Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Intrinsically white organic polarized emissive semiconductors

Abstract

Polarized emissive media are crucial for various applications in display, lighting and optical communication. An attractive research direction is to develop intrinsically white organic polarized emissive semiconductors as ideal candidates for miniaturized polarized light-emitting devices; however, it has been a considerable challenge to achieve polarized white-light emission due to the lack of suitable materials and effective preparation methods. Here we overcome this bottleneck by realizing white organic polarized emissive semiconductor single crystals (WOPESSCs). We employ a bimolecular doping method based on using highly polarized, blue-emitting 2,6-diphenylanthracene as the host single crystal, and controlling energy and polarization transfer with green- and red-emitting guests. The fabricated WOPESSCs achieve a photoluminescence quantum yield of 38.3% and a mobility of 4.9 cm2 V1 s1. The emitted light exhibits a degree of polarization as high as 0.96 with Commission Internationale de l’Eclairage coordinates of (0.3258, 0.3396). We also demonstrate the tunable emission properties of WOPESSCs from blue–white to yellow–white light by adjusting polarization angles, and three-primary-colour optical imaging with a wide colour gamut that covers 112% of the National Television System Committee standard. Furthermore, we fabricate highly polarized microscale WOPESSCs light-emitting diodes and light-emitting transistors, achieving high-quality white-light emission and wide-range colour tunability enabled by gate voltage-driven energy transfer processes. We believe these findings pave the way for manufacturing white and multicolour polarized emissive semiconductors and microscale light-emitting devices, promising diverse applications across various fields.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Molecular doping design concepts for realizing WOPESSCs.
Fig. 2: Fluorescent properties of double-doped single crystals and WOPESSCs.
Fig. 3: Polarized fluorescence properties and schematic molecular packing of WOPESSCs.
Fig. 4: Optical imaging of WOPESSCs.
Fig. 5: Polarized electroluminescence properties of WOPESSCs–OPLEDs.
Fig. 6: The optoelectronic properties of WOPESSCs–OPLETs.

Similar content being viewed by others

Data availability

All data needed to evaluate the conclusions of this study are present in the paper and the Supplementary Information. Additional data are available from the corresponding authors on reasonable request.

References

  1. Rein, M. et al. Diode fibres for fabric-based optical communications. Nature 560, 214–218 (2018).

    Article  ADS  MATH  Google Scholar 

  2. Dorrah, A. H., Rubin, N. A., Zaidi, A., Tamagnone, M. & Capasso, F. Metasurface optics for on-demand polarization transformations along the optical path. Nat. Photon. 15, 287–296 (2021).

    Article  ADS  Google Scholar 

  3. Zeng, D., Dai, J., Yao, W., Xiao, D. & Cui, X. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 7, 490–493 (2012).

    Article  ADS  Google Scholar 

  4. Li, Y. et al. Longitudinally variable 3D optical polarization structures. Sci. Adv. 9, eadj6675 (2023).

    Article  ADS  Google Scholar 

  5. Zhang, Y. J., Oka, T., Suzuki, R., Ye, J. T. & Iwasa, Y. Electrically switchable chiral light-emitting transistor. Science 344, 725–728 (2014).

    Article  ADS  Google Scholar 

  6. Stanciu, C. D. et al. All-optical magnetic recording with circularly polarized light. Phys. Rev. Lett. 99, 047601 (2007).

    Article  ADS  Google Scholar 

  7. Zhang, G. X. et al. High-brightness polarized green InGaN/GaN light-emitting diode structure with Al-coated p-GaN grating. ACS Photon. 3, 1912–1918 (2016).

    Article  MATH  Google Scholar 

  8. Ding, R., Ye, G.-D. & Feng, J. Recent advances in linearly polarized emission from organic light-emitting diodes. Appl. Phys. Lett. 123, 010501 (2023).

    Article  ADS  MATH  Google Scholar 

  9. Zhang, D. W., Li, M. & Chen, C. F. Recent advances in circularly polarized electroluminescence based on organic light-emitting diodes. Chem. Soc. Rev. 49, 1331–1343 (2020).

    Article  MATH  Google Scholar 

  10. Chen, X. et al. Solution-processed inorganic perovskite crystals as achromatic quarter-wave plates. Nat. Photon. 15, 813–816 (2021).

    Article  ADS  MATH  Google Scholar 

  11. Jia, R. et al. Highly efficient inherent linearly polarized electroluminescence from small-molecule organic single crystals. Adv. Mater. 35, 2208789 (2023).

    Article  Google Scholar 

  12. Sun, P., Liu, D., Zhu, F. & Yan, D. An efficient solid-solution crystalline organic light-emitting diode with deep-blue emission. Nat. Photon. 17, 264–272 (2023).

    Article  ADS  MATH  Google Scholar 

  13. Diao, Y. et al. Solution coating of large-area organic semiconductor thin films with aligned single-crystalline domains. Nat. Mater. 12, 665–671 (2013).

    Article  ADS  MATH  Google Scholar 

  14. Pan, X., Lan, L., Di, Q., Yang, X. & Zhang, H. Acidichromic organic crystals with manifold mechanical deformations for reconfigurable flexible optical tuner. Wearable Electron. 1, 111–118 (2024).

    Article  MATH  Google Scholar 

  15. Wang, C., Dong, H., Jiang, L. & Hu, W. Organic semiconductor crystals. Chem. Soc. Rev. 47, 422–500 (2018).

    Article  Google Scholar 

  16. Kasha, M. Characterization of electronic transitions in complex molecules. Discuss. Faraday Soc. 9, 14–19 (1950).

    Article  MATH  Google Scholar 

  17. Turro, N. J., Ramamurthy, V. & Scaiano, J. C. Modern Molecular Photochemistry of Organic Molecules (University Science Books, 2010).

  18. Chen, M. et al. A unique blend of 2-fluorenyl-2-anthracene and 2-anthryl-2 anthracence showing white emission and high charge mobility. Angew. Chem. Int. Ed. 56, 722–727 (2017).

    Article  ADS  MATH  Google Scholar 

  19. Jin, J. et al. Modulating tri-mode emission for single-component white organic afterglow. Angew. Chem. Int. Ed. 60, 24984–24990 (2021).

    Article  Google Scholar 

  20. Wang, Y. et al. Host-guest materials with room temperature phosphorescence: tunable emission color and thermal printing patterns. SmartMat 1, e1006 (2020).

    Article  Google Scholar 

  21. Yamashita, Y. et al. Efficient molecular doping of polymeric semiconductors driven by anion exchange. Nature 572, 634–638 (2019).

    Article  ADS  MATH  Google Scholar 

  22. Qin, Z. et al. Organic polarized light-emitting transistors. Adv. Mater. 35, 2301955 (2023).

    Article  Google Scholar 

  23. Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).

    Article  MATH  Google Scholar 

  24. Lu, T. & Chen, F. Quantitative analysis of molecular surface based on improved marching tetrahedra algorithm. J. Mol. Graph. Model. 38, 314–323 (2012).

    Article  MATH  Google Scholar 

  25. Frisch, M. J. et al. Gaussian 16, Revision B.01 (Gaussian, 2016).

  26. Lu, T. & Chen, Q. Revealing molecular electronic structure via analysis of valence electron density. Acta Phys. Chim. Sin. 34, 503–513 (2018).

    Article  MATH  Google Scholar 

  27. Liu, J. et al. High mobility emissive organic semiconductor. Nat. Commun. 6, 10032 (2015).

    Article  ADS  Google Scholar 

  28. Liu, J. et al. Thin film field-effect transistors of 2,6-diphenyl anthracene (DPA). Chem. Commun. 51, 11777–11779 (2015).

    Article  ADS  MATH  Google Scholar 

  29. Qin, Z. et al. High-efficiency single-component organic light-emitting transistors. Adv. Mater. 31, 1903175 (2019).

    Article  Google Scholar 

  30. Ding, R. et al. High-color-rendering and high-efficiency white organic light-emitting devices based on double-doped organic single crystals. Adv. Funct. Mater. 29, 1807606 (2019).

    Article  Google Scholar 

  31. Wang, T. et al. Intrinsic linear dichroism of organic single crystals toward high-performance polarization-sensitive photodetectors. Adv. Mater. 34, 2105665 (2022).

    Article  Google Scholar 

  32. Zhang, J. et al. Strong linearly polarized photoluminescence and electroluminescence from halide perovskite/azobenzene dye composite film for display applications. Adv. Opt. Mater. 8, 1901824 (2020).

    Article  Google Scholar 

  33. Wang, J. et al. Polarized light-emitting diodes based on anisotropic excitons in few-layer ReS2. Adv. Mater. 32, 2001890 (2020).

    Article  Google Scholar 

  34. Fung, M. K., Li, Y. Q. & Liao, L. S. Tandem organic light-emitting diodes. Adv. Mater. 28, 10381–10408 (2016).

    Article  MATH  Google Scholar 

  35. Li, Y. et al. Tailor-made nanostructures bridging chaos and order for highly efficient white organic light-emitting diodes. Nat. Commun. 10, 2972 (2019).

    Article  ADS  MATH  Google Scholar 

  36. Chen, J. et al. Efficient and bright white light-emitting diodes based on single-layer heterophase halide perovskites. Nat. Photon. 15, 238–244 (2020).

    Article  ADS  MATH  Google Scholar 

  37. Ding, R. et al. Clarification of the molecular doping mechanism in organic single-crystalline semiconductors and their application in color-tunable light-emitting devices. Adv. Mater. 30, 1801078 (2018).

    Article  Google Scholar 

  38. Wang, H. et al. Preparation, optical property and field-effect mobility investigation of stable white-emissive doped organic crystal. CrystEngComm 17, 2168–2175 (2015).

    Article  MATH  Google Scholar 

  39. He, Z. et al. white-light emission from a single organic molecule with dual phosphorescence at room temperature. Nat. Commun. 8, 416 (2017).

    Article  ADS  MATH  Google Scholar 

  40. Manna, B., Nandi, A. & Ghosh, R. Energy transfer-mediated white-light emission from Nile red-doped 9,10-diphenylanthracene nanoaggregates upon excitation with near UV light. Photochem. Photobiol. Sci. 18, 2748–2758 (2019).

    Article  Google Scholar 

  41. Sun, Y., Lei, Y., Liao, L. & Hu, W. Competition between arene-perfluoroarene and charge-transfer interactions in organic light-harvesting systems. Angew. Chem. Int. Ed. 56, 10352–10356 (2017).

    Article  MATH  Google Scholar 

  42. Chen, S. et al. Organic white-light sources: multiscale construction of organic luminescent materials from molecular to macroscopic level. Sci. China Chem. 65, 740–745 (2022).

    Article  MATH  Google Scholar 

  43. Lei, Y., Liao, Q., Fu, H. & Yao, J. Orange-blue-orange triblock one-dimensional heterostructures of organic microrods for white-light emission. J. Am. Chem. Soc. 132, 1742–1743 (2010).

    Article  MATH  Google Scholar 

  44. Zhuo, M. P. et al. Hierarchical self-assembly of organic core/multi-shell microwires for trichromatic white-light sources. Adv. Mater. 33, 2102719 (2021).

    Article  MATH  Google Scholar 

  45. Li, Z. Z. et al. White-emissive self-assembled organic microcrystals. Small 13, 1604110 (2017).

    Article  Google Scholar 

  46. Gwinner, M. C. et al. Highly efficient single-layer polymer ambipolar light-emitting field-effect transistors. Adv. Mater. 24, 2728–2734 (2012).

    Article  MATH  Google Scholar 

  47. Tu, L., Xie, Y., Li, Z. & Tang, B. Aggregation-induced emission: red and near-infrared organic light-emitting diodes. SmartMat 2, 326–346 (2021).

    Article  MATH  Google Scholar 

  48. Fan, X. C. et al. Thermally activated delayed fluorescence materials for nondoped organic light-emitting diodes with nearly 100% exciton harvest. SmartMat 4, e1122 (2022).

    Article  Google Scholar 

  49. Wang, C., Liu, Y. & Guo, Y. Intrinsically flexible organic phototransistors for bioinspired neuromorphic sensory system. Wearable Electron. 1, 41–52 (2024).

    Article  MATH  Google Scholar 

  50. Lin, C.-C. et al. A solution processable dithioalkyl dithienothiophene (DSDTT) based small molecule and its blends for high performance organic field effect transistors. ACS Nano 15, 727–738 (2021).

    Article  MATH  Google Scholar 

  51. Wang, C., Dong, H., Hu, W., Liu, Y. & Zhu, D. Semiconducting π-conjugated systems in field-effect transistors: a material odyssey of organic electronics. Chem. Rev. 112, 2208–2267 (2012).

    Article  MATH  Google Scholar 

  52. Wang, S. et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 555, 83–88 (2018).

    Article  ADS  MATH  Google Scholar 

  53. Hepp, A. et al. Light-emitting field-effect transistor based on a tetracene thin film. Phys. Rev. Lett. 91, 157406 (2003).

    Article  ADS  MATH  Google Scholar 

  54. Hou, L. et al. Optically switchable organic light-emitting transistors. Nat. Nanotechnol. 14, 347–353 (2019).

    Article  ADS  Google Scholar 

  55. Wu, Z. et al. Efficient and low-voltage vertical organic permeable base light-emitting transistors. Nat. Mater. 20, 1007–1014 (2021).

    Article  ADS  MATH  Google Scholar 

  56. Qin, Z., Gao, H., Dong, H. & Hu, W. Organic light-emitting transistors entering a new development stage. Adv. Mater. 33, 2007149 (2021).

    Article  Google Scholar 

  57. Chen, Y. et al. Nanofloating gate modulated synaptic organic light-emitting transistors for reconfigurable displays. Sci. Adv. 8, eabq4824 (2022).

    Article  ADS  Google Scholar 

  58. Capelli, R. et al. Organic light-emitting transistors with an efficiency that outperforms the equivalent light-emitting diodes. Nat. Mater. 9, 496–503 (2010).

    Article  ADS  MATH  Google Scholar 

  59. Chen, L. et al. High-performance ambipolar and n-type emissive semiconductors based on perfluorophenyl-substituted perylene and anthracene. Adv. Sci. 10, 2300530 (2023).

    Article  Google Scholar 

  60. Chen, H., Huang, W., Marks, T. J., Facchetti, A. & Meng, H. Recent advances in multi-layer light-emitting heterostructure transistors. Small 17, 2007661 (2021).

    Article  Google Scholar 

  61. Khasminskaya, S. et al. Fully integrated quantum photonic circuit with an electrically driven light source. Nat. Photon. 10, 727–732 (2016).

    Article  ADS  MATH  Google Scholar 

  62. Fan, F., Turkdogan, S., Liu, Z., Shelhammer, D. & Ning, C. Z. A monolithic white laser. Nat. Nanotechnol. 10, 796–803 (2015).

    Article  ADS  Google Scholar 

  63. So, J.-P. et al. Electrically driven strain-induced deterministic single-photon emitters in a van der Waals heterostructure. Sci. Adv. 7, eabj3176 (2021).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of China (grant no. 52233010 to H.D. and C.G., 52103245 to C.G., 52403342 to Z.Q., 52121002 to W.H., U21A6002 to W.H., T2441002 to W.H. and H.D., and 22021002 to H.D.), the CAS Project for Young Scientists in Basic Research (grant no. YSBR-053 to H.D.), the Beijing National Laboratory for Molecular Sciences (grant no. BNLMS-CXXM-202012 to H.D., C.G., T.W., H.G. and Z.Q.), the China Postdoctoral Science Foundation (grant no. 2023M743552 to Z.Q.), the China National Postdoctoral Program for Innovative Talents (grant no. BX20230372 to Z.Q.), and Haihe Laboratory of Sustainable Chemical Transformations.

Author information

Authors and Affiliations

Authors

Contributions

H.D. and W.H. conceived the project and designed the experiments. Z.Q. prepared the molecular doped organic semiconductor single crystals, fabricated devices, and measured their optical and electrical properties. Y.Z. prepared and characterized organic field-effect transistor devices. Y.Z. participated in the fabrication of OPLEDs. T.W., H.G. and C.G. assisted with the experiment characterizations and data analysis. Z.Q. performed the theoretical calculations. Z.Q., H.D. and W.H. wrote the paper. X.Z kindly provided help for atomic force microscopy morphology characterization. All authors discussed the results and commented on the paper.

Corresponding authors

Correspondence to Huanli Dong or Wenping Hu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Qingdong Ou, Qichun Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–33, Notes 1–4 and Tables 1–3.

Supplementary Video 1

A video of the OPLEDs device in operation.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, Z., Zhang, Y., Wang, T. et al. Intrinsically white organic polarized emissive semiconductors. Nat. Photon. 19, 378–386 (2025). https://doi.org/10.1038/s41566-024-01609-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41566-024-01609-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing