Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A superconducting nanowire two-photon coincidence counter with combinatorial time logic and amplitude multiplexing

Abstract

Coincidence measurement of photon pairs over a large spatial mode is crucial for revealing non-classical phenomena and advancing quantum information technologies, which usually require an increased number of time-resolved single-photon detectors. Superconducting nanowire single-photon detectors stand out for their superior detection metrics and on-chip integration feasibility. However, their array frameworks usually only enable the localization of one photon. Here we propose a two-terminal two-photon coincidence counter using superconducting nanowire transmission lines with customized delay-time series. Using combinatorial time logic and amplitude multiplexing, our device successfully resolves all 152 potential single- and two-photon events in a 16-pixel configuration. Compared with traditional superconducting single-photon detector arrays, the device also exhibits a higher dynamic range in classical low-photon-flux sampling by efficiently suppressing multi-photon distortion. This innovative array architecture showcases self-coincidence counting, scalability and straightforward readout, making it promising for large-scale on-chip coincidence measurement in quantum information processing, as well as high-dynamic-range single-photon imaging and sensing in low-light environments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sixteen-pixel SNTPC.
Fig. 2: Time–amplitude-multiplexed readout.
Fig. 3: Combinatorial logic.
Fig. 4: Amplitude multiplexing.
Fig. 5: Photon-count sampling of the optical mode.

Similar content being viewed by others

Data availability

The data that support the findings of this study are reported in the Article and its Supplementary Information. Source data are provided with this paper.

Code availability

The codes that support this study are available from the corresponding authors upon reasonable request.

References

  1. Giustina, M. et al. Significant-loophole-free test of Bell’s theorem with entangled photons. Phys. Rev. Lett. 115, 250401 (2015).

    Article  ADS  MATH  Google Scholar 

  2. Shalm, L. K. et al. Strong loophole-free test of local realism. Phys. Rev. Lett. 115, 250402 (2015).

    Article  ADS  Google Scholar 

  3. Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

    Article  ADS  MATH  Google Scholar 

  4. O’Brien, J. L. Optical quantum computing. Science 318, 1567–1570 (2007).

    Article  ADS  MATH  Google Scholar 

  5. Kok, P. et al. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–174 (2007).

    Article  ADS  MATH  Google Scholar 

  6. Wengerowsky, S., Joshi, S. K., Steinlechner, F., Hübel, H. & Ursin, R. An entanglement-based wavelength-multiplexed quantum communication network. Nature 564, 225–228 (2018).

    Article  ADS  Google Scholar 

  7. Lemos, G. B. et al. Quantum imaging with undetected photons. Nature 512, 409–412 (2014).

    Article  ADS  MATH  Google Scholar 

  8. Moreau, P.-A., Toninelli, E., Gregory, T. & Padgett, M. J. Imaging with quantum states of light. Nat. Rev. Phys. 1, 367–380 (2019).

    Article  MATH  Google Scholar 

  9. Casacio, C. A. et al. Quantum-enhanced nonlinear microscopy. Nature 594, 201–206 (2021).

    Article  ADS  MATH  Google Scholar 

  10. Peruzzo, A. et al. Quantum walks of correlated photons. Science 329, 1500–1503 (2010).

    Article  ADS  MATH  Google Scholar 

  11. Sansoni, L. et al. Two-particle bosonic–fermionic quantum walk via integrated photonics. Phys. Rev. Lett. 108, 010502 (2012).

    Article  ADS  MATH  Google Scholar 

  12. Crespi, A. et al. Anderson localization of entangled photons in an integrated quantum walk. Nat. Photon. 7, 322–328 (2013).

    Article  ADS  MATH  Google Scholar 

  13. Defienne, H., Barbieri, M., Walmsley, I. A., Smith, B. J. & Gigan, S. Two-photon quantum walk in a multimode fiber. Sci. Adv. 2, e1501054 (2016).

    Article  ADS  Google Scholar 

  14. Spring, J. B. et al. Boson sampling on a photonic chip. Science 339, 798–801 (2013).

    Article  ADS  MATH  Google Scholar 

  15. Broome, M. A. et al. Photonic boson sampling in a tunable circuit. Science 339, 794–798 (2013).

    Article  ADS  MATH  Google Scholar 

  16. Wang, J., Sciarrino, F., Laing, A. & Thompson, M. G. Integrated photonic quantum technologies. Nat. Photon. 14, 273–284 (2020).

    Article  ADS  Google Scholar 

  17. Elshaari, A. W., Pernice, W., Srinivasan, K., Benson, O. & Zwiller, V. Hybrid integrated quantum photonic circuits. Nat. Photon. 14, 285–298 (2020).

    Article  ADS  Google Scholar 

  18. Luo, W. et al. Recent progress in quantum photonic chips for quantum communication and internet. Light Sci. Appl. 12, 175 (2023).

    Article  ADS  MATH  Google Scholar 

  19. Lita, A. E., Reddy, D. V., Verma, V. B., Mirin, R. P. & Nam, S. W. Development of superconducting single-photon and photon-number resolving detectors for quantum applications. J. Lightwave Technol. 40, 7578–7597 (2022).

    Article  ADS  Google Scholar 

  20. Zadeh, I. E. et al. Superconducting nanowire single-photon detectors: a perspective on evolution, state-of-the-art, future developments, and applications. Appl. Phys. Lett. 118, 190502 (2021).

    Article  MATH  Google Scholar 

  21. Ferrari, S., Schuck, C. & Pernice, W. Waveguide-integrated superconducting nanowire single-photon detectors. Nanophotonics 7, 1725–1758 (2018).

    Article  Google Scholar 

  22. Häußler, M. et al. Scaling waveguide-integrated superconducting nanowire single-photon detector solutions to large numbers of independent optical channels. Rev. Sci. Instrum. 94, 013103 (2023).

    Article  MATH  Google Scholar 

  23. Wollman, E. E. et al. Kilopixel array of superconducting nanowire single-photon detectors. Opt. Express 27, 35279–35289 (2019).

    Article  ADS  MATH  Google Scholar 

  24. Allmaras, J. P. et al. Demonstration of a thermally coupled row–column SNSPD imaging array. Nano Lett. 20, 2163–2168 (2020).

    Article  ADS  MATH  Google Scholar 

  25. Zhao, Q.-Y. et al. Single-photon imager based on a superconducting nanowire delay line. Nat. Photon. 11, 247–251 (2017).

    Article  ADS  MATH  Google Scholar 

  26. Kong, L.-D. et al. Readout-efficient superconducting nanowire single-photon imager with orthogonal time–amplitude multiplexing by hotspot quantization. Nat. Photon. 17, 65–72 (2023).

    Article  ADS  Google Scholar 

  27. Doerner, S. et al. Frequency-multiplexed bias and readout of a 16-pixel superconducting nanowire single-photon detector array. Appl. Phys. Lett. 111, 032603 (2017).

    Article  ADS  Google Scholar 

  28. Oripov, B. G. et al. A superconducting nanowire single-photon camera with 400,000 pixels. Nature 622, 730–734 (2023).

    Article  ADS  MATH  Google Scholar 

  29. He, G. et al. Simultaneous resolution of photon numbers and positions with series-connected superconducting nanowires. Appl. Phys. Lett. 120, 124001 (2022).

    Article  ADS  MATH  Google Scholar 

  30. Zhu, D. et al. A scalable multi-photon coincidence detector based on superconducting nanowires. Nat. Nanotechnol. 13, 596–601 (2018).

    Article  ADS  MATH  Google Scholar 

  31. Cheng, R. et al. A 100-pixel photon-number-resolving detector unveiling photon statistics. Nat. Photon. https://doi.org/10.1038/s41566-022-01119-3 (2022).

    Article  MATH  Google Scholar 

  32. Qiang, X. et al. Large-scale silicon quantum photonics implementing arbitrary two-qubit processing. Nat. Photon. 12, 534–539 (2018).

    Article  ADS  MATH  Google Scholar 

  33. Kong, L. et al. Noise-tolerant single-photon imaging with a superconducting nanowire camera. Opt. Lett. 45, 6732–6735 (2020).

    Article  ADS  MATH  Google Scholar 

  34. Pernice, W. H. P. et al. High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits. Nat.Commun. 3, 1325 (2012).

    Article  ADS  MATH  Google Scholar 

  35. Zhu, D. et al. Resolving photon numbers using a superconducting nanowire with impedance-matching taper. Nano Lett. 20, 3858–3863 (2020).

    Article  ADS  MATH  Google Scholar 

  36. Santavicca, D. F., Colangelo, M., Eagle, C. R., Warusawithana, M. P. & Berggren, K. K. 50 Ω transmission lines with extreme wavelength compression based on superconducting nanowires on high-permittivity substrates. Appl. Phys. Lett. 119, 252601 (2021).

    Article  ADS  Google Scholar 

  37. Colangelo, M. et al. Impedance-matched differential superconducting nanowire detectors. Phys. Rev. Appl. 19, 044093 (2023).

    Article  ADS  Google Scholar 

  38. Gaggero, A. et al. Amplitude-multiplexed readout of single-photon detectors based on superconducting nanowires. Optica 6, 823–828 (2019).

    Article  ADS  MATH  Google Scholar 

  39. Kong, L. et al. Probabilistic energy-to-amplitude mapping in a tapered superconducting nanowire single-photon detector. Nano Lett. 22, 1587–1594 (2022).

    Article  ADS  MATH  Google Scholar 

  40. Cahall, C. et al. Multi-photon detection using a conventional superconducting nanowire single-photon detector. Optica 4, 1534–1535 (2017).

    Article  ADS  MATH  Google Scholar 

  41. Kong, L.-D. et al. Large-inductance superconducting microstrip photon detector enabling 10 photon-number resolution. Adv. Photonics 6, 016004 (2024).

    Article  ADS  Google Scholar 

  42. Divochiy, A. et al. Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths. Nat. Photon. 2, 302–306 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the SIMIT-SNSPD group for technical assistance with the measurement instruments, and the Superconducting Electronics Facility (SELF) group for technical support with nanofabrication. This work was supported by the Innovation Program for Quantum Science and Technology (no. 2023ZD0300100) and the National Science Foundation of China (grant nos. 62301541, 61971408, 61827823 and 12033007). L.-D.K. acknowledges support from the Shanghai Sailing Program (grant no. 23YF1456200).

Author information

Authors and Affiliations

Authors

Contributions

L.-D.K. conceived the idea, designed the device and performed the measurements. T.-Z.Z., X.-Y.L. and J.-M.X. fabricated the device. X.Z. and T.-Z.Z. helped with the cryogenic set-up. H.L., Z.W. and X.-M.X. helped with the measurement. All the authors discussed the results. L.-D.K. and L.-X.Y. wrote the paper with input from all authors.

Corresponding authors

Correspondence to Ling-Dong Kong or Li-Xing You.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Alexey Semenov and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–7 and Discussion.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, LD., Zhang, TZ., Liu, XY. et al. A superconducting nanowire two-photon coincidence counter with combinatorial time logic and amplitude multiplexing. Nat. Photon. 19, 407–414 (2025). https://doi.org/10.1038/s41566-024-01613-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41566-024-01613-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing