Abstract
The Talbot effect describes the periodic revivals of field patterns, and is ubiquitous across wave systems. In optics, it is mostly known for its manifestations in space and time, but it is also observed in the wavevector and frequency spectra owing to the Fourier duality. Recently, the Talbot self-imaging has been shown separately in the azimuthal angle and orbital angular momentum (OAM) domains. Here we reveal the missing link between them and demonstrate the generalized angle–OAM Talbot effect. Versatile transformations of petal fields and OAM spectra are experimentally demonstrated, based on the synergy of angular Talbot phase modulation and light propagation in a ring-core fibre. Moreover, the generalized self-imaging concept leads to new realizations in mode sorting, which separate OAM modes in a modulo manner, theoretically free from any crosstalk within the congruence classes of OAM modes. We design and experimentally construct various mode sorters with excellent performance, and show the unconventional behaviour of Talbot-based sorters where neighbouring OAM modes can be mapped to positions that are far apart. Besides its fundamental interest, our work has applications in OAM-based information processing, and implies that the physical phenomena in time–frequency and angle–OAM domains are broadly connected and that their processing techniques may be borrowed interchangeably.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
Data availability
The data used to produce the plots within this article are available via Zenodo at https://doi.org/10.5281/zenodo.13921431 (ref. 62).
Code availability
The code used to produce the plots within this article is available via Zenodo at https://doi.org/10.5281/zenodo.13921431 (ref. 62).
References
Talbot, H. F. LXXVI. Facts relating to optical science. No. IV. Lond. Edinb. Dubl. Philos. Mag. J. Sci. 9, 401–407 (1836).
Rayleigh, L. X. On the electromagnetic theory of light. Lond. Edinb. Dubl. Philos. Mag. J. Sci. 12, 81–101 (1881).
Berry, M., Marzoli, I. & Schleich, W. Quantum carpets, carpets of light. Phys. World 14, 39 (2001).
Case, W. B., Tomandl, M., Deachapunya, S. & Arndt, M. Realization of optical carpets in the Talbot and Talbot–Lau configurations. Opt. Express 17, 20966–20974 (2009).
Wen, J., Zhang, Y. & Xiao, M. The Talbot effect: recent advances in classical optics, nonlinear optics, and quantum optics. Adv. Opt. Photonics 5, 83–130 (2013).
Azaña, J. & Guillet de Chatellus, H. Angular Talbot effect. Phys. Rev. Lett. 112, 213902 (2014).
Kolner, B. H. Space-time duality and the theory of temporal imaging. IEEE J. Quantum Electron. 30, 1951–1963 (1994).
Azaña, J. & Muriel, M. A. Temporal self-imaging effects: theory and application for multiplying pulse repetition rates. IEEE J. Sel. Top. Quantum Electron. 7, 728–744 (2001).
Longhi, S. et al. 40-GHz pulse-train generation at 1.5 μm with a chirped fiber grating as a frequency multiplier. Opt. Lett. 25, 1481–1483 (2000).
Meloni, G. et al. 250-times repetition frequency multiplication for 2.5 THz clock signal generation. Electron. Lett. 41, 1294–1295 (2005).
Cortés, L. R., Guillet de Chatellus, H. G. & Azaña, J. On the generality of the Talbot condition for inducing self-imaging effects on periodic objects. Opt. Lett. 41, 340–343 (2016).
Fernández-Pousa, C. R. On the structure of quadratic Gauss sums in the Talbot effect. J. Opt. Soc. Am. A 34, 732–742 (2017).
Azaña, J. Spectral Talbot phenomena of frequency combs induced by cross-phase modulation in optical fibers. Opt. Lett. 30, 227–229 (2005).
Caraquitena, J., Beltrán, M., Llorente, R., Martí, J. & Muriel, M. A. Spectral self-imaging effect by time-domain multilevel phase modulation of a periodic pulse train. Opt. Lett. 36, 858–860 (2011).
Lei, L. et al. Observation of spectral self-imaging by nonlinear parabolic cross-phase modulation. Opt. Lett. 40, 5403–5406 (2015).
Romero Cortés, L., Maram, R., Guillet de Chatellus, H. & Azaña, J. Arbitrary energy-preserving control of optical pulse trains and frequency combs through generalized Talbot effects. Laser Photon. Rev. 13, 1900176 (2019).
Maram, R., Van Howe, J., Li, M. & Azaña, J. Noiseless intensity amplification of repetitive signals by coherent addition using the temporal Talbot effect. Nat. Commun. 5, 5163 (2014).
Crockett, B., Cortés, L. R., Maram, R. & Azaña, J. Optical signal denoising through temporal passive amplification. Optica 9, 130–138 (2022).
Guillet de Chatellus, H., Romero Cortés, L., Deville, A., Seghilani, M. & Azaña, J. Diffraction-induced bidimensional talbot self-imaging with full independent period control. Phys. Rev. Lett. 118, 133903 (2017).
Yao, A. M. & Padgett, M. J. Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photonics 3, 161–204 (2011).
Rubinsztein-Dunlop, H. et al. Roadmap on structured light. J. Opt. 19, 013001 (2016).
Forbes, A., de Oliveira, M. & Dennis, M. R. Structured light. Nat. Photon. 15, 253–262 (2021).
Fickler, R., Campbell, G., Buchler, B., Lam, P. K. & Zeilinger, A. Quantum entanglement of angular momentum states with quantum numbers up to 10,010. Proc. Natl Acad. Sci. USA 113, 13642–13647 (2016).
Wang, J. et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photon. 6, 488–496 (2012).
Padgett, M. & Bowman, R. Tweezers with a twist. Nat. Photon. 5, 343–348 (2011).
Lavery, M. P. J., Speirits, F. C., Barnett, S. M. & Padgett, M. J. Detection of a spinning object using light’s orbital angular momentum. Science 341, 537–540 (2013).
Erhard, M., Fickler, R., Krenn, M. & Zeilinger, A. Twisted photons: new quantum perspectives in high dimensions. Light Sci. Appl. 7, 17146 (2018).
Yao, E., Franke-Arnold, S., Courtial, J., Barnett, S. & Padgett, M. Fourier relationship between angular position and optical orbital angular momentum. Opt. Express 14, 9071–9076 (2006).
Xie, G. et al. Spatial light structuring using a combination of multiple orthogonal orbital angular momentum beams with complex coefficients. Opt. Lett. 42, 991–994 (2017).
Yang, Y. et al. Manipulation of orbital-angular-momentum spectrum using pinhole plates. Phys. Rev. Appl. 12, 064007 (2019).
Lin, Z., Hu, J., Chen, Y., Brès, C.-S. & Yu, S. Single-shot Kramers–Kronig complex orbital angular momentum spectrum retrieval. Adv. Photonics 5, 036006 (2023).
Niemeier, T., Poole, S. & Ulrich, R. Self-imaging by ring-core fibers. In Proc. Optical Fiber Sensors ThAA2 (Optica Publishing Group, 1985); https://doi.org/10.1364/OFS.1985.ThAA2
Baranova, N. & Zel’dovich, B. Y. Talbot effect for whispering gallery modes and modes of tubular waveguides. In Technical Digest. Summaries of Papers Presented at the International Quantum Electronics Conference. Conference Edition. 1998 Technical Digest Series, Vol. 7 (IEEE Cat. No. 98CH36236), 184–185 (IEEE, 1998); https://doi.org/10.1109/iqec.1998.680381
Hautakorpi, M. & Kaivola, M. Modal analysis of the self-imaging phenomenon in optical fibers with an annular core. Appl. Opt. 45, 6388–6392 (2006).
Samadian, P. & Hall, T. Cylindrical Talbot effect for ultra-compact multimode interference couplers. Opt. Lett. 41, 4110–4113 (2016).
Eriksson, M. et al. Talbot self-imaging and two-photon interference in ring-core fibers. Phys. Rev. A 104, 063512 (2021).
Lin, Z., Hu, J., Chen, Y., Yu, S. & Brès, C.-S. Spectral self-imaging of optical orbital angular momentum modes. APL Photonics 6, 111302 (2021).
Hu, J., Brès, C.-S. & Huang, C.-B. Talbot effect on orbital angular momentum beams: azimuthal intensity repetition-rate multiplication. Opt. Lett. 43, 4033–4036 (2018).
Vaity, P. & Rusch, L. Perfect vortex beam: Fourier transformation of a Bessel beam. Opt. Lett. 40, 597–600 (2015).
Bozinovic, N. et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science 340, 1545–1548 (2013).
Ma, Z., Kristensen, P. & Ramachandran, S. Scaling information pathways in optical fibers by topological confinement. Science 380, 278–282 (2023).
Lohmann, A. W. & Thomas, J. A. Making an array illuminator based on the Talbot effect. Appl. Opt. 29, 4337–4340 (1990).
Fernández-Pousa, C. R., Maram, R. & Azaña, J. CW-to-pulse conversion using temporal Talbot array illuminators. Opt. Lett. 42, 2427–2430 (2017).
Bolduc, E., Bent, N., Santamato, E., Karimi, E. & Boyd, R. W. Exact solution to simultaneous intensity and phase encryption with a single phase-only hologram. Opt. Lett. 38, 3546–3549 (2013).
Goodman, J. W. & Lawrence, R. W. Digital image formation from electronically detected holograms. Appl. Phys. Lett. 11, 77–79 (1967).
Verrier, N. & Atlan, M. Off-axis digital hologram reconstruction: some practical considerations. Appl. Opt. 50, H136–H146 (2011).
Jeon, J., Maram, R., van Howe, J. & Azaña, J. Programmable passive Talbot optical waveform amplifier. Opt. Express 26, 6872–6879 (2018).
Crockett, B., Romero Cortés, L., Konatham, S. R. & Azaña, J. Full recovery of ultrafast waveforms lost under noise. Nat. Commun. 12, 2402 (2021).
Berkhout, G. C. G., Lavery, M. P. J., Courtial, J., Beijersbergen, M. W. & Padgett, M. J. Efficient sorting of orbital angular momentum states of light. Phys. Rev. Lett. 105, 153601 (2010).
Lavery, M. P. J. et al. Refractive elements for the measurement of the orbital angular momentum of a single photon. Opt. Express 20, 2110–2115 (2012).
Mirhosseini, M., Malik, M., Shi, Z. & Boyd, R. W. Efficient separation of the orbital angular momentum eigenstates of light. Nat. Commun. 4, 2781 (2013).
Wen, Y. et al. Spiral transformation for high-resolution and efficient sorting of optical vortex modes. Phys. Rev. Lett. 120, 193904 (2018).
Leach, J., Padgett, M. J., Barnett, S. M., Franke-Arnold, S. & Courtial, J. Measuring the orbital angular momentum of a single photon. Phys. Rev. Lett. 88, 257901 (2002).
Fontaine, N. K. et al. Laguerre–Gaussian mode sorter. Nat. Commun. 10, 1865 (2019).
Ma, Z. & Ramachandran, S. Propagation stability in optical fibers: role of path memory and angular momentum. Nanophotonics 10, 209–224 (2020).
Nowak, S., Kurtsiefer, C., Pfau, T. & David, C. High-order Talbot fringes for atomic matter waves. Opt. Lett. 22, 1430–1432 (1997).
Weiner, A. M. Femtosecond pulse shaping using spatial light modulators. Rev. Sci. Instrum. 71, 1929–1960 (2000).
Flamini, F., Spagnolo, N. & Sciarrino, F. Photonic quantum information processing: a review. Rep. Prog. Phys. 82, 016001 (2018).
Carolan, J. et al. Universal linear optics. Science 349, 711–716 (2015).
Pan, J.-W. et al. Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777–838 (2012).
Kumar, S., Bhatti, D., Jones, A. E. & Barz, S. Experimental entanglement generation using multiport beam splitters. New J. Phys. 25, 063027 (2023).
Hu, J., Eriksson, M., Gigan, S. & Fickler, R. Generalized angle–orbital angular momentum Talbot effect and modulo mode sorting. Zenodo https://doi.org/10.5281/zenodo.13921431 (2024).
Acknowledgements
J.H. acknowledges the Swiss National Science Foundation fellowship (P2ELP2_199825). S.G. is a member of the Institut Universitaire de France. M.E. acknowledges the Research Council of Finland Flagship Programme, Photonics Research and Innovation (PREIN), 320165. R.F. acknowledges the Research Council of Finland through the Academy Research Fellowship (Decision 332399). M.E. and R.F. acknowledge the European Research Council (TWISTION, 101042368).
Author information
Authors and Affiliations
Contributions
J.H. conceived the idea and led the project. M.E. and J.H. performed the experiments and numerical simulations, and analysed the results. J.H. and M.E. carried out the theoretical analysis and wrote the paper with contributions from all authors. R.F., S.G. and J.H. supervised the project.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Photonics thanks José Azaña and the other, anonymous, reviewer(s) for their contribution to the peer review of this work
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Notes 1–10.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Hu, J., Eriksson, M., Gigan, S. et al. Generalized angle–orbital angular momentum Talbot effect and modulo mode sorting. Nat. Photon. 19, 392–399 (2025). https://doi.org/10.1038/s41566-025-01622-3
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s41566-025-01622-3
This article is cited by
-
Intertwining with Fourier optics
Nature Photonics (2025)