Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Generalized angle–orbital angular momentum Talbot effect and modulo mode sorting

Abstract

The Talbot effect describes the periodic revivals of field patterns, and is ubiquitous across wave systems. In optics, it is mostly known for its manifestations in space and time, but it is also observed in the wavevector and frequency spectra owing to the Fourier duality. Recently, the Talbot self-imaging has been shown separately in the azimuthal angle and orbital angular momentum (OAM) domains. Here we reveal the missing link between them and demonstrate the generalized angle–OAM Talbot effect. Versatile transformations of petal fields and OAM spectra are experimentally demonstrated, based on the synergy of angular Talbot phase modulation and light propagation in a ring-core fibre. Moreover, the generalized self-imaging concept leads to new realizations in mode sorting, which separate OAM modes in a modulo manner, theoretically free from any crosstalk within the congruence classes of OAM modes. We design and experimentally construct various mode sorters with excellent performance, and show the unconventional behaviour of Talbot-based sorters where neighbouring OAM modes can be mapped to positions that are far apart. Besides its fundamental interest, our work has applications in OAM-based information processing, and implies that the physical phenomena in time–frequency and angle–OAM domains are broadly connected and that their processing techniques may be borrowed interchangeably.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic diagram of the generalized angle–OAM Talbot effect and modulo OAM mode sorting.
Fig. 2: Experimental demonstration of the generalized angle–OAM Talbot effect.
Fig. 3: Versatile angular petal transformations based on the generalized Talbot effect.
Fig. 4: Talbot-based modulo 3 and modulo 4 OAM mode sorting.
Fig. 5: Unconventional modulo 12 OAM mode sorting and enhanced sorting of five consecutive OAM modes.

Similar content being viewed by others

Data availability

The data used to produce the plots within this article are available via Zenodo at https://doi.org/10.5281/zenodo.13921431 (ref. 62).

Code availability

The code used to produce the plots within this article is available via Zenodo at https://doi.org/10.5281/zenodo.13921431 (ref. 62).

References

  1. Talbot, H. F. LXXVI. Facts relating to optical science. No. IV. Lond. Edinb. Dubl. Philos. Mag. J. Sci. 9, 401–407 (1836).

    MATH  Google Scholar 

  2. Rayleigh, L. X. On the electromagnetic theory of light. Lond. Edinb. Dubl. Philos. Mag. J. Sci. 12, 81–101 (1881).

    Article  MATH  Google Scholar 

  3. Berry, M., Marzoli, I. & Schleich, W. Quantum carpets, carpets of light. Phys. World 14, 39 (2001).

    Article  MATH  Google Scholar 

  4. Case, W. B., Tomandl, M., Deachapunya, S. & Arndt, M. Realization of optical carpets in the Talbot and Talbot–Lau configurations. Opt. Express 17, 20966–20974 (2009).

    Article  ADS  MATH  Google Scholar 

  5. Wen, J., Zhang, Y. & Xiao, M. The Talbot effect: recent advances in classical optics, nonlinear optics, and quantum optics. Adv. Opt. Photonics 5, 83–130 (2013).

    Article  ADS  MATH  Google Scholar 

  6. Azaña, J. & Guillet de Chatellus, H. Angular Talbot effect. Phys. Rev. Lett. 112, 213902 (2014).

    Article  ADS  Google Scholar 

  7. Kolner, B. H. Space-time duality and the theory of temporal imaging. IEEE J. Quantum Electron. 30, 1951–1963 (1994).

    Article  ADS  MATH  Google Scholar 

  8. Azaña, J. & Muriel, M. A. Temporal self-imaging effects: theory and application for multiplying pulse repetition rates. IEEE J. Sel. Top. Quantum Electron. 7, 728–744 (2001).

    Article  ADS  MATH  Google Scholar 

  9. Longhi, S. et al. 40-GHz pulse-train generation at 1.5 μm with a chirped fiber grating as a frequency multiplier. Opt. Lett. 25, 1481–1483 (2000).

    Article  ADS  MATH  Google Scholar 

  10. Meloni, G. et al. 250-times repetition frequency multiplication for 2.5 THz clock signal generation. Electron. Lett. 41, 1294–1295 (2005).

    Article  ADS  MATH  Google Scholar 

  11. Cortés, L. R., Guillet de Chatellus, H. G. & Azaña, J. On the generality of the Talbot condition for inducing self-imaging effects on periodic objects. Opt. Lett. 41, 340–343 (2016).

    Article  ADS  MATH  Google Scholar 

  12. Fernández-Pousa, C. R. On the structure of quadratic Gauss sums in the Talbot effect. J. Opt. Soc. Am. A 34, 732–742 (2017).

    Article  ADS  MATH  Google Scholar 

  13. Azaña, J. Spectral Talbot phenomena of frequency combs induced by cross-phase modulation in optical fibers. Opt. Lett. 30, 227–229 (2005).

    Article  ADS  MATH  Google Scholar 

  14. Caraquitena, J., Beltrán, M., Llorente, R., Martí, J. & Muriel, M. A. Spectral self-imaging effect by time-domain multilevel phase modulation of a periodic pulse train. Opt. Lett. 36, 858–860 (2011).

    Article  ADS  Google Scholar 

  15. Lei, L. et al. Observation of spectral self-imaging by nonlinear parabolic cross-phase modulation. Opt. Lett. 40, 5403–5406 (2015).

    Article  ADS  MATH  Google Scholar 

  16. Romero Cortés, L., Maram, R., Guillet de Chatellus, H. & Azaña, J. Arbitrary energy-preserving control of optical pulse trains and frequency combs through generalized Talbot effects. Laser Photon. Rev. 13, 1900176 (2019).

    Article  ADS  MATH  Google Scholar 

  17. Maram, R., Van Howe, J., Li, M. & Azaña, J. Noiseless intensity amplification of repetitive signals by coherent addition using the temporal Talbot effect. Nat. Commun. 5, 5163 (2014).

    Article  ADS  MATH  Google Scholar 

  18. Crockett, B., Cortés, L. R., Maram, R. & Azaña, J. Optical signal denoising through temporal passive amplification. Optica 9, 130–138 (2022).

    Article  ADS  MATH  Google Scholar 

  19. Guillet de Chatellus, H., Romero Cortés, L., Deville, A., Seghilani, M. & Azaña, J. Diffraction-induced bidimensional talbot self-imaging with full independent period control. Phys. Rev. Lett. 118, 133903 (2017).

    Article  ADS  Google Scholar 

  20. Yao, A. M. & Padgett, M. J. Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photonics 3, 161–204 (2011).

    Article  ADS  MATH  Google Scholar 

  21. Rubinsztein-Dunlop, H. et al. Roadmap on structured light. J. Opt. 19, 013001 (2016).

    Article  ADS  MATH  Google Scholar 

  22. Forbes, A., de Oliveira, M. & Dennis, M. R. Structured light. Nat. Photon. 15, 253–262 (2021).

    Article  ADS  MATH  Google Scholar 

  23. Fickler, R., Campbell, G., Buchler, B., Lam, P. K. & Zeilinger, A. Quantum entanglement of angular momentum states with quantum numbers up to 10,010. Proc. Natl Acad. Sci. USA 113, 13642–13647 (2016).

    Article  ADS  Google Scholar 

  24. Wang, J. et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photon. 6, 488–496 (2012).

    Article  ADS  MATH  Google Scholar 

  25. Padgett, M. & Bowman, R. Tweezers with a twist. Nat. Photon. 5, 343–348 (2011).

    Article  ADS  MATH  Google Scholar 

  26. Lavery, M. P. J., Speirits, F. C., Barnett, S. M. & Padgett, M. J. Detection of a spinning object using light’s orbital angular momentum. Science 341, 537–540 (2013).

    Article  ADS  MATH  Google Scholar 

  27. Erhard, M., Fickler, R., Krenn, M. & Zeilinger, A. Twisted photons: new quantum perspectives in high dimensions. Light Sci. Appl. 7, 17146 (2018).

    Article  MATH  Google Scholar 

  28. Yao, E., Franke-Arnold, S., Courtial, J., Barnett, S. & Padgett, M. Fourier relationship between angular position and optical orbital angular momentum. Opt. Express 14, 9071–9076 (2006).

    Article  ADS  MATH  Google Scholar 

  29. Xie, G. et al. Spatial light structuring using a combination of multiple orthogonal orbital angular momentum beams with complex coefficients. Opt. Lett. 42, 991–994 (2017).

    Article  ADS  MATH  Google Scholar 

  30. Yang, Y. et al. Manipulation of orbital-angular-momentum spectrum using pinhole plates. Phys. Rev. Appl. 12, 064007 (2019).

    Article  ADS  MATH  Google Scholar 

  31. Lin, Z., Hu, J., Chen, Y., Brès, C.-S. & Yu, S. Single-shot Kramers–Kronig complex orbital angular momentum spectrum retrieval. Adv. Photonics 5, 036006 (2023).

    Article  ADS  Google Scholar 

  32. Niemeier, T., Poole, S. & Ulrich, R. Self-imaging by ring-core fibers. In Proc. Optical Fiber Sensors ThAA2 (Optica Publishing Group, 1985); https://doi.org/10.1364/OFS.1985.ThAA2

  33. Baranova, N. & Zel’dovich, B. Y. Talbot effect for whispering gallery modes and modes of tubular waveguides. In Technical Digest. Summaries of Papers Presented at the International Quantum Electronics Conference. Conference Edition. 1998 Technical Digest Series, Vol. 7 (IEEE Cat. No. 98CH36236), 184–185 (IEEE, 1998); https://doi.org/10.1109/iqec.1998.680381

  34. Hautakorpi, M. & Kaivola, M. Modal analysis of the self-imaging phenomenon in optical fibers with an annular core. Appl. Opt. 45, 6388–6392 (2006).

    Article  ADS  MATH  Google Scholar 

  35. Samadian, P. & Hall, T. Cylindrical Talbot effect for ultra-compact multimode interference couplers. Opt. Lett. 41, 4110–4113 (2016).

    Article  ADS  MATH  Google Scholar 

  36. Eriksson, M. et al. Talbot self-imaging and two-photon interference in ring-core fibers. Phys. Rev. A 104, 063512 (2021).

    Article  ADS  MATH  Google Scholar 

  37. Lin, Z., Hu, J., Chen, Y., Yu, S. & Brès, C.-S. Spectral self-imaging of optical orbital angular momentum modes. APL Photonics 6, 111302 (2021).

    Article  ADS  Google Scholar 

  38. Hu, J., Brès, C.-S. & Huang, C.-B. Talbot effect on orbital angular momentum beams: azimuthal intensity repetition-rate multiplication. Opt. Lett. 43, 4033–4036 (2018).

    Article  ADS  MATH  Google Scholar 

  39. Vaity, P. & Rusch, L. Perfect vortex beam: Fourier transformation of a Bessel beam. Opt. Lett. 40, 597–600 (2015).

    Article  ADS  MATH  Google Scholar 

  40. Bozinovic, N. et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science 340, 1545–1548 (2013).

    Article  ADS  MATH  Google Scholar 

  41. Ma, Z., Kristensen, P. & Ramachandran, S. Scaling information pathways in optical fibers by topological confinement. Science 380, 278–282 (2023).

    Article  ADS  MathSciNet  Google Scholar 

  42. Lohmann, A. W. & Thomas, J. A. Making an array illuminator based on the Talbot effect. Appl. Opt. 29, 4337–4340 (1990).

    Article  ADS  MATH  Google Scholar 

  43. Fernández-Pousa, C. R., Maram, R. & Azaña, J. CW-to-pulse conversion using temporal Talbot array illuminators. Opt. Lett. 42, 2427–2430 (2017).

    Article  ADS  MATH  Google Scholar 

  44. Bolduc, E., Bent, N., Santamato, E., Karimi, E. & Boyd, R. W. Exact solution to simultaneous intensity and phase encryption with a single phase-only hologram. Opt. Lett. 38, 3546–3549 (2013).

    Article  ADS  Google Scholar 

  45. Goodman, J. W. & Lawrence, R. W. Digital image formation from electronically detected holograms. Appl. Phys. Lett. 11, 77–79 (1967).

    Article  ADS  MATH  Google Scholar 

  46. Verrier, N. & Atlan, M. Off-axis digital hologram reconstruction: some practical considerations. Appl. Opt. 50, H136–H146 (2011).

    Article  Google Scholar 

  47. Jeon, J., Maram, R., van Howe, J. & Azaña, J. Programmable passive Talbot optical waveform amplifier. Opt. Express 26, 6872–6879 (2018).

    Article  ADS  MATH  Google Scholar 

  48. Crockett, B., Romero Cortés, L., Konatham, S. R. & Azaña, J. Full recovery of ultrafast waveforms lost under noise. Nat. Commun. 12, 2402 (2021).

    Article  ADS  MATH  Google Scholar 

  49. Berkhout, G. C. G., Lavery, M. P. J., Courtial, J., Beijersbergen, M. W. & Padgett, M. J. Efficient sorting of orbital angular momentum states of light. Phys. Rev. Lett. 105, 153601 (2010).

    Article  ADS  Google Scholar 

  50. Lavery, M. P. J. et al. Refractive elements for the measurement of the orbital angular momentum of a single photon. Opt. Express 20, 2110–2115 (2012).

    Article  ADS  MATH  Google Scholar 

  51. Mirhosseini, M., Malik, M., Shi, Z. & Boyd, R. W. Efficient separation of the orbital angular momentum eigenstates of light. Nat. Commun. 4, 2781 (2013).

    Article  ADS  MATH  Google Scholar 

  52. Wen, Y. et al. Spiral transformation for high-resolution and efficient sorting of optical vortex modes. Phys. Rev. Lett. 120, 193904 (2018).

    Article  ADS  Google Scholar 

  53. Leach, J., Padgett, M. J., Barnett, S. M., Franke-Arnold, S. & Courtial, J. Measuring the orbital angular momentum of a single photon. Phys. Rev. Lett. 88, 257901 (2002).

    Article  ADS  MATH  Google Scholar 

  54. Fontaine, N. K. et al. Laguerre–Gaussian mode sorter. Nat. Commun. 10, 1865 (2019).

    Article  ADS  MATH  Google Scholar 

  55. Ma, Z. & Ramachandran, S. Propagation stability in optical fibers: role of path memory and angular momentum. Nanophotonics 10, 209–224 (2020).

    Article  MATH  Google Scholar 

  56. Nowak, S., Kurtsiefer, C., Pfau, T. & David, C. High-order Talbot fringes for atomic matter waves. Opt. Lett. 22, 1430–1432 (1997).

    Article  ADS  MATH  Google Scholar 

  57. Weiner, A. M. Femtosecond pulse shaping using spatial light modulators. Rev. Sci. Instrum. 71, 1929–1960 (2000).

    Article  ADS  MATH  Google Scholar 

  58. Flamini, F., Spagnolo, N. & Sciarrino, F. Photonic quantum information processing: a review. Rep. Prog. Phys. 82, 016001 (2018).

    Article  ADS  MATH  Google Scholar 

  59. Carolan, J. et al. Universal linear optics. Science 349, 711–716 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  60. Pan, J.-W. et al. Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777–838 (2012).

    Article  ADS  MATH  Google Scholar 

  61. Kumar, S., Bhatti, D., Jones, A. E. & Barz, S. Experimental entanglement generation using multiport beam splitters. New J. Phys. 25, 063027 (2023).

    Article  ADS  Google Scholar 

  62. Hu, J., Eriksson, M., Gigan, S. & Fickler, R. Generalized angle–orbital angular momentum Talbot effect and modulo mode sorting. Zenodo https://doi.org/10.5281/zenodo.13921431 (2024).

Download references

Acknowledgements

J.H. acknowledges the Swiss National Science Foundation fellowship (P2ELP2_199825). S.G. is a member of the Institut Universitaire de France. M.E. acknowledges the Research Council of Finland Flagship Programme, Photonics Research and Innovation (PREIN), 320165. R.F. acknowledges the Research Council of Finland through the Academy Research Fellowship (Decision 332399). M.E. and R.F. acknowledge the European Research Council (TWISTION, 101042368).

Author information

Authors and Affiliations

Authors

Contributions

J.H. conceived the idea and led the project. M.E. and J.H. performed the experiments and numerical simulations, and analysed the results. J.H. and M.E. carried out the theoretical analysis and wrote the paper with contributions from all authors. R.F., S.G. and J.H. supervised the project.

Corresponding author

Correspondence to Jianqi Hu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks José Azaña and the other, anonymous, reviewer(s) for their contribution to the peer review of this work

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–10.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Eriksson, M., Gigan, S. et al. Generalized angle–orbital angular momentum Talbot effect and modulo mode sorting. Nat. Photon. 19, 392–399 (2025). https://doi.org/10.1038/s41566-025-01622-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41566-025-01622-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing