Abstract
Quantum vortices of light carrying orbital angular momentum stand as essential resources for quantum photonic technologies. Recent advancements in integrated photonics offer the potential to create and control quantum vortices using fully integrated circuits, eliminating the need for intricate free-space alignment, modulation and the stabilization of bulky optical elements. However, generating quantum vortices in planar optical waveguides and circuits poses challenges, owing to the complexities of confining and guiding twisted photons and, importantly, the difficulties in preparing the quantum superposition and entanglement of vortex states. Here we report the realization of entangled quantum vortex emitters, leveraging programmable integrated nanophotonic circuits. These circuits enable the generation and arbitrary control of resilient vortex entanglement in free space, coherently transitioning from on-chip-created path entanglement. This capability is facilitated by a chip-to-free-space interfacing quantum technology that combines reprogrammable integrated quantum photonics with advanced classical free-space beam structuring. The emitters operate in a plug-and-play manner, enabling swift reconfiguration within microseconds. Validation of multidimensional genuine entanglement is achieved through quantum tomography and measurement of the dimension witness. Our work demonstrates integrated quantum vortex devices that combine the versatility of the on-chip processing quantum information with the robustness of transmitting quantum vortices in free space, opening new avenues for applications in quantum communication, quantum light detection and ranging, and quantum computation and storage.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
Data availability
The main data that support the findings of this study are available within the Article and its Supplementary Information. Any additional data are available from the corresponding authors upon reasonable request.
Code availability
The analysis codes will be made available from the corresponding authors upon reasonable request.
References
Mair, A., Vaziri, A., Weihs, G. & Zeilinger, A. Entanglement of the orbital angular momentum states of photons. Nature 412, 313–316 (2001).
Verbeeck, J., Tian, H. & Schattschneider, P. Production and application of electron vortex beams. Nature 467, 301–304 (2010).
Luski, A. et al. Vortex beams of atoms and molecules. Science 373, 1105–1109 (2021).
Allen, L., Beijersbergen, M. W., Spreeuw, R. J. C. & Woerdman, J. P. Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992).
Erhard, M., Krenn, M. & Zeilinger, A. Advances in high-dimensional quantum entanglement. Nat. Rev. Phys. 2, 365–381 (2020).
Shen, Y. et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci. Appl. 8, 90 (2019).
Dada, A. C., Leach, J., Buller, G. S., Padgett, M. J. & Andersson, E. Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities. Nat. Phys. 7, 677–680 (2011).
Designolle, S. et al. Genuine high-dimensional quantum steering. Phys. Rev. Lett. 126, 200404 (2021).
Fickler, R. et al. Quantum entanglement of high angular momenta. Science 338, 640–643 (2012).
Krenn, M. et al. Generation and confirmation of a (100 × 100)-dimensional entangled quantum system. Proc. Natl Acad. Sci. USA 111, 6243–6247 (2014).
Malik, M. et al. Multi-photon entanglement in high dimensions. Nat. Photon. 10, 248–252 (2016).
Erhard, M., Malik, M., Krenn, M. & Zeilinger, A. Experimental Greenberger–Horne–Zeilinger entanglement beyond qubits. Nat. Photon. 12, 759–764 (2018).
Ding, D.-S. et al. Quantum storage of orbital angular momentum entanglement in an atomic ensemble. Phys. Rev. Lett. 114, 050502 (2015).
Parigi, V. et al. Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory. Nat. Commun. 6, 7706 (2015).
Sit, A. et al. High-dimensional intracity quantum cryptography with structured photons. Optica 4, 1006–1010 (2017).
Vallone, G. et al. Free-space quantum key distribution by rotation-invariant twisted photons. Phys. Rev. Lett. 113, 060503 (2014).
Luo, Y.-H. et al. Quantum teleportation in high dimensions. Phys. Rev. Lett. 123, 070505 (2019).
Hu, X.-M. et al. Experimental high-dimensional quantum teleportation. Phys. Rev. Lett. 125, 230501 (2020).
Zhang, D., Feng, X., Cui, K., Liu, F. & Huang, Y. Generating in-plane optical orbital angular momentum beams with silicon waveguides. IEEE Photonics J. 5, 2201206 (2013).
Zheng, S. & Wang, J. On-chip orbital angular momentum modes generator and (de)multiplexer based on trench silicon waveguides. Opt. Express 25, 18492–18501 (2017).
Ni, J. et al. Multidimensional phase singularities in nanophotonics. Science 374, eabj0039 (2021).
Cai, X. et al. Integrated compact optical vortex beam emitters. Science 338, 363–366 (2012).
Strain, M. J. et al. Fast electrical switching of orbital angular momentum modes using ultra-compact integrated vortex emitters. Nat. Commun. 5, 4856 (2014).
Miao, P. et al. Orbital angular momentum microlaser. Science 353, 464–467 (2016).
Zhang, Z. et al. Tunable topological charge vortex microlaser. Science 368, 760–763 (2020).
Lu, X. et al. Highly-twisted states of light from a high quality factor photonic crystal ring. Nat. Commun. 14, 1119 (2023).
Liu, Y. et al. Integrated vortex soliton microcombs. Nat. Photon. 18, 632–637 (2024).
Chen, B. et al. Integrated optical vortex microcomb. Nat. Photon. 18, 625–631 (2024).
Bogaerts, W. et al. Programmable photonic circuits. Nature 586, 207–216 (2020).
Miller, D. A. B. Self-configuring universal linear optical component. Photonics Res. 1, 1–15 (2013).
Fontaine, N., Doerr, C. & Buhl, L. Efficient multiplexing and demultiplexing of free-space orbital angular momentum using photonic integrated circuits. In Optical Fiber Communication Conference Paper OTu1I.2 (Optica Publishing Group, 2012).
Sun, J., Timurdogan, E., Yaacobi, A., Hosseini, E. S. & Watts, M. R. Large-scale nanophotonic phased array. Nature 493, 195–199 (2013).
Bütow, J., Eismann, J. S., Sharma, V., Brandmüller, D. & Banzer, P. Generating free-space structured light with programmable integrated photonics. Nat. Photon. 18, 243–249 (2024).
SeyedinNavadeh, S. et al. Determining the optimal communication channels of arbitrary optical systems using integrated photonic processors. Nat. Photon. 18, 149–155 (2024).
Zheng, Y. et al. Multichip multidimensional quantum networks with entanglement retrievability. Science 381, 221–226 (2023).
Ding, Y. et al. High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits. npj Quantum Inf. 3, 25 (2017).
Wang, J. et al. Multidimensional quantum entanglement with large-scale integrated optics. Science 360, 285–291 (2018).
Huang, J. et al. Demonstration of hypergraph-state quantum information processing. Nat. Commun. 15, 2601 (2024).
Bao, J. et al. Very-large-scale integrated quantum graph photonics. Nat. Photon. 17, 573–581 (2023).
Wang, J., Sciarrino, F., Laing, A. & Thompson, M. G. Integrated photonic quantum technologies. Nat. Photon. 14, 273–284 (2020).
Arrazola, J. M. et al. Quantum circuits with many photons on a programmable nanophotonic chip. Nature 591, 54–60 (2021).
Maring, N. et al. A versatile single-photon-based quantum computing platform. Nat. Photon. 18, 603–609 (2024).
Wang, J. et al. Chip-to-chip quantum photonic interconnect by path-polarization interconversion. Optica 3, 407–413 (2016).
Llewellyn, D. et al. Chip-to-chip quantum teleportation and multi-photon entanglement in silicon. Nat. Phys. 16, 148–153 (2020).
Clements, W. R., Humphreys, P. C., Metcalf, B. J., Kolthammer, W. S. & Walmsley, I. A. Optimal design for universal multiport interferometers. Optica 3, 1460–1465 (2016).
Berkhout, G. C. G., Lavery, M. P. J., Courtial, J., Beijersbergen, M. W. & Padgett, M. J. Efficient sorting of orbital angular momentum states of light. Phys. Rev. Lett. 105, 153601 (2010).
Fontaine, N. K. et al. Laguerre–Gaussian mode sorter. Nat. Commun. 10, 1865 (2019).
Mirhosseini, M., Malik, M., Shi, Z. & Boyd, R. W. Efficient separation of the orbital angular momentum eigenstates of light. Nat. Commun. 4, 2781 (2013).
Fickler, R. et al. Interface between path and orbital angular momentum entanglement for high-dimensional photonic quantum information. Nat. Commun. 5, 4502 (2014).
Shen, X. et al. Ultra-low-crosstalk silicon arrayed-waveguide grating (de)multiplexer with 1.6-nm channel spacing. Laser Photon. Rev. 18, 2300617 (2024).
Doerr, C. R. & Buhl, L. L. Circular grating coupler for creating focused azimuthally and radially polarized beams. Opt. Lett. 36, 1209–1211 (2011).
Goodman, J. W. & Lawrence, R. W. Digital image formation from electronically detected holograms. Appl. Phys. Lett. 11, 77–79 (1967).
Zia, D., Dehghan, N., D’Errico, A., Sciarrino, F. & Karimi, E. Interferometric imaging of amplitude and phase of spatial biphoton states. Nat. Photon. 17, 1009–1016 (2023).
Wong, G. K. L. et al. Russell excitation of orbital angular momentum resonances in helically twisted photonic crystal fiber. Science 337, 446–449 (2012).
Ma, Z., Kristensen, P. & Ramachandran, S. Scaling information pathways in optical fibers by topological confinement. Science 380, 278–282 (2023).
Mehta, K. K. et al. Integrated optical multi-ion quantum logic. Nature 586, 533–537 (2020).
Silverstone, J. W. et al. Qubit entanglement between ring-resonator photon-pair sources on a silicon chip. Nat. Commun. 6, 7948 (2015).
Miloshevsky, A. et al. CMOS photonic integrated source of broadband polarization-entangled photons. Opt. Quantum 2, 254–259 (2024).
Zhang, X. et al. Integrated silicon nitride time-bin entanglement circuits. Opt. Lett. 43, 3469–3472 (2018).
Mahmudlu, H. et al. Fully on-chip photonic turnkey quantum source for entangled qubit/qudit state generation. Nat. Photon. 17, 518–524 (2023).
Acknowledgements
We thank L. Chen and B. Guan for useful discussions. We acknowledge support from the Academic Divisions of the Chinese Academy of Sciences (no. 2020-XX02-B-026), the National Natural Science Foundation of China (nos. 12325410, 62235001, 11834010 and 12134001), the Innovation Program for Quantum Science and Technology (no. 2021ZD0301500), the National Key R&D Program of China (no. 2019YFA0308702) and the Beijing Natural Science Foundation (Z220008).
Author information
Authors and Affiliations
Contributions
J.W. conceived the project. J.H., X.L., D.D. and J.W. designed the entangled vortex chips. J.H., J.M., X.L., J.Y., Y.Z., C.Z., X.C., T.D., Z.F. and J.B. carried out the experiments. J.H., J.M., X.L. and J.Y. performed the simulations and carried out the theoretical analysis. Y.Y., D.D., Y.L., Q.G. and J.W. managed the project. J.H., J.M., X.L., J.Y. and J.W. wrote the manuscript with input from all authors. All of the authors discussed the results and contributed to the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Photonics thanks Lorenzo Marrucci and Qiwen Zhan for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figs. 1–12.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Huang, J., Mao, J., Li, X. et al. Integrated optical entangled quantum vortex emitters. Nat. Photon. 19, 471–478 (2025). https://doi.org/10.1038/s41566-025-01620-5
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s41566-025-01620-5
This article is cited by
-
Twisting entangled photons on a chip
Nature Photonics (2025)