Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cross-polarized stimulated Brillouin scattering-empowered photonics

Abstract

This paper studies cross-polarized stimulated Brillouin scattering (XP-SBS) and its integration with quadratic nonlinearity in lithium niobate to enhance photonic device performance. Three novel applications are demonstrated: (1) a reconfigurable stimulated Brillouin laser with a 0.7-Hz narrow linewidth and 40-nm tunability, enabled by the thermo-optic phase matching of XP-SBS; (2) an efficient coherent mode converter achieving 55% conversion efficiency via intracavity Brillouin-enhanced four-wave mixing; (3) a Brillouin-quadratic laser and frequency comb operational in near-infrared and visible bands, benefiting from the interaction between XP-SBS and quadratic nonlinearity. These advancements promise substantial improvements in photonic technologies, including narrow-linewidth lasers, microcomb generation and optical signal processing, paving the way for more robust and versatile applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conceptual schematic showing potential XP-SBS applications.
Fig. 2: Reconfigurable SBL generator.
Fig. 3: Efficient mode conversion with intracavity BE-FWM.
Fig. 4: Efficient Brillouin-quadratic laser and frequency comb.

Similar content being viewed by others

Data availability

The data that support the plots within this paper are available via Zenodo at https://doi.org/10.5281/zenodo.15201810 (ref. 73). All other data used in this study are available from the corresponding authors upon request.

Code availability

The data analysis codes are available from the corresponding authors upon request.

References

  1. Merklein, M., Kabakova, I. V., Zarifi, A. & Eggleton B. J. 100 years of Brillouin scattering: historical and future perspectives. Appl. Phys. Rev. 9, 041306 (2022).

  2. Eggleton, B. J. et al. Brillouin integrated photonics. Nat. Photon. 13, 664–677 (2019).

    Article  ADS  Google Scholar 

  3. Wolff, C., Smith, M., Stiller, B. & Poulton, C. Brillouin scattering—theory and experiment: tutorial. J. Opt. Soc. Am. B 38, 1243–1269 (2021).

    Article  ADS  Google Scholar 

  4. Gundavarapu, S. et al. Sub-hertz fundamental linewidth photonic integrated Brillouin laser. Nat. Photon. 13, 60–67 (2019).

    Article  ADS  Google Scholar 

  5. Loh, W. et al. Operation of an optical atomic clock with a Brillouin laser subsystem. Nature 588, 244–249 (2020).

    Article  ADS  Google Scholar 

  6. Cygan, A. et al. Cavity mode-width spectroscopy with widely tunable ultra narrow laser. Opt. Express 21, 29744–29754 (2013).

    Article  ADS  Google Scholar 

  7. Jadbabaie, A., Pilgram, N. H., Kłos, J., Kotochigova, S. & Hutzler, N. R. Enhanced molecular yield from a cryogenic buffer gas beam source via excited state chemistry. New J. Phys. 22, 022002 (2020).

    Article  ADS  Google Scholar 

  8. Lai, Y.-H. et al. Earth rotation measured by a chip-scale ring laser gyroscope. Nat. Photon. 14, 345–349 (2020).

  9. Lai, Y.-H., Lu, Y.-K., Suh, M.-G., Yuan, Z. & Vahala, K. Observation of the exceptional-point-enhanced Sagnac effect. Nature 576, 65–69 (2019).

    Article  ADS  Google Scholar 

  10. Li, J., Lee, H. & Vahala, K. J. Microwave synthesizer using an on-chip Brillouin oscillator. Nat. Commun. 4, 2097 (2013).

    Article  ADS  Google Scholar 

  11. Santagiustina, M., Chin, S., Primerov, N., Ursini, L. & Thévenaz, L. All-optical signal processing using dynamic Brillouin gratings. Sci. Rep. 3, 1594 (2013).

    Article  Google Scholar 

  12. Gertler, S. et al. Narrowband microwave-photonic notch filters using Brillouin-based signal transduction in silicon. Nat. Commun. 13, 1947 (2022).

    Article  ADS  Google Scholar 

  13. Garrett, M. et al. Integrated microwave photonic notch filter using a heterogeneously integrated Brillouin and active-silicon photonic circuit. Nat. Commun. 14, 7544 (2023).

    Article  ADS  Google Scholar 

  14. Scarcelli, G. & Yun, S. H. Confocal Brillouin microscopy for three-dimensional mechanical imaging. Nat. Photon. 2, 39–43 (2008).

    Article  ADS  Google Scholar 

  15. Remer, I., Shaashoua, R., Shemesh, N., Ben-Zvi, A. & Bilenca, A. High-sensitivity and high-specificity biomechanical imaging by stimulated Brillouin scattering microscopy. Nat. Methods 17, 913–916 (2020).

    Article  Google Scholar 

  16. Yang, F. et al. Pulsed stimulated Brillouin microscopy enables high-sensitivity mechanical imaging of live and fragile biological specimens. Nat. Methods 20, 1971–1979 (2023).

    Article  Google Scholar 

  17. Zhu, C., Genes, C. & Stiller, B. Optoacoustic entanglement in a continuous Brillouin-active solid state system. Phys. Rev. Lett. 133, 203602 (2024).

    Article  Google Scholar 

  18. Becker, S., Englund, D. & Stiller, B. An optoacoustic field-programmable perceptron for recurrent neural networks. Nat. Commun. 15, 3020 (2024).

    Article  ADS  Google Scholar 

  19. Greenberg, A. P., Ma, Z. & Ramachandran, S. Angular momentum driven dynamics of stimulated Brillouin scattering in multimode fibers. Opt. Express 30, 29708–29721 (2022).

    Article  ADS  Google Scholar 

  20. Weng, Y., Ip, E., Pan, Z. & Wang, T. Single-end simultaneous temperature and strain sensing techniques based on Brillouin optical time domain reflectometry in few-mode fibers. Opt. Express 23, 9024–9039 (2015).

    Article  ADS  Google Scholar 

  21. Kippenberg, T. J., Gaeta, A. L., Lipson, M. & Gorodetsky, M. L. Dissipative Kerr solitons in optical microresonators. Science 361, eaan8083 (2018).

    Article  Google Scholar 

  22. Gaeta, A. L., Lipson, M. & Kippenberg, T. J. Photonic-chip-based frequency combs. Nat. Photon. 13, 158–169 (2019).

    Article  ADS  Google Scholar 

  23. Nie, M. et al. Turnkey photonic flywheel in a microresonator-filtered laser. Nat. Commun. 15, 55 (2024).

    Article  ADS  Google Scholar 

  24. Nie, M. et al. Synthesized spatiotemporal mode-locking and photonic flywheel in multimode mesoresonators. Nat. Commun. 13, 6395 (2022).

    Article  ADS  Google Scholar 

  25. Jia, K. et al. Photonic flywheel in a monolithic fiber resonator. Phys. Rev. Lett. 125, 143902 (2020).

    Article  ADS  Google Scholar 

  26. Bai, Y. et al. Brillouin-Kerr soliton frequency combs in an optical microresonator. Phys. Rev. Lett. 126, 063901 (2021).

    Article  ADS  Google Scholar 

  27. Do, I. H. et al. Self-stabilized soliton generation in a microresonator through mode-pulled Brillouin lasing. Opt. Lett. 46, 1772–1775 (2021).

    Article  ADS  Google Scholar 

  28. Zhang, M. et al. Strong interactions between solitons and background light in Brillouin-Kerr microcombs. Nat. Commun. 15, 1661 (2024).

    Article  ADS  Google Scholar 

  29. Lin, G., Tian, J., Sun, T., Song, Q. & Chembo, Y. K. Hundredfold increase of stimulated Brillouin-scattering bandwidth in whispering-gallery mode resonators. Photon. Res. 11, 917–924 (2023).

    Article  Google Scholar 

  30. Tian, J. & Lin, G. Theoretical analysis of the influence of crystalline orientation on Brillouin gain of whispering gallery mode resonators. J. Opt. Soc. Am. B 41, 712–719 (2024).

    Article  ADS  Google Scholar 

  31. Weis, R. & Gaylord, T. Lithium niobate: summary of physical properties and crystal structure. Appl. Phys. A 37, 191–203 (1985).

    Article  ADS  Google Scholar 

  32. Lejman, M. et al. Ultrafast acousto-optic mode conversion in optically birefringent ferroelectrics. Nat. Commun. 7, 12345 (2016).

    Article  ADS  Google Scholar 

  33. Rodrigues, C. C., Zurita, R. O., Alegre, T. P. & Wiederhecker, G. S. Stimulated Brillouin scattering by surface acoustic waves in lithium niobate waveguides. J. Opt. Soc. Am. B 40, D56–D63 (2023).

    Article  Google Scholar 

  34. Ye, K. et al. Surface acoustic wave stimulated Brillouin scattering in thin-film lithium niobate waveguides. Preprint at https://arxiv.org/abs/2311.14697 (2023).

  35. Rodrigues, C. C. et al. Cross-polarized stimulated Brillouin scattering in lithium niobate waveguides. Phys. Rev. Lett. 134, 113601 (2025).

    Article  Google Scholar 

  36. Yang, Y.-H. et al. Stimulated Brillouin interaction between guided phonons and photons in a lithium niobate waveguide. Sci. China Phys. Mech. Astron. 67, 214221 (2024).

    Article  ADS  Google Scholar 

  37. Bruch, A. W. et al. Pockels soliton microcomb. Nat. Photon. 15, 21–27 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  38. Liu, Y. et al. Device-independent quantum random-number generation. Nature 562, 548–551 (2018).

    Article  ADS  Google Scholar 

  39. Inagaki, T. et al. A coherent Ising machine for 2,000-node optimization problems. Science 354, 603–606 (2016).

    Article  ADS  Google Scholar 

  40. Nie, M., Xie, Y., Li, B. & Huang, S.-W. Photonic frequency microcombs based on dissipative Kerr and quadratic cavity solitons. Prog. Quantum Electron. 86, 100437 (2022).

  41. Song, K. Y., Zou, W., He, Z. & Hotate, K. All-optical dynamic grating generation based on Brillouin scattering in polarization-maintaining fiber. Opt. Lett. 33, 926–928 (2008).

    Article  ADS  Google Scholar 

  42. Pant, R. et al. Observation of Brillouin dynamic grating in a photonic chip. Opt. Lett. 38, 305–307 (2013).

    Article  ADS  Google Scholar 

  43. Zhu, D. et al. Integrated photonics on thin-film lithium niobate. Adv. Opt. Photon. 13, 242–352 (2021).

    Article  Google Scholar 

  44. Li, J., Lee, H., Chen, T. & Vahala, K. J. Characterization of a high coherence, Brillouin microcavity laser on silicon. Opt. Express 20, 20170–20180 (2012).

    Article  ADS  Google Scholar 

  45. Poulton, C. G. et al. Design for broadband on-chip isolator using stimulated Brillouin scattering in dispersion-engineered chalcogenide waveguides. Opt. Express 20, 21235–21246 (2012).

    Article  ADS  Google Scholar 

  46. Li, B. et al. High-coherence hybrid-integrated 780 nm source by self-injection-locked second-harmonic generation in a high-Q silicon-nitride resonator. Optica 10, 1241–1244 (2023).

    Article  ADS  Google Scholar 

  47. Dong, Y., Chen, L. & Bao, X. Characterization of the Brillouin grating spectra in a polarization-maintaining fiber. Opt. Express 18, 18960–18967 (2010).

    Article  ADS  Google Scholar 

  48. Zhang, H. & Dong, Y. Advances in Brillouin dynamic grating in optical fibers and its applications. Prog. Quantum Electron. 87, 100440 (2023).

    Article  Google Scholar 

  49. Song, K. Y., Zou, W., He, Z. & Hotate, K. Optical time-domain measurement of Brillouin dynamic grating spectrum in a polarization-maintaining fiber. Opt. Lett. 34, 1381–1383 (2009).

    Article  ADS  Google Scholar 

  50. Song, K. Y., Lee, K. & Lee, S. B. Tunable optical delays based on Brillouin dynamic grating in optical fibers. Opt. Express 17, 10344–10349 (2009).

    Article  ADS  Google Scholar 

  51. Sancho, J. et al. Tunable and reconfigurable multi-tap microwave photonic filter based on dynamic Brillouin gratings in fibers. Opt. Express 20, 6157–6162 (2012).

    Article  ADS  Google Scholar 

  52. Dong, Y. et al. Sub-MHz ultrahigh-resolution optical spectrometry based on Brillouin dynamic gratings. Opt. Lett. 39, 2967–2970 (2014).

    Article  ADS  Google Scholar 

  53. Jin, D. et al. Modeling and characterization of high-power single frequency free-space Brillouin lasers. Opt. Express 31, 2942–2955 (2023).

    Article  ADS  Google Scholar 

  54. Leo, F. et al. Walk-off-induced modulation instability, temporal pattern formation, and frequency comb generation in cavity-enhanced second-harmonic generation. Phys. Rev. Lett. 116, 033901 (2016).

    Article  ADS  Google Scholar 

  55. Chauhan, N. et al. Visible light photonic integrated Brillouin laser. Nat. Commun. 12, 4685 (2021).

    Article  ADS  Google Scholar 

  56. Nie, M. & Huang, S.-W. Quadratic soliton mode-locked degenerate optical parametric oscillator. Opt. Lett. 45, 2311–2314 (2020).

    Article  ADS  Google Scholar 

  57. Zadok, A., Zilka, E., Eyal, A., Thévenaz, L. & Tur, M. Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers. Opt. Express 16, 21692–21707 (2008).

    Article  ADS  Google Scholar 

  58. Van Deventer, M. O. & Boot, A. J. Polarization properties of stimulated Brillouin scattering in single-mode fibers. J. Light. Technol. 12, 585–590 (1994).

    Article  Google Scholar 

  59. Ye, K. et al. Integrated Brillouin photonics in thin-film lithium niobate. Sci. Adv. 11, eadv4022 (2025).

    Article  Google Scholar 

  60. Shams-Ansari, A. et al. Reduced material loss in thin-film lithium niobate waveguides. APL Photon. 7, 081301 (2022).

  61. He, Y. et al. Self-starting bi-chromatic LiNbO3 soliton microcomb. Optica 6, 1138–1144 (2019).

    Article  ADS  Google Scholar 

  62. Song, Y., Hu, Y., Zhu, X., Yang, K. & Lončar, M. Octave-spanning Kerr soliton frequency combs in dispersion-and dissipation-engineered lithium niobate microresonators. Light: Sci. Appl. 13, 225 (2024).

    Article  Google Scholar 

  63. Tang, C. et al. Broadband frequency comb generation through cascaded quadratic nonlinearity in thin-film lithium niobate microresonators. Opt. Lett. 49, 2449–2452 (2024).

    Article  ADS  Google Scholar 

  64. Lu, J. et al. Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250,000%/W. Optica 6, 1455–1460 (2019).

    Article  ADS  Google Scholar 

  65. Ledezma, L. et al. Octave-spanning tunable infrared parametric oscillators in nanophotonics. Sci. Adv. 9, eadf9711 (2023).

    Article  Google Scholar 

  66. Guo, Q. et al. Femtojoule femtosecond all-optical switching in lithium niobate nanophotonics. Nat. Photon. 16, 625–631 (2022).

    Article  ADS  Google Scholar 

  67. Yu, Y., Yu, Z., Zhang, Z., Tsang, H. K. & Sun, X. Wavelength-division multiplexing on an etchless lithium niobate integrated platform. ACS Photon. 9, 3253–3259 (2022).

    Article  Google Scholar 

  68. Shi, J. et al. Thin-film lithium niobate polarization-independent modulators for mode and polarization multiplexing. Appl. Opt. 63, 8641–8647 (2024).

    Article  Google Scholar 

  69. Grudinin, I. S., Matsko, A. B. & Maleki, L. Brillouin lasing with a CaF2 whispering gallery mode resonator. Phys. Rev. Lett. 102, 043902 (2009).

    Article  ADS  Google Scholar 

  70. Abedin, K. S. Observation of strong stimulated Brillouin scattering in single-mode As2Se3 chalcogenide fiber. Opt. Express 13, 10266–10271 (2005).

    Article  ADS  Google Scholar 

  71. Pant, R. et al. On-chip stimulated Brillouin scattering. Opt. Express 19, 8285–8290 (2011).

    Article  ADS  Google Scholar 

  72. Andrushchak, A. et al. Complete sets of elastic constants and photoelastic coefficients of pure and MgO-doped lithium niobate crystals at room temperature. J. Appl. Phys. 106, 073510 (2009).

  73. Nie, M. Dataset for ‘Cross-polarized stimulated Brillouin scattering empowered photonics’. Zenodo https://doi.org/10.5281/zenodo.15201810 (2025).

Download references

Acknowledgements

This work was supported by the National Science Foundation (ECCS2048202 to S.-W.H.) and the Office of Naval Research (N00014-22-1-2224 to S.-W.H.).

Author information

Authors and Affiliations

Authors

Contributions

M.N. conceived the idea and designed the experiment. M.N. and J.M. performed the experiment and simulation. M.N., J.M. and S.-W.H. conducted the data analysis and wrote the manuscript. S.-W.H. led and supervised the whole project. All authors contributed to the discussion and revision of the manuscript.

Corresponding authors

Correspondence to Mingming Nie or Shu-Wei Huang.

Ethics declarations

Competing interests

M.N. and S.-W.H. are inventors of a provisional patent application (application number 63/651,520, United States), filed by the University of Colorado Boulder, about reconfigurable Brillouin lasers and Brillouin-quadratic lasers and frequency combs approach. The other authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections I–VIII, Figs. 1–15, Table 1 and Equations (1)–(7).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, M., Musgrave, J. & Huang, SW. Cross-polarized stimulated Brillouin scattering-empowered photonics. Nat. Photon. 19, 585–592 (2025). https://doi.org/10.1038/s41566-025-01680-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41566-025-01680-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing