Abstract
This paper studies cross-polarized stimulated Brillouin scattering (XP-SBS) and its integration with quadratic nonlinearity in lithium niobate to enhance photonic device performance. Three novel applications are demonstrated: (1) a reconfigurable stimulated Brillouin laser with a 0.7-Hz narrow linewidth and 40-nm tunability, enabled by the thermo-optic phase matching of XP-SBS; (2) an efficient coherent mode converter achieving 55% conversion efficiency via intracavity Brillouin-enhanced four-wave mixing; (3) a Brillouin-quadratic laser and frequency comb operational in near-infrared and visible bands, benefiting from the interaction between XP-SBS and quadratic nonlinearity. These advancements promise substantial improvements in photonic technologies, including narrow-linewidth lasers, microcomb generation and optical signal processing, paving the way for more robust and versatile applications.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
Data availability
The data that support the plots within this paper are available via Zenodo at https://doi.org/10.5281/zenodo.15201810 (ref. 73). All other data used in this study are available from the corresponding authors upon request.
Code availability
The data analysis codes are available from the corresponding authors upon request.
References
Merklein, M., Kabakova, I. V., Zarifi, A. & Eggleton B. J. 100 years of Brillouin scattering: historical and future perspectives. Appl. Phys. Rev. 9, 041306 (2022).
Eggleton, B. J. et al. Brillouin integrated photonics. Nat. Photon. 13, 664–677 (2019).
Wolff, C., Smith, M., Stiller, B. & Poulton, C. Brillouin scattering—theory and experiment: tutorial. J. Opt. Soc. Am. B 38, 1243–1269 (2021).
Gundavarapu, S. et al. Sub-hertz fundamental linewidth photonic integrated Brillouin laser. Nat. Photon. 13, 60–67 (2019).
Loh, W. et al. Operation of an optical atomic clock with a Brillouin laser subsystem. Nature 588, 244–249 (2020).
Cygan, A. et al. Cavity mode-width spectroscopy with widely tunable ultra narrow laser. Opt. Express 21, 29744–29754 (2013).
Jadbabaie, A., Pilgram, N. H., Kłos, J., Kotochigova, S. & Hutzler, N. R. Enhanced molecular yield from a cryogenic buffer gas beam source via excited state chemistry. New J. Phys. 22, 022002 (2020).
Lai, Y.-H. et al. Earth rotation measured by a chip-scale ring laser gyroscope. Nat. Photon. 14, 345–349 (2020).
Lai, Y.-H., Lu, Y.-K., Suh, M.-G., Yuan, Z. & Vahala, K. Observation of the exceptional-point-enhanced Sagnac effect. Nature 576, 65–69 (2019).
Li, J., Lee, H. & Vahala, K. J. Microwave synthesizer using an on-chip Brillouin oscillator. Nat. Commun. 4, 2097 (2013).
Santagiustina, M., Chin, S., Primerov, N., Ursini, L. & Thévenaz, L. All-optical signal processing using dynamic Brillouin gratings. Sci. Rep. 3, 1594 (2013).
Gertler, S. et al. Narrowband microwave-photonic notch filters using Brillouin-based signal transduction in silicon. Nat. Commun. 13, 1947 (2022).
Garrett, M. et al. Integrated microwave photonic notch filter using a heterogeneously integrated Brillouin and active-silicon photonic circuit. Nat. Commun. 14, 7544 (2023).
Scarcelli, G. & Yun, S. H. Confocal Brillouin microscopy for three-dimensional mechanical imaging. Nat. Photon. 2, 39–43 (2008).
Remer, I., Shaashoua, R., Shemesh, N., Ben-Zvi, A. & Bilenca, A. High-sensitivity and high-specificity biomechanical imaging by stimulated Brillouin scattering microscopy. Nat. Methods 17, 913–916 (2020).
Yang, F. et al. Pulsed stimulated Brillouin microscopy enables high-sensitivity mechanical imaging of live and fragile biological specimens. Nat. Methods 20, 1971–1979 (2023).
Zhu, C., Genes, C. & Stiller, B. Optoacoustic entanglement in a continuous Brillouin-active solid state system. Phys. Rev. Lett. 133, 203602 (2024).
Becker, S., Englund, D. & Stiller, B. An optoacoustic field-programmable perceptron for recurrent neural networks. Nat. Commun. 15, 3020 (2024).
Greenberg, A. P., Ma, Z. & Ramachandran, S. Angular momentum driven dynamics of stimulated Brillouin scattering in multimode fibers. Opt. Express 30, 29708–29721 (2022).
Weng, Y., Ip, E., Pan, Z. & Wang, T. Single-end simultaneous temperature and strain sensing techniques based on Brillouin optical time domain reflectometry in few-mode fibers. Opt. Express 23, 9024–9039 (2015).
Kippenberg, T. J., Gaeta, A. L., Lipson, M. & Gorodetsky, M. L. Dissipative Kerr solitons in optical microresonators. Science 361, eaan8083 (2018).
Gaeta, A. L., Lipson, M. & Kippenberg, T. J. Photonic-chip-based frequency combs. Nat. Photon. 13, 158–169 (2019).
Nie, M. et al. Turnkey photonic flywheel in a microresonator-filtered laser. Nat. Commun. 15, 55 (2024).
Nie, M. et al. Synthesized spatiotemporal mode-locking and photonic flywheel in multimode mesoresonators. Nat. Commun. 13, 6395 (2022).
Jia, K. et al. Photonic flywheel in a monolithic fiber resonator. Phys. Rev. Lett. 125, 143902 (2020).
Bai, Y. et al. Brillouin-Kerr soliton frequency combs in an optical microresonator. Phys. Rev. Lett. 126, 063901 (2021).
Do, I. H. et al. Self-stabilized soliton generation in a microresonator through mode-pulled Brillouin lasing. Opt. Lett. 46, 1772–1775 (2021).
Zhang, M. et al. Strong interactions between solitons and background light in Brillouin-Kerr microcombs. Nat. Commun. 15, 1661 (2024).
Lin, G., Tian, J., Sun, T., Song, Q. & Chembo, Y. K. Hundredfold increase of stimulated Brillouin-scattering bandwidth in whispering-gallery mode resonators. Photon. Res. 11, 917–924 (2023).
Tian, J. & Lin, G. Theoretical analysis of the influence of crystalline orientation on Brillouin gain of whispering gallery mode resonators. J. Opt. Soc. Am. B 41, 712–719 (2024).
Weis, R. & Gaylord, T. Lithium niobate: summary of physical properties and crystal structure. Appl. Phys. A 37, 191–203 (1985).
Lejman, M. et al. Ultrafast acousto-optic mode conversion in optically birefringent ferroelectrics. Nat. Commun. 7, 12345 (2016).
Rodrigues, C. C., Zurita, R. O., Alegre, T. P. & Wiederhecker, G. S. Stimulated Brillouin scattering by surface acoustic waves in lithium niobate waveguides. J. Opt. Soc. Am. B 40, D56–D63 (2023).
Ye, K. et al. Surface acoustic wave stimulated Brillouin scattering in thin-film lithium niobate waveguides. Preprint at https://arxiv.org/abs/2311.14697 (2023).
Rodrigues, C. C. et al. Cross-polarized stimulated Brillouin scattering in lithium niobate waveguides. Phys. Rev. Lett. 134, 113601 (2025).
Yang, Y.-H. et al. Stimulated Brillouin interaction between guided phonons and photons in a lithium niobate waveguide. Sci. China Phys. Mech. Astron. 67, 214221 (2024).
Bruch, A. W. et al. Pockels soliton microcomb. Nat. Photon. 15, 21–27 (2021).
Liu, Y. et al. Device-independent quantum random-number generation. Nature 562, 548–551 (2018).
Inagaki, T. et al. A coherent Ising machine for 2,000-node optimization problems. Science 354, 603–606 (2016).
Nie, M., Xie, Y., Li, B. & Huang, S.-W. Photonic frequency microcombs based on dissipative Kerr and quadratic cavity solitons. Prog. Quantum Electron. 86, 100437 (2022).
Song, K. Y., Zou, W., He, Z. & Hotate, K. All-optical dynamic grating generation based on Brillouin scattering in polarization-maintaining fiber. Opt. Lett. 33, 926–928 (2008).
Pant, R. et al. Observation of Brillouin dynamic grating in a photonic chip. Opt. Lett. 38, 305–307 (2013).
Zhu, D. et al. Integrated photonics on thin-film lithium niobate. Adv. Opt. Photon. 13, 242–352 (2021).
Li, J., Lee, H., Chen, T. & Vahala, K. J. Characterization of a high coherence, Brillouin microcavity laser on silicon. Opt. Express 20, 20170–20180 (2012).
Poulton, C. G. et al. Design for broadband on-chip isolator using stimulated Brillouin scattering in dispersion-engineered chalcogenide waveguides. Opt. Express 20, 21235–21246 (2012).
Li, B. et al. High-coherence hybrid-integrated 780 nm source by self-injection-locked second-harmonic generation in a high-Q silicon-nitride resonator. Optica 10, 1241–1244 (2023).
Dong, Y., Chen, L. & Bao, X. Characterization of the Brillouin grating spectra in a polarization-maintaining fiber. Opt. Express 18, 18960–18967 (2010).
Zhang, H. & Dong, Y. Advances in Brillouin dynamic grating in optical fibers and its applications. Prog. Quantum Electron. 87, 100440 (2023).
Song, K. Y., Zou, W., He, Z. & Hotate, K. Optical time-domain measurement of Brillouin dynamic grating spectrum in a polarization-maintaining fiber. Opt. Lett. 34, 1381–1383 (2009).
Song, K. Y., Lee, K. & Lee, S. B. Tunable optical delays based on Brillouin dynamic grating in optical fibers. Opt. Express 17, 10344–10349 (2009).
Sancho, J. et al. Tunable and reconfigurable multi-tap microwave photonic filter based on dynamic Brillouin gratings in fibers. Opt. Express 20, 6157–6162 (2012).
Dong, Y. et al. Sub-MHz ultrahigh-resolution optical spectrometry based on Brillouin dynamic gratings. Opt. Lett. 39, 2967–2970 (2014).
Jin, D. et al. Modeling and characterization of high-power single frequency free-space Brillouin lasers. Opt. Express 31, 2942–2955 (2023).
Leo, F. et al. Walk-off-induced modulation instability, temporal pattern formation, and frequency comb generation in cavity-enhanced second-harmonic generation. Phys. Rev. Lett. 116, 033901 (2016).
Chauhan, N. et al. Visible light photonic integrated Brillouin laser. Nat. Commun. 12, 4685 (2021).
Nie, M. & Huang, S.-W. Quadratic soliton mode-locked degenerate optical parametric oscillator. Opt. Lett. 45, 2311–2314 (2020).
Zadok, A., Zilka, E., Eyal, A., Thévenaz, L. & Tur, M. Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers. Opt. Express 16, 21692–21707 (2008).
Van Deventer, M. O. & Boot, A. J. Polarization properties of stimulated Brillouin scattering in single-mode fibers. J. Light. Technol. 12, 585–590 (1994).
Ye, K. et al. Integrated Brillouin photonics in thin-film lithium niobate. Sci. Adv. 11, eadv4022 (2025).
Shams-Ansari, A. et al. Reduced material loss in thin-film lithium niobate waveguides. APL Photon. 7, 081301 (2022).
He, Y. et al. Self-starting bi-chromatic LiNbO3 soliton microcomb. Optica 6, 1138–1144 (2019).
Song, Y., Hu, Y., Zhu, X., Yang, K. & Lončar, M. Octave-spanning Kerr soliton frequency combs in dispersion-and dissipation-engineered lithium niobate microresonators. Light: Sci. Appl. 13, 225 (2024).
Tang, C. et al. Broadband frequency comb generation through cascaded quadratic nonlinearity in thin-film lithium niobate microresonators. Opt. Lett. 49, 2449–2452 (2024).
Lu, J. et al. Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250,000%/W. Optica 6, 1455–1460 (2019).
Ledezma, L. et al. Octave-spanning tunable infrared parametric oscillators in nanophotonics. Sci. Adv. 9, eadf9711 (2023).
Guo, Q. et al. Femtojoule femtosecond all-optical switching in lithium niobate nanophotonics. Nat. Photon. 16, 625–631 (2022).
Yu, Y., Yu, Z., Zhang, Z., Tsang, H. K. & Sun, X. Wavelength-division multiplexing on an etchless lithium niobate integrated platform. ACS Photon. 9, 3253–3259 (2022).
Shi, J. et al. Thin-film lithium niobate polarization-independent modulators for mode and polarization multiplexing. Appl. Opt. 63, 8641–8647 (2024).
Grudinin, I. S., Matsko, A. B. & Maleki, L. Brillouin lasing with a CaF2 whispering gallery mode resonator. Phys. Rev. Lett. 102, 043902 (2009).
Abedin, K. S. Observation of strong stimulated Brillouin scattering in single-mode As2Se3 chalcogenide fiber. Opt. Express 13, 10266–10271 (2005).
Pant, R. et al. On-chip stimulated Brillouin scattering. Opt. Express 19, 8285–8290 (2011).
Andrushchak, A. et al. Complete sets of elastic constants and photoelastic coefficients of pure and MgO-doped lithium niobate crystals at room temperature. J. Appl. Phys. 106, 073510 (2009).
Nie, M. Dataset for ‘Cross-polarized stimulated Brillouin scattering empowered photonics’. Zenodo https://doi.org/10.5281/zenodo.15201810 (2025).
Acknowledgements
This work was supported by the National Science Foundation (ECCS2048202 to S.-W.H.) and the Office of Naval Research (N00014-22-1-2224 to S.-W.H.).
Author information
Authors and Affiliations
Contributions
M.N. conceived the idea and designed the experiment. M.N. and J.M. performed the experiment and simulation. M.N., J.M. and S.-W.H. conducted the data analysis and wrote the manuscript. S.-W.H. led and supervised the whole project. All authors contributed to the discussion and revision of the manuscript.
Corresponding authors
Ethics declarations
Competing interests
M.N. and S.-W.H. are inventors of a provisional patent application (application number 63/651,520, United States), filed by the University of Colorado Boulder, about reconfigurable Brillouin lasers and Brillouin-quadratic lasers and frequency combs approach. The other authors declare no competing interests.
Peer review
Peer review information
Nature Photonics thanks the anonymous reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Sections I–VIII, Figs. 1–15, Table 1 and Equations (1)–(7).
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Nie, M., Musgrave, J. & Huang, SW. Cross-polarized stimulated Brillouin scattering-empowered photonics. Nat. Photon. 19, 585–592 (2025). https://doi.org/10.1038/s41566-025-01680-7
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s41566-025-01680-7