Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Trionic all-optical biological voltage sensing via quantum statistics

Abstract

Quantum confinement in monolayer semiconductors results in optical properties intricately linked to electrons, which can be manipulated by external electric fields. These optoelectronic features offer untapped potential for studying biological electrical activity. In addition to their relatively high quantum yields, picosecond level emission lifetimes make these materials particularly promising for monitoring biological voltages with high spatiotemporal resolution. Here we investigate exciton-to-trion conversion in ångström-thick semiconductors to experimentally demonstrate label-free, dual-polarity, all-optical detection of electrical activity, via changes in photoluminescence, in cardiomyocyte cultures with ultrahigh temporal resolution. We devise a physical model to demonstrate that this conversion process is inherently governed by the quantum statistics of the background electrons induced by biological activity. We show that the monolayer MoS2 enables completely bias-free tetherless operation due to its substantial trion density originating from intrinsic sulfur vacancies introduced during chemical vapour deposition. Our work opens up an unexplored avenue of opportunities for label-free all-optical voltage sensing using ångström-thick semiconductor materials whose applications have been elusive in the biological domain. This line of thinking at the intersection of biology and quantum science could lead to the discovery of non-ubiquitous quantum materials for detection of biological electrical activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Voltage-dependent trionic PL.
Fig. 2: Spatiotemporal characterization of MoS2 voltage responsivity.
Fig. 3: Simultaneous optical and electrical multimodal extracellular recording.
Fig. 4: All-optical intracellular imaging of porated cardiomyocytes.

Similar content being viewed by others

Data availability

All data are available in the Article and its Supplementary Information and via Zenodo at https://doi.org/10.5281/zenodo.14641718 (ref. 59).

Code availability

The code used to generate the figures for this work is available via Zenodo at https://doi.org/10.5281/zenodo.14641718 (ref. 59).

References

  1. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article  ADS  Google Scholar 

  2. Zhang, X. et al. Guiding of visible photons at the ångström thickness limit. Nat. Nanotechnol. 14, 844–850 (2019).

    Article  ADS  Google Scholar 

  3. Reed, J. C., Zhu, A. Y., Zhu, H., Yi, F. & Cubukcu, E. Wavelength tunable microdisk cavity light source with a chemically enhanced MoS2 emitter. Nano Lett. 15, 1967–1971 (2015).

    Article  ADS  Google Scholar 

  4. Liu, W. et al. Generation of helical topological exciton-polaritons. Science 370, 600–604 (2020).

    Article  MathSciNet  Google Scholar 

  5. Hus, S. M. et al. Observation of single-defect memristor in an MoS2 atomic sheet. Nat. Nanotechnol. 16, 58–62 (2021).

    Article  ADS  Google Scholar 

  6. Wu, F. et al. Vertical MoS2 transistors with sub-1-nm gate lengths. Nature 603, 259–264 (2022).

    Article  ADS  Google Scholar 

  7. Mak, K. F. & Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics 10, 216–226 (2016).

    Article  ADS  Google Scholar 

  8. Wang, M. et al. Plasmon–trion and plasmon–exciton resonance energy transfer from a single plasmonic nanoparticle to monolayer MoS2. Nanoscale 9, 13947–13955 (2017).

    Article  Google Scholar 

  9. Sie, E. J., Frenzel, A. J., Lee, Y.-H., Kong, J. & Gedik, N. Intervalley biexcitons and many-body effects in monolayer MoS2. Phys. Rev. B 92, 125417 (2015).

    Article  ADS  Google Scholar 

  10. Yu, Y. et al. Fundamental limits of exciton-exciton annihilation for light emission in transition metal dichalcogenide monolayers. Phys. Rev. B 93, 201111 (2016).

    Article  ADS  Google Scholar 

  11. Sie, E. J. et al. Observation of exciton redshift–blueshift crossover in monolayer WS2. Nano Lett. 17, 4210–4216 (2017).

    Article  ADS  Google Scholar 

  12. Wiesner, M. et al. Signatures of bright-to-dark exciton conversion in corrugated MoS2 monolayers. Appl. Surf. Sci. 600, 154078 (2022).

    Article  Google Scholar 

  13. Zhang, X. et al. Unidirectional doubly enhanced MoS2 emission via photonic Fano resonances. Nano Lett. 17, 6715–6720 (2017).

    Article  ADS  Google Scholar 

  14. Ross, J. S. et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat. Commun. 4, 1474 (2013).

    Article  ADS  Google Scholar 

  15. Zhang, X. et al. Dynamic photochemical and optoelectronic control of photonic fano resonances via monolayer MoS2 trions. Nano Lett. 18, 957–963 (2018).

    Article  ADS  Google Scholar 

  16. Lee, B. et al. Electrical tuning of exciton–plasmon polariton coupling in monolayer MoS2 integrated with plasmonic nanoantenna lattice. Nano Lett. 17, 4541–4547 (2017).

    Article  ADS  Google Scholar 

  17. Lien, D.-H. et al. Electrical suppression of all nonradiative recombination pathways in monolayer semiconductors. Science 364, 468–471 (2019).

    Article  ADS  Google Scholar 

  18. Yang, H. H. & St-Pierre, F. Genetically encoded voltage indicators: opportunities and challenges. J. Neurosci. 36, 9977–9989 (2016).

    Article  Google Scholar 

  19. Knöpfel, T. & Song, C. Optical voltage imaging in neurons: moving from technology development to practical tool. Nat. Rev. Neurosci. 20, 719–727 (2019).

    Article  Google Scholar 

  20. He, B., Yang, L., Wilke, C. & Yuan, H. Electrophysiological imaging of brain activity and connectivity—challenges and opportunities. IEEE Trans. Biomed. Eng. 58, 1918–1931 (2011).

    Article  Google Scholar 

  21. Vaquero, D. et al. Excitons, trions and Rydberg states in monolayer MoS2 revealed by low-temperature photocurrent spectroscopy. Commun. Phys. 3, 194 (2020).

  22. Pei, J. et al. Exciton and trion dynamics in bilayer MoS2. Small 11, 6384–6390 (2015).

    Article  Google Scholar 

  23. Klein, J. et al. Controlling exciton many-body states by the electric-field effect in monolayer MoS2. Phys. Rev. Res. 3, L02200 (2021).

  24. Mak, K. F. et al. Tightly bound trions in monolayer MoS2. Nat. Mater. 12, 207–211 (2013).

    Article  ADS  Google Scholar 

  25. Lui, C. et al. Trion-induced negative photoconductivity in monolayer MoS2. Phys. Rev. Lett. 113, 166801 (2014).

    Article  ADS  Google Scholar 

  26. Xie, C., Lin, Z., Hanson, L., Cui, Y. & Cui, B. Intracellular recording of action potentials by nanopillar electroporation. Nat. Nanotechnol. 7, 185–190 (2012).

    Article  ADS  Google Scholar 

  27. Liu, R. et al. High density individually addressable nanowire arrays record intracellular activity from primary rodent and human stem cell derived neurons. Nano Lett. 17, 2757–2764 (2017).

    Article  ADS  Google Scholar 

  28. Spira, M. E., Shmoel, N., Huang, S.-H. M. & Erez, H. Multisite attenuated intracellular recordings by extracellular multielectrode arrays, a perspective. Front. Neurosci. 12, 212 (2018).

    Article  Google Scholar 

  29. Müller, J. et al. High-resolution CMOS MEA platform to study neurons at subcellular, cellular, and network levels. Lab Chip 15, 2767–2780 (2015).

    Article  Google Scholar 

  30. Rocha, P. R. F. et al. Electrochemical noise and impedance of Au electrode/electrolyte interfaces enabling extracellular detection of glioma cell populations. Sci. Rep. 6, 34843 (2016).

    Article  ADS  Google Scholar 

  31. Viswam, V., Obien, M. E. J., Franke, F., Frey, U. & Hierlemann, A. Optimal electrode size for multi-scale extracellular-potential recording from neuronal assemblies. Front. Neurosci. 13, 385 (2019).

    Article  Google Scholar 

  32. Abbott, J. et al. A nanoelectrode array for obtaining intracellular recordings from thousands of connected neurons. Nat. Biomed. Eng. 4, 232–241 (2019).

    Article  Google Scholar 

  33. Wang, H., Zhang, C. & Rana, F. Surface recombination limited lifetimes of photoexcited carriers in few-layer transition metal dichalcogenide MoS2. Nano Lett. 15, 8204–8210 (2015).

    Article  ADS  Google Scholar 

  34. Shah, P., Narayanan, T. N., Li, C.-Z. & Alwarappan, S. Probing the biocompatibility of MoS2 nanosheets by cytotoxicity assay and electrical impedance spectroscopy. Nanotechnology 26, 315102 (2015).

    Article  Google Scholar 

  35. Wang, S. et al. Biocompatible PEGylated MoS2 nanosheets: controllable bottom-up synthesis and highly efficient photothermal regression of tumor. Biomaterials 39, 206–217 (2015).

    Article  Google Scholar 

  36. Scanziani, M. & Häusser, M. Electrophysiology in the age of light. Nature 461, 930–939 (2009).

    Article  ADS  Google Scholar 

  37. Amani, M. et al. Near-unity photoluminescence quantum yield in MoS2. Science 350, 1065–1068 (2015).

    Article  ADS  Google Scholar 

  38. Li, Z. et al. Mechanistic insight into the chemical treatments of monolayer transition metal disulfides for photoluminescence enhancement. Nat. Commun. 12, 6044 (2021).

    Article  ADS  Google Scholar 

  39. Butun, S., Tongay, S. & Aydin, K. Enhanced light emission from large-area monolayer MoS2 using plasmonic nanodisc arrays. Nano Lett. 15, 2700–2704 (2015).

    Article  ADS  Google Scholar 

  40. Palacios, E., Park, S., Butun, S., Lauhon, L. & Aydin, K. Enhanced radiative emission from monolayer MoS2 films using a single plasmonic dimer nanoantenna. Appl. Phys. Lett. 111, 031101 (2017).

    Article  ADS  Google Scholar 

  41. Pelton, M., Sheldon, M. & Khurgin, J. Plasmon-exciton coupling. Nanophotonics 8, 513–516 (2019).

    Article  Google Scholar 

  42. Wong, R. K., Prince, D. A. & Basbaum, A. I. Intradendritic recordings from hippocampal neurons. Proc. Natl Acad. Sci. USA 76, 986–990 (1979).

    Article  ADS  Google Scholar 

  43. Stuart, G. J. & Sakmann, B. Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 367, 69–72 (1994).

    Article  ADS  Google Scholar 

  44. Dipalo, M. et al. Intracellular and extracellular recording of spontaneous action potentials in mammalian neurons and cardiac cells with 3D plasmonic nanoelectrodes. Nano Lett. 17, 3932–3939 (2017).

    Article  ADS  Google Scholar 

  45. Kannan, M., Vasan, G. & Pieribone, V. A. Optimizing strategies for developing genetically encoded voltage indicators. Front. Cell. Neurosci. 13, 53 (2019).

    Article  Google Scholar 

  46. Zhang, Y. et al. Fast and sensitive GCaMP calcium indicators for imaging neural populations. Nature 615, 884–891 (2023).

    Article  ADS  Google Scholar 

  47. St-Pierre, F. et al. High-fidelity optical reporting of neuronal electrical activity with an ultrafast fluorescent voltage sensor. Nat. Neurosci. 17, 884–889 (2014).

    Article  Google Scholar 

  48. Akemann, W., Lundby, A., Mutoh, H. & Knöpfel, T. Effect of voltage sensitive fluorescent proteins on neuronal excitability. Biophys. J. 96, 3959–3976 (2009).

    Article  ADS  Google Scholar 

  49. Efros, A. L. et al. Evaluating the potential of using quantum dots for monitoring electrical signals in neurons. Nat. Nanotechnol. 13, 278–288 (2018).

    Article  ADS  Google Scholar 

  50. Parzinger, E. et al. Photocatalytic stability of single-and few-layer MoS2. ACS Nano 9, 11302–11309 (2015).

    Article  Google Scholar 

  51. Rhee, J. K. et al. Biophysical parameters of GEVIs: considerations for imaging voltage. Biophys. J. 119, 1–8 (2020).

    Article  ADS  Google Scholar 

  52. Zhou, Y. et al. Dual-color optical recording of bioelectric potentials by polymer electrochromism. J. Am. Chem. Soc. 144, 23505–23515 (2022).

    Article  Google Scholar 

  53. Zhou, Y., Liu, E., Muller, H. & Cui, B. Optical electrophysiology: toward the goal of label-free voltage imaging. J. Am. Chem. Soc. 143, 10482–10499 (2021).

    Article  Google Scholar 

  54. Alfonso, F. S. et al. Label-free optical detection of bioelectric potentials using electrochromic thin films. Proc. Natl Acad. Sci. USA 117, 17260–17268 (2020).

    Article  ADS  Google Scholar 

  55. Habib, A. et al. Electro-plasmonic nanoantenna: a nonfluorescent optical probe for ultrasensitive label-free detection of electrophysiological signals. Sci. Adv. 5, eaav9786 (2019).

    Article  ADS  Google Scholar 

  56. Hardy, N., Habib, A., Ivanov, T. & Yanik, A. A. Neuro-SWARM³: system-on-a-nanoparticle for wireless recording of brain activity. IEEE Photonics Technol. Lett. 33, 900–903 (2021).

    Article  ADS  Google Scholar 

  57. Barry, J. F. et al. Optical magnetic detection of single-neuron action potentials using quantum defects in diamond. Proc. Natl Acad. Sci. USA 113, 14133–14138 (2016).

    Article  ADS  Google Scholar 

  58. McCloskey, D. et al. A diamond voltage imaging microscope. Nat. Photonics 16, 730–736 (2022).

    ADS  Google Scholar 

  59. Yundong, R. et al. Source data and code for ‘Trionic all-optical biological voltage sensing via quantum statistics’. Zenodo https://doi.org/10.5281/zenodo.14641718 (2025).

Download references

Acknowledgements

We acknowledge funding from the National Science Foundation (NSF; grants ECCS-2139416 to E.C.; ECCS-2024776, ECCS-1752241 and ECCS-1734940 to D.K), National Institutes of Health (NIH; grants 1R21EY033676 to E.C.; 21EY029466, R21EB026180 and DP2 EB030992 to D.K.; and R01AG045428 to A.J.E.), Office of Naval Research (ONR; grants N000142012405, N000142312163 and N000141912545 to D.K.), G.G. acknowledges fellowships from the NSF GRFP, NIH (grant T32HL007444), the San Diego fellowship and the Seibel Scholars programme for financial support. Fabrication of the devices was performed at the San Diego Nanotechnology Infrastructure of UCSD, a member of the National Nanotechnology Coordinated Infrastructure, which is supported by the NSF (grant ECCS-1542148).

Author information

Authors and Affiliations

Authors

Contributions

E.C. and D.K. conceived the project. E.C. developed the theory. Y.R., C.D., F.S., J.H.S. and E.C. performed optical characterization. Y.R., C.D. and F.S. fabricated devices. W.H. performed the FEM simulations. Y.R., F.S., M.N.W., M.R. and D.K. performed electrical characterization. G.G. and A.J.E. cultured cells. Y.R., M.R., D.K. and E.C. analysed the experimental data. Y.R., D.K., E.C. and A.J.E. wrote the paper.

Corresponding author

Correspondence to Ertugrul Cubukcu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Fedor Jelezko, Daniel McCloskey, Milos Nesladek and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–23 and discussion.

Supplementary Video 1

Fluorescence wide-field microscope recording showing the MoS2’s PL being modulated by a 20 Hz square wave varying from 0 to −60 mV. The field of view is around 200 μm × 200 μm. The video was recorded at 60 frames per second and is played back six times slower. Such wide-field imaging capability demonstrated the MoS2 voltage imaging sensor’s potential of capturing electrophysiology signals at a high spatiotemporal resolution without compromising field of view.

Supplementary Video 2

Fluorescence wide-field microscope recording showing the MoS2’s PL being modulated by a 200 Hz square wave varying from −25 to 25 mV. The reduced field of view of 30 μm × 30 μm allowed the MoS2 PL image to be captured at a frame rate of 500 frames per second. The video is played back 50× slower than the actual recording frame rate.

Supplementary Video 3

The video was recorded at 30 frames per second. The arrows overlay on the video indicated the direction and amplitude of the cell displacement.

Supplementary Video 4

Fluorescence wide-field microscope video of the MoS2 PL recorded at 50 frames per second and played back at 100 frames per second.

Supplementary Video 5

Fluorescence wide-field microscope video of the MoS2 PL recorded at 100 frames per second and played back at 50 frames per second. The two bright spots are the locations of the porated cells. The MoS2 PL has become brighter after exposure to the high intensity laser used to porate the cells. The blinking of the PL at these two spots are due to the intracellular action potential of the cardiomyocytes.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, Y., De-Eknamkul, C., Sun, F. et al. Trionic all-optical biological voltage sensing via quantum statistics. Nat. Photon. 19, 540–548 (2025). https://doi.org/10.1038/s41566-025-01637-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41566-025-01637-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing