Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Integrated optical entangled quantum vortex emitters

Abstract

Quantum vortices of light carrying orbital angular momentum stand as essential resources for quantum photonic technologies. Recent advancements in integrated photonics offer the potential to create and control quantum vortices using fully integrated circuits, eliminating the need for intricate free-space alignment, modulation and the stabilization of bulky optical elements. However, generating quantum vortices in planar optical waveguides and circuits poses challenges, owing to the complexities of confining and guiding twisted photons and, importantly, the difficulties in preparing the quantum superposition and entanglement of vortex states. Here we report the realization of entangled quantum vortex emitters, leveraging programmable integrated nanophotonic circuits. These circuits enable the generation and arbitrary control of resilient vortex entanglement in free space, coherently transitioning from on-chip-created path entanglement. This capability is facilitated by a chip-to-free-space interfacing quantum technology that combines reprogrammable integrated quantum photonics with advanced classical free-space beam structuring. The emitters operate in a plug-and-play manner, enabling swift reconfiguration within microseconds. Validation of multidimensional genuine entanglement is achieved through quantum tomography and measurement of the dimension witness. Our work demonstrates integrated quantum vortex devices that combine the versatility of the on-chip processing quantum information with the robustness of transmitting quantum vortices in free space, opening new avenues for applications in quantum communication, quantum light detection and ranging, and quantum computation and storage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Generating quantum vortex entanglement with programmable integrated nanophotonics.
Fig. 2: Characterization of the integrated optical path-to-OAM interface.
Fig. 3: Interferometric measurement and reprogramming of OAM modes.
Fig. 4: Measurement and verification of multidimensional entanglement.

Similar content being viewed by others

Data availability

The main data that support the findings of this study are available within the Article and its Supplementary Information. Any additional data are available from the corresponding authors upon reasonable request.

Code availability

The analysis codes will be made available from the corresponding authors upon reasonable request.

References

  1. Mair, A., Vaziri, A., Weihs, G. & Zeilinger, A. Entanglement of the orbital angular momentum states of photons. Nature 412, 313–316 (2001).

    Article  ADS  Google Scholar 

  2. Verbeeck, J., Tian, H. & Schattschneider, P. Production and application of electron vortex beams. Nature 467, 301–304 (2010).

    Article  ADS  Google Scholar 

  3. Luski, A. et al. Vortex beams of atoms and molecules. Science 373, 1105–1109 (2021).

    Article  ADS  Google Scholar 

  4. Allen, L., Beijersbergen, M. W., Spreeuw, R. J. C. & Woerdman, J. P. Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992).

    Article  ADS  Google Scholar 

  5. Erhard, M., Krenn, M. & Zeilinger, A. Advances in high-dimensional quantum entanglement. Nat. Rev. Phys. 2, 365–381 (2020).

    Article  Google Scholar 

  6. Shen, Y. et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci. Appl. 8, 90 (2019).

    Article  ADS  Google Scholar 

  7. Dada, A. C., Leach, J., Buller, G. S., Padgett, M. J. & Andersson, E. Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities. Nat. Phys. 7, 677–680 (2011).

    Article  Google Scholar 

  8. Designolle, S. et al. Genuine high-dimensional quantum steering. Phys. Rev. Lett. 126, 200404 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  9. Fickler, R. et al. Quantum entanglement of high angular momenta. Science 338, 640–643 (2012).

    Article  ADS  Google Scholar 

  10. Krenn, M. et al. Generation and confirmation of a (100 × 100)-dimensional entangled quantum system. Proc. Natl Acad. Sci. USA 111, 6243–6247 (2014).

    Article  ADS  Google Scholar 

  11. Malik, M. et al. Multi-photon entanglement in high dimensions. Nat. Photon. 10, 248–252 (2016).

    Article  ADS  Google Scholar 

  12. Erhard, M., Malik, M., Krenn, M. & Zeilinger, A. Experimental Greenberger–Horne–Zeilinger entanglement beyond qubits. Nat. Photon. 12, 759–764 (2018).

    Article  ADS  Google Scholar 

  13. Ding, D.-S. et al. Quantum storage of orbital angular momentum entanglement in an atomic ensemble. Phys. Rev. Lett. 114, 050502 (2015).

    Article  ADS  Google Scholar 

  14. Parigi, V. et al. Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory. Nat. Commun. 6, 7706 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  15. Sit, A. et al. High-dimensional intracity quantum cryptography with structured photons. Optica 4, 1006–1010 (2017).

    Article  ADS  Google Scholar 

  16. Vallone, G. et al. Free-space quantum key distribution by rotation-invariant twisted photons. Phys. Rev. Lett. 113, 060503 (2014).

    Article  ADS  Google Scholar 

  17. Luo, Y.-H. et al. Quantum teleportation in high dimensions. Phys. Rev. Lett. 123, 070505 (2019).

    Article  ADS  Google Scholar 

  18. Hu, X.-M. et al. Experimental high-dimensional quantum teleportation. Phys. Rev. Lett. 125, 230501 (2020).

    Article  ADS  Google Scholar 

  19. Zhang, D., Feng, X., Cui, K., Liu, F. & Huang, Y. Generating in-plane optical orbital angular momentum beams with silicon waveguides. IEEE Photonics J. 5, 2201206 (2013).

    Article  ADS  Google Scholar 

  20. Zheng, S. & Wang, J. On-chip orbital angular momentum modes generator and (de)multiplexer based on trench silicon waveguides. Opt. Express 25, 18492–18501 (2017).

    Article  ADS  Google Scholar 

  21. Ni, J. et al. Multidimensional phase singularities in nanophotonics. Science 374, eabj0039 (2021).

    Article  Google Scholar 

  22. Cai, X. et al. Integrated compact optical vortex beam emitters. Science 338, 363–366 (2012).

    Article  ADS  Google Scholar 

  23. Strain, M. J. et al. Fast electrical switching of orbital angular momentum modes using ultra-compact integrated vortex emitters. Nat. Commun. 5, 4856 (2014).

    Article  ADS  Google Scholar 

  24. Miao, P. et al. Orbital angular momentum microlaser. Science 353, 464–467 (2016).

    Article  ADS  Google Scholar 

  25. Zhang, Z. et al. Tunable topological charge vortex microlaser. Science 368, 760–763 (2020).

    Article  ADS  Google Scholar 

  26. Lu, X. et al. Highly-twisted states of light from a high quality factor photonic crystal ring. Nat. Commun. 14, 1119 (2023).

    Article  ADS  Google Scholar 

  27. Liu, Y. et al. Integrated vortex soliton microcombs. Nat. Photon. 18, 632–637 (2024).

    Article  ADS  Google Scholar 

  28. Chen, B. et al. Integrated optical vortex microcomb. Nat. Photon. 18, 625–631 (2024).

    Article  ADS  Google Scholar 

  29. Bogaerts, W. et al. Programmable photonic circuits. Nature 586, 207–216 (2020).

    Article  ADS  Google Scholar 

  30. Miller, D. A. B. Self-configuring universal linear optical component. Photonics Res. 1, 1–15 (2013).

    Article  ADS  Google Scholar 

  31. Fontaine, N., Doerr, C. & Buhl, L. Efficient multiplexing and demultiplexing of free-space orbital angular momentum using photonic integrated circuits. In Optical Fiber Communication Conference Paper OTu1I.2 (Optica Publishing Group, 2012).

  32. Sun, J., Timurdogan, E., Yaacobi, A., Hosseini, E. S. & Watts, M. R. Large-scale nanophotonic phased array. Nature 493, 195–199 (2013).

    Article  ADS  Google Scholar 

  33. Bütow, J., Eismann, J. S., Sharma, V., Brandmüller, D. & Banzer, P. Generating free-space structured light with programmable integrated photonics. Nat. Photon. 18, 243–249 (2024).

    Article  ADS  Google Scholar 

  34. SeyedinNavadeh, S. et al. Determining the optimal communication channels of arbitrary optical systems using integrated photonic processors. Nat. Photon. 18, 149–155 (2024).

    Article  ADS  Google Scholar 

  35. Zheng, Y. et al. Multichip multidimensional quantum networks with entanglement retrievability. Science 381, 221–226 (2023).

    Article  ADS  Google Scholar 

  36. Ding, Y. et al. High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits. npj Quantum Inf. 3, 25 (2017).

    Article  ADS  Google Scholar 

  37. Wang, J. et al. Multidimensional quantum entanglement with large-scale integrated optics. Science 360, 285–291 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  38. Huang, J. et al. Demonstration of hypergraph-state quantum information processing. Nat. Commun. 15, 2601 (2024).

    Article  ADS  Google Scholar 

  39. Bao, J. et al. Very-large-scale integrated quantum graph photonics. Nat. Photon. 17, 573–581 (2023).

    Article  ADS  Google Scholar 

  40. Wang, J., Sciarrino, F., Laing, A. & Thompson, M. G. Integrated photonic quantum technologies. Nat. Photon. 14, 273–284 (2020).

    Article  ADS  Google Scholar 

  41. Arrazola, J. M. et al. Quantum circuits with many photons on a programmable nanophotonic chip. Nature 591, 54–60 (2021).

    Article  ADS  Google Scholar 

  42. Maring, N. et al. A versatile single-photon-based quantum computing platform. Nat. Photon. 18, 603–609 (2024).

    Article  ADS  Google Scholar 

  43. Wang, J. et al. Chip-to-chip quantum photonic interconnect by path-polarization interconversion. Optica 3, 407–413 (2016).

    Article  ADS  Google Scholar 

  44. Llewellyn, D. et al. Chip-to-chip quantum teleportation and multi-photon entanglement in silicon. Nat. Phys. 16, 148–153 (2020).

    Article  Google Scholar 

  45. Clements, W. R., Humphreys, P. C., Metcalf, B. J., Kolthammer, W. S. & Walmsley, I. A. Optimal design for universal multiport interferometers. Optica 3, 1460–1465 (2016).

    Article  ADS  Google Scholar 

  46. Berkhout, G. C. G., Lavery, M. P. J., Courtial, J., Beijersbergen, M. W. & Padgett, M. J. Efficient sorting of orbital angular momentum states of light. Phys. Rev. Lett. 105, 153601 (2010).

    Article  ADS  Google Scholar 

  47. Fontaine, N. K. et al. Laguerre–Gaussian mode sorter. Nat. Commun. 10, 1865 (2019).

    Article  ADS  Google Scholar 

  48. Mirhosseini, M., Malik, M., Shi, Z. & Boyd, R. W. Efficient separation of the orbital angular momentum eigenstates of light. Nat. Commun. 4, 2781 (2013).

    Article  ADS  Google Scholar 

  49. Fickler, R. et al. Interface between path and orbital angular momentum entanglement for high-dimensional photonic quantum information. Nat. Commun. 5, 4502 (2014).

    Article  ADS  Google Scholar 

  50. Shen, X. et al. Ultra-low-crosstalk silicon arrayed-waveguide grating (de)multiplexer with 1.6-nm channel spacing. Laser Photon. Rev. 18, 2300617 (2024).

    Article  ADS  Google Scholar 

  51. Doerr, C. R. & Buhl, L. L. Circular grating coupler for creating focused azimuthally and radially polarized beams. Opt. Lett. 36, 1209–1211 (2011).

    Article  ADS  Google Scholar 

  52. Goodman, J. W. & Lawrence, R. W. Digital image formation from electronically detected holograms. Appl. Phys. Lett. 11, 77–79 (1967).

    Article  ADS  Google Scholar 

  53. Zia, D., Dehghan, N., D’Errico, A., Sciarrino, F. & Karimi, E. Interferometric imaging of amplitude and phase of spatial biphoton states. Nat. Photon. 17, 1009–1016 (2023).

    Article  ADS  Google Scholar 

  54. Wong, G. K. L. et al. Russell excitation of orbital angular momentum resonances in helically twisted photonic crystal fiber. Science 337, 446–449 (2012).

    Article  ADS  Google Scholar 

  55. Ma, Z., Kristensen, P. & Ramachandran, S. Scaling information pathways in optical fibers by topological confinement. Science 380, 278–282 (2023).

    Article  ADS  MathSciNet  Google Scholar 

  56. Mehta, K. K. et al. Integrated optical multi-ion quantum logic. Nature 586, 533–537 (2020).

    Article  ADS  Google Scholar 

  57. Silverstone, J. W. et al. Qubit entanglement between ring-resonator photon-pair sources on a silicon chip. Nat. Commun. 6, 7948 (2015).

    Article  ADS  Google Scholar 

  58. Miloshevsky, A. et al. CMOS photonic integrated source of broadband polarization-entangled photons. Opt. Quantum 2, 254–259 (2024).

    Article  Google Scholar 

  59. Zhang, X. et al. Integrated silicon nitride time-bin entanglement circuits. Opt. Lett. 43, 3469–3472 (2018).

    Article  ADS  Google Scholar 

  60. Mahmudlu, H. et al. Fully on-chip photonic turnkey quantum source for entangled qubit/qudit state generation. Nat. Photon. 17, 518–524 (2023).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank L. Chen and B. Guan for useful discussions. We acknowledge support from the Academic Divisions of the Chinese Academy of Sciences (no. 2020-XX02-B-026), the National Natural Science Foundation of China (nos. 12325410, 62235001, 11834010 and 12134001), the Innovation Program for Quantum Science and Technology (no. 2021ZD0301500), the National Key R&D Program of China (no. 2019YFA0308702) and the Beijing Natural Science Foundation (Z220008).

Author information

Authors and Affiliations

Authors

Contributions

J.W. conceived the project. J.H., X.L., D.D. and J.W. designed the entangled vortex chips. J.H., J.M., X.L., J.Y., Y.Z., C.Z., X.C., T.D., Z.F. and J.B. carried out the experiments. J.H., J.M., X.L. and J.Y. performed the simulations and carried out the theoretical analysis. Y.Y., D.D., Y.L., Q.G. and J.W. managed the project. J.H., J.M., X.L., J.Y. and J.W. wrote the manuscript with input from all authors. All of the authors discussed the results and contributed to the manuscript.

Corresponding authors

Correspondence to Daoxin Dai or Jianwei Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Lorenzo Marrucci and Qiwen Zhan for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–12.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Mao, J., Li, X. et al. Integrated optical entangled quantum vortex emitters. Nat. Photon. 19, 471–478 (2025). https://doi.org/10.1038/s41566-025-01620-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41566-025-01620-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing