talent project of ZJU-Hangzhou Global Scientific and Technological Innovation Center (grant number 02170000-K02013017). B.X. thanks the National Key Research and Development Project funding from the Ministry of Science and Technology of China (grant number 2021YFB3800101), National Natural Science Foundation of China (grant number U19A2089), Guangdong-Hong Kong-Macao Joint Laboratory (grant number 2019B121205001), and Key Fundamental Research Project funding from the Shenzhen Science and Technology Innovation Committee (grant number JCYJ20220818100406014). G.Z. thanks the Shanghai Sailing Program (grant number 21YF1453500), National Natural Science Foundation of China (grant number 12104467) and Youth Innovation Promotion Association of the Chinese Academy of Sciences (grant number 2023305).

Author information

Authors and Affiliations

Authors

Contributions

Z.-W.G., W.C.H.C., B.X. and Y.W. conceived the idea. W.C.H.C. coordinated the work. Y.W., B.X. and W.C.H.C. supported this work. Z.-W.G. fabricated and characterized the devices. J.Z. and J.S. carried out the TAS and PL experiments. G.Z., Y.T. and X.L. contributed to the GIWAXS test and analysis. Z.-W.G., H.S., D.W., J.F. and L.Q. contributed to data analysis. Z.-W.G. wrote the original draft and W.C.H.C., H.S., B.X. and Y.W. reviewed and edited the draft.

Corresponding authors

Correspondence to Yong Wang, Baomin Xu or Wallace C. H. Choy.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Gianluca Bravetti and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–29 and Tables 1–3.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, ZW., Wang, D., Fang, J. et al. Eutectic molecule ligand stabilizes photoactive black phase perovskite. Nat. Photon. 19, 258–263 (2025). https://doi.org/10.1038/s41566-024-01596-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41566-024-01596-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing