Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Laser power consumption of soliton formation in a bidirectional Kerr resonator

Abstract

Laser sources power ultrafast data transmission, computing acceleration, access to ultra-high-speed signalling, and sensing applications such as chemical detection, distance measurements and pattern recognition. The ever-growing scale of these applications drives innovation in multiwavelength lasers for massively parallel processing. We report a nanophotonic Kerr-resonator circuit that converts the power of an input laser into a normal-dispersion soliton frequency comb at approaching unit efficiency. By coupling forward and backward propagation, we realize a bidirectional Kerr resonator that supports universal phase matching but also opens excess loss by double-sided emission. We therefore induce reflection of the resonator’s forward, external coupling port to favour backward propagation, resulting in efficient, unidirectional soliton formation. Coherent backscattering with nanophotonics provides the control to put arbitrary phase-matching and efficient laser power consumption on equal footing in Kerr resonators. In the overcoupled-resonator regime, we measure 65% conversion efficiency for a 40 mW input pump laser; the nonlinear circuit consumes 97% of the pump, generating the maximum possible comb power. Our work opens up high-efficiency soliton formation in integrated photonics, exploring how energy flows in nonlinear circuits and enabling laser sources for applications such as advanced transmission, computing, quantum sensing and artificial intelligence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Soliton formation in the nanophotonic circuit.
Fig. 2: Characterization of the nanophotonic circuit structures.
Fig. 3: Laser power consumption and CE in the nanophotonic circuit.
Fig. 4: Practical characteristics of the nanophotonic circuit.

Similar content being viewed by others

Data availability

Source Data are provided with this paper. Further data are available from the corresponding author on reasonable request.

Code availability

The simulation codes used in this study are available from the corresponding author on reasonable request.

References

  1. Willner, A. E., Khaleghi, S., Chitgarha, M. R. & Yilmaz, O. F. All-optical signal processing. J. Lightwave Technol. 32, 660–680 (2014).

    Article  ADS  Google Scholar 

  2. Carlson, D. R. et al. Ultrafast electro-optic light with subcycle control. Science 361, 1358–1363 (2018).

    Article  ADS  Google Scholar 

  3. Hansryd, J., Andrekson, P., Westlund, M., Li, J. & Hedekvist, P.-O. Fiber-based optical parametric amplifiers and their applications. IEEE J. Sel. Topics Quant. Electron. 8, 506–520 (2002).

    Article  ADS  Google Scholar 

  4. Foster, M. A. et al. Broad-band optical parametric gain on a silicon photonic chip. Nature 441, 960–963 (2006).

    Article  ADS  Google Scholar 

  5. Riemensberger, J. et al. A photonic integrated continuous-travelling-wave parametric amplifier. Nature 612, 56–61 (2022).

    Article  ADS  Google Scholar 

  6. Dutt, A. et al. On-chip optical squeezing. Phys. Rev. Appl. 3, 044005 (2015).

    Article  ADS  Google Scholar 

  7. Reimer, C. et al. Generation of multiphoton entangled quantum states by means of integrated frequency combs. Science 351, 1176–1180 (2016).

    Article  ADS  Google Scholar 

  8. Yang, Z. et al. A squeezed quantum microcomb on a chip. Nat. Commun. 12, 4781 (2021).

    Article  ADS  Google Scholar 

  9. Guidry, M. A., Lukin, D. M., Yang, K. Y., Trivedi, R. & Vučkovic`, J. Quantum optics of soliton microcombs. Nat. Photon. 16, 52–58 (2022).

    Article  ADS  Google Scholar 

  10. Jahanbozorgi, M. et al. Generation of squeezed quantum microcombs with silicon nitride integrated photonic circuits. Optica 10, 1100–1101 (2023).

    Article  ADS  Google Scholar 

  11. Kippenberg, T. J., Holzwarth, R. & Diddams, S. A. Microresonator-based optical frequency combs. Science 332, 555–559 (2011).

    Article  ADS  Google Scholar 

  12. Moss, D. J., Morandotti, R., Gaeta, A. L. & Lipson, M. New cmos-compatible platforms based on silicon nitride and hydex for nonlinear optics. Nat. Photon. 7, 597–607 (2013).

    Article  ADS  Google Scholar 

  13. Pasquazi, A. et al. Micro-combs: a novel generation of optical sources. Phys. Rep. 729, 1–81 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  14. Kippenberg, T. J., Gaeta, A. L., Lipson, M. & Gorodetsky, M. L. Dissipative Kerr solitons in optical microresonators. Science 361, eaan8083 (2018).

    Article  Google Scholar 

  15. Gaeta, A. L., Lipson, M. & Kippenberg, T. J. Photonic-chip-based frequency combs. Nat. Photon. 13, 158–169 (2019).

    Article  ADS  Google Scholar 

  16. Ji, X. et al. Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold. Optica 4, 619–624 (2017).

    Article  ADS  Google Scholar 

  17. Lu, X., Moille, G., Rao, A., Westly, D. A. & Srinivasan, K. On-chip optical parametric oscillation into the visible: generating red, orange, yellow, and green from a near-infrared pump. Optica 7, 1417–1425 (2020).

    Article  ADS  Google Scholar 

  18. Black, J. A. et al. Optical-parametric oscillation in photonic-crystal ring resonators. Optica 9, 1183–1189 (2022).

    Article  ADS  Google Scholar 

  19. Perez, E. F. et al. High-performance Kerr microresonator optical parametric oscillator on a silicon chip. Nat. Commun. 14, 242 (2023).

    Article  ADS  Google Scholar 

  20. Herr, T. et al. Temporal solitons in optical microresonators. Nat. Photon. 8, 145–152 (2014).

    Article  ADS  Google Scholar 

  21. Yi, X., Yang, Q.-F., Yang, K. Y., Suh, M.-G. & Vahala, K. Soliton frequency comb at microwave rates in a high-Q silica microresonator. Optica 2, 1078–1085 (2015).

    Article  ADS  Google Scholar 

  22. Xu, G. et al. Spontaneous symmetry breaking of dissipative optical solitons in a two-component kerr resonator. Nat. Commun. 12, 4023 (2021).

    Article  ADS  Google Scholar 

  23. Yu, S.-P. et al. Spontaneous pulse formation in edgeless photonic crystal resonators. Nat. Photon. 15, 461–467 (2021).

    Article  ADS  Google Scholar 

  24. Yu, S.-P., Lucas, E., Zang, J. & Papp, S. B. A continuum of bright and dark-pulse states in a photonic-crystal resonator. Nat. Commun. 13, 3134 (2022).

    Article  ADS  Google Scholar 

  25. Lucas, E., Yu, S.-P., Briles, T. C., Carlson, D. R. & Papp, S. B. Tailoring microcombs with inverse-designed, meta-dispersion microresonators. Nat. Photon. 17, 943–950 (2023).

    Article  ADS  Google Scholar 

  26. Shen, B. et al. Integrated turnkey soliton microcombs. Nature 582, 365–369 (2020).

    Article  ADS  Google Scholar 

  27. Voloshin, A. S. et al. Dynamics of soliton self-injection locking in optical microresonators. Nat. Commun. 12, 235 (2021).

    Article  ADS  Google Scholar 

  28. Xiang, C. et al. Laser soliton microcombs heterogeneously integrated on silicon. Science 373, 99–103 (2021).

    Article  ADS  Google Scholar 

  29. Briles, T. C. et al. Hybrid InP and SiN integration of an octave-spanning frequency comb. APL Photon. 6, 026102 (2021).

    Article  ADS  Google Scholar 

  30. Ulanov, A. E. et al. Synthetic reflection self-injection-locked microcombs. Nat. Photon. 18, 294–299 (2024).

  31. Yang, K. Y. et al. Multi-dimensional data transmission using inverse-designed silicon photonics and microcombs. Nat. Commun. 13, 7862 (2022).

    Article  ADS  Google Scholar 

  32. Rizzo, A. et al. Massively scalable Kerr comb-driven silicon photonic link. Nat. Photon. 17, 781–790 (2023).

    Article  ADS  Google Scholar 

  33. Tan, M. et al. Photonic RF and microwave filters based on 49 GHz and 200 GHz Kerr microcombs. Optics Commun. 465, 125563 (2020).

    Article  Google Scholar 

  34. Xue, X., Zheng, X. & Zhou, B. Super-efficient temporal solitons in mutually coupled optical cavities. Nat. Photon. 13, 616–622 (2019).

    Article  ADS  Google Scholar 

  35. Bao, H. et al. Laser cavity-soliton microcombs. Nat. Photon. 13, 384–389 (2019).

    Article  ADS  Google Scholar 

  36. Cole, D. C., Lamb, E. S., Del’Haye, P., Diddams, S. A. & Papp, S. B. Soliton crystals in Kerr resonators. Nat. Photon. 11, 671–676 (2017).

    Article  ADS  Google Scholar 

  37. Helgason, Ó. B. et al. Surpassing the nonlinear conversion efficiency of soliton microcombs. Nat. Photon. 17, 992–999 (2023).

    Article  ADS  Google Scholar 

  38. Girardi, M., Helgason, Ó. B., Ortega, C. H. L., Rebolledo-Salgado, I. & Torres-Company, V. Superefficient microcombs at the wafer level. Preprint at https://arxiv.org/abs/2309.02280 (2023).

  39. Xue, X. et al. Mode-locked dark pulse kerr combs in normal-dispersion microresonators. Nat. Photon. 9, 594–600 (2015).

    Article  ADS  Google Scholar 

  40. Xue, X., Wang, P.-H., Xuan, Y., Qi, M. & Weiner, A. M. Microresonator Kerr frequency combs with high conversion efficiency. Laser Photon. Rev. 11, 1600276 (2017).

    Article  ADS  Google Scholar 

  41. Kim, B. Y. et al. Turn-key, high-efficiency Kerr comb source. Opt. Lett. 44, 4475–4478 (2019).

    Article  ADS  Google Scholar 

  42. Helgason, Ó. B. et al. Dissipative solitons in photonic molecules. Nat. Photon. 15, 305–310 (2021).

    Article  ADS  Google Scholar 

  43. White, A. D. et al. Integrated passive nonlinear optical isolators. Nat. Photon. 17, 143–149 (2023).

    Article  ADS  Google Scholar 

  44. Bogaerts, W. et al. Silicon-on-insulator spectral filters fabricated with cmos technology. IEEE J. Sel. Top. Quantum Electronics 16, 33–44 (2010).

    Article  ADS  Google Scholar 

  45. Dai, D. Silicon nanophotonic integrated devices for on-chip multiplexing and switching. J. Lightwave Technol. 35, 572–587 (2017).

    Article  ADS  Google Scholar 

  46. Lamee, K. F., Carlson, D. R., Newman, Z. L., Yu, S.-P. & Papp, S. B. Nanophotonic tantala waveguides for supercontinuum generation pumped at 1560 nm. Optics Lett. 45, 4192–4195 (2020).

    Article  ADS  Google Scholar 

  47. Jung, H. et al. Tantala kerr nonlinear integrated photonics. Optica 8, 811–817 (2021).

    Article  ADS  Google Scholar 

  48. Black, J. A. et al. Group-velocity-dispersion engineering of tantala integrated photonics. Optics Lett. 46, 817–820 (2021).

    Article  ADS  Google Scholar 

  49. Lugiato, L. A. & Lefever, R. Spatial dissipative structures in passive optical systems. Phys. Rev. Lett. 58, 2209–2211 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  50. Skryabin, D. V. Hierarchy of coupled mode and envelope models for bi-directional microresonators with kerr nonlinearity. OSA Continuum 3, 1364–1375 (2020).

    Article  Google Scholar 

  51. Liu, H. et al. Threshold and laser conversion in nanostructured-resonator parametric oscillators. Phys. Rev. Lett. 132, 023801 (2024).

    Article  ADS  Google Scholar 

  52. Shirpurkar, C. et al. Photonic crystal resonators for inverse-designed multi-dimensional optical interconnects. Optics Lett. 47, 3063–3066 (2022).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank A. Dan and Y. Li for reading the manuscript. This work is a contribution of NIST and not subject to US copyright. This research has been funded by DARPA PIPES (J.Z., S.-P.Y., H.L., Y.J., S.B.P.), AFOSR FA9550-20-1-0004 project no. 19RT1019 (S.B.P.), NSF Quantum Leap Challenge Institute Award OMA-2016244 (S.B.P.), and NIST on a Chip (S.B.P.). Mention of specific companies or trade names is for scientific communication only and does not constitute an endorsement by NIST.

Author information

Authors and Affiliations

Authors

Contributions

S.-P.Y. conceived the experiment. S.-P.Y. and J.Z. designed the nanophotonic circuit. J.Z. performed the optical measurements and numerical simulations. H. L. and Y. J. contributed to the theoretical understanding. T.C.B. and D.R.C. fabricated the nanophotonic circuits. S.B.P. contributed to the theoretical understanding and supervised the project. J.Z. and S.B.P analysed the data and wrote the manuscript. All authors reviewed the results and provided feedback on the manuscript.

Corresponding author

Correspondence to Jizhao Zang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Xiaoxiao Xue and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–7.

Supplementary Data

Source Data for Supplementary Figs. 1–6.

Source data

Source Data Fig. 1

Source Data for Fig. 1.

Source Data Fig. 2

Source Data for Fig. 2.

Source Data Fig. 3

Source Data for Fig. 3.

Source Data Fig. 4

Source Data for Fig. 4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zang, J., Yu, SP., Liu, H. et al. Laser power consumption of soliton formation in a bidirectional Kerr resonator. Nat. Photon. 19, 510–517 (2025). https://doi.org/10.1038/s41566-025-01624-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41566-025-01624-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing