Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Attosecond virtual charge dynamics in dielectrics

Abstract

The interaction of intense infrared pulses with a solid target can initiate light-field-driven phenomena that enable the reversible manipulation of their electro-optical properties on an attosecond timescale. This interaction regime therefore offers a unique opportunity to induce and control new functionalities with very high speed. However, the efficient exploitation of coherent light–matter states for future applications requires a detailed understanding of the underlying physical processes. This task is complicated by the complex and intertwined nature of inter- and intraband dynamics of real and virtual carriers underlying field-driven phenomena in solids. Here we used attosecond transient reflection spectroscopy to investigate ultrafast virtual electron dynamics in a prototype dielectric (monocrystalline diamond) over a broad photon energy range not previously accessed. Independent calibration of the pump–probe delay axis allowed direct comparison with numerical calculations, revealing that virtual interband transitions affect the timing and adiabaticity of the crystal response, even in a regime believed to be dominated by intraband motion. By demonstrating that virtual interband transitions are indispensable for an accurate description of strong-field-induced phenomena in solids, our results constitute a relevant step towards understanding transient nonlinear optical processes, a cornerstone for the future development of information processing and petahertz electronics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental set-up and results.
Fig. 2: Role of interband transitions.
Fig. 3: Effect of virtual transitions on a single excitation.
Fig. 4: IR intensity dependence.

Similar content being viewed by others

Data availability

The experimental data and the results of the simulations discussed in this work are available via Zenodo at https://doi.org/10.5281/zenodo.14172967 (ref. 50).

Code availability

All the custom codes used in this work are available via GitHub at https://github.com/shunsuke-sato/ARTED_noc (ref. 51).

References

  1. de la Torre, A. et al. Colloquium: nonthermal pathways to ultrafast control in quantum materials. Rev. Mod. Phys. 93, 041002 (2021).

    Article  ADS  Google Scholar 

  2. Borsch, M., Meierhofer, M., Huber, R. & Kira, M. Lightwave electronics in condensed matter. Nat. Rev. Mater. 8, 668–687 (2023).

    Article  ADS  Google Scholar 

  3. Hassan, M. T. Lightwave electronics: attosecond optical switching. ACS Photonics 11, 334–338 (2024).

    Article  Google Scholar 

  4. Hui, D. et al. Ultrafast optical switching and data encoding on synthesized light fields. Sci. Adv. 9, eadf1015 (2023).

    Article  Google Scholar 

  5. Boolakee, T. et al. Light-field control of real and virtual charge carriers. Nature 605, 251–255 (2022).

    Article  ADS  Google Scholar 

  6. Higuchi, T., Heide, C., Ullmann, K., Weber, H. B. & Hommelhoff, P. Light-field-driven currents in graphene. Nature 550, 224–228 (2017).

    Article  ADS  Google Scholar 

  7. Kruchinin, S. Y., Krausz, F. & Yakovlev, V. S. Colloquium: strong-field phenomena in periodic systems. Rev. Mod. Phys. 90, 021002 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  8. Schlaepfer, F. et al. Attosecond optical-field-enhanced carrier injection into the GaAs conduction band. Nat. Phys. 14, 560–564 (2018).

    Article  Google Scholar 

  9. Inzani, G. et al. Field-driven attosecond charge dynamics in germanium. Nat. Photonics 17, 1059–1065 (2023).

    Article  ADS  Google Scholar 

  10. Ossiander, M. et al. The speed limit of optoelectronics. Nat. Commun. 13, 1620 (2022).

    Article  ADS  Google Scholar 

  11. Krausz, F. & Stockman, M. I. Attosecond metrology: from electron capture to future signal processing. Nat. Photonics 8, 205–213 (2014).

    Article  ADS  Google Scholar 

  12. Heide, C. et al. Attosecond-fast internal photoemission. Nat. Photonics 14, 219–222 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  13. Yablonovitch, E., Heritage, J. P., Aspnes, D. E. & Yafet, Y. Virtual photoconductivity. Phys. Rev. Lett. 63, 976–979 (1989).

    Article  ADS  Google Scholar 

  14. Yamanishi, M. Field-induced optical nonlinearity due to virtual transitions in semiconductor quantum well structures. Phys. Rev. Lett. 59, 1014–1017 (1987).

    Article  ADS  Google Scholar 

  15. Khurgin, J. B. Optically induced currents in dielectrics and semiconductors as a nonlinear optical effect. J. Opt. Soc. Am. B 33, C1 (2016).

    Article  Google Scholar 

  16. Schiffrin, A. et al. Optical-field-induced current in dielectrics. Nature 493, 70–74 (2013).

    Article  ADS  Google Scholar 

  17. Paasch-Colberg, T. et al. Sub-cycle optical control of current in a semiconductor: from the multiphoton to the tunneling regime. Optica 3, 1358–1361 (2016).

    Article  ADS  Google Scholar 

  18. Sanari, Y. et al. Role of virtual band population for high harmonic generation in solids. Phys. Rev. B 102, 041125 (2020).

    Article  ADS  Google Scholar 

  19. Jürgens, P. et al. Origin of strong-field-induced low-order harmonic generation in amorphous quartz. Nat. Phys. 16, 1035–1039 (2020).

    Article  Google Scholar 

  20. Schultze, M. et al. Controlling dielectrics with the electric field of light. Nature 493, 75–78 (2013).

    Article  ADS  Google Scholar 

  21. Lucchini, M. et al. Attosecond dynamical Franz–Keldysh effect in polycrystalline diamond. Science 353, 916–919 (2016).

    Article  ADS  Google Scholar 

  22. Geneaux, R., Marroux, H. J. B., Guggenmos, A., Neumark, D. M. & Leone, S. R. Transient absorption spectroscopy using high harmonic generation: a review of ultrafast X-ray dynamics in molecules and solids. Philos. Trans. R. Soc. A 377, 20170463 (2019).

    Article  ADS  Google Scholar 

  23. Di Palo, N. et al. Attosecond absorption and reflection spectroscopy of solids. APL Photonics 9, 20901 (2024).

    Article  Google Scholar 

  24. Lucarelli, G. D. et al. Novel beamline for attosecond transient reflection spectroscopy in a sequential two-foci geometry. Rev. Sci. Instrum. 91, 053002 (2020).

    Article  ADS  Google Scholar 

  25. Volkov, M. et al. Floquet–Bloch resonances in near-petahertz electroabsorption spectroscopy of SiO2. Phys. Rev. B 107, 184304 (2023).

    Article  ADS  Google Scholar 

  26. Zimin, D. A. et al. Dynamic optical response of solids following 1-fs-scale photoinjection. Nature 618, 276–280 (2023).

    Article  ADS  Google Scholar 

  27. Gruzdev, V. & Sergaeva, O. Ultrafast modification of band structure of wide-band-gap solids by ultrashort pulses of laser-driven electron oscillations. Phys. Rev. B 98, 115202 (2018).

    Article  ADS  Google Scholar 

  28. Otobe, T., Shinohara, Y., Sato, S. A. & Yabana, K. Femtosecond time-resolved dynamical Franz–Keldysh effect. Phys. Rev. B 93, 045124 (2016).

    Article  ADS  Google Scholar 

  29. Mairesse, Y. & Quéré, F. Frequency-resolved optical gating for complete reconstruction of attosecond bursts. Phys. Rev. A 71, 011401 (2005).

    Article  ADS  Google Scholar 

  30. Inzani, G., Di Palo, N., Dolso, G. L., Nisoli, M. & Lucchini, M. Absolute delay calibration by analytical fitting of attosecond streaking measurements. J. Phys. Photonics 6, 025007 (2024).

    Article  ADS  Google Scholar 

  31. Lucchini, M. et al. Attosecond timing of the dynamical Franz–Keldysh effect. J. Phys. Photonics 2, 025001 (2020).

    Article  ADS  Google Scholar 

  32. Lucchini, M. et al. Light–matter interaction at surfaces in the spatiotemporal limit of macroscopic models. Phys. Rev. Lett. 115, 137401 (2015).

    Article  ADS  Google Scholar 

  33. Lucchini, M. et al. Unravelling the intertwined atomic and bulk nature of localised excitons by attosecond spectroscopy. Nat. Commun. 12, 1021 (2021).

    Article  ADS  Google Scholar 

  34. Houston, W. V. Acceleration of electrons in a crystal lattice. Phys. Rev. 57, 184–186 (1940).

    Article  ADS  MathSciNet  Google Scholar 

  35. Krieger, J. B. & Iafrate, G. J. Time evolution of Bloch electrons in a homogeneous electric field. Phys. Rev. B 33, 5494–5500 (1986).

    Article  ADS  Google Scholar 

  36. Runge, E. & Gross, E. K. U. Density-functional theory for time-dependent systems. Phys. Rev. Lett. 52, 997–1000 (1984).

    Article  ADS  Google Scholar 

  37. Hui, D. et al. Attosecond electron motion control in dielectric. Nat. Photonics 16, 33–37 (2022).

    Article  ADS  Google Scholar 

  38. Floquet, G. Sur les équations différentielles linéaires à coefficients périodiques. Ann. Sci. Ec. Norm. Super. 12, 47–88 (1883).

    Article  Google Scholar 

  39. Oka, T. & Kitamura, S. Floquet engineering of quantum materials. Annu. Rev. Condens. Matter Phys. 10, 387–408 (2019).

    Article  ADS  Google Scholar 

  40. Sentef, M. A. et al. Theory of Floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Commun. 6, 7047 (2015).

    Article  ADS  Google Scholar 

  41. Lucchini, M. et al. Controlling Floquet states on ultrashort time scales. Nat. Commun. 13, 7103 (2022).

    Article  ADS  Google Scholar 

  42. Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 616, 696–701 (2023).

    Article  ADS  Google Scholar 

  43. Ikeda, T. N., Tanaka, S. & Kayanuma, Y. Floquet–Landau–Zener interferometry: usefulness of the Floquet theory in pulse-laser-driven systems. Phys. Rev. Res. 4, 033075 (2022).

    Article  Google Scholar 

  44. Reiss, H. R. Theoretical methods in quantum optics: S-matrix and Keldysh techniques for strong-field processes. Prog. Quantum Electron. 16, 1–71 (1992).

    Article  ADS  Google Scholar 

  45. Nisoli, M., De Silvestri, S. & Svelto, O. Generation of high energy 10 fs pulses by a new pulse compression technique. Appl. Phys. Lett. 68, 2793–2795 (1996).

    Article  ADS  Google Scholar 

  46. Mashiko, H. et al. Double optical gating of high-order harmonic generation with carrier-envelope phase stabilized lasers. Phys. Rev. Lett. 100, 103906 (2008).

    Article  ADS  Google Scholar 

  47. Gilbertson, S., Khan, S. D., Wu, Y., Chini, M. & Chang, Z. Isolated attosecond pulse generation without the need to stabilize the carrier-envelope phase of driving lasers. Phys. Rev. Lett. 105, 093902 (2010).

    Article  ADS  Google Scholar 

  48. Itatani, J. et al. Attosecond streak camera. Phys. Rev. Lett. 88, 173903 (2002).

    Article  ADS  Google Scholar 

  49. Faccialà, D., Toulson, B. W. & Gessner, O. Removal of correlated background in a high-order harmonic transient absorption spectra with principal component regression. Opt. Express 29, 35135–35148 (2021).

    Article  ADS  Google Scholar 

  50. Dolso, G. L. et al. Dataset for: Attosecond virtual charge dynamics in dielectrics. Zenodo https://doi.org/10.5281/zenodo.14172967 (2024).

  51. Sato, S. A. ARTED_noc. GitHub https://github.com/shunsuke-sato/ARTED_noc (2024).

Download references

Acknowledgements

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 848411 title AuDACE) and from MIUR FARE (grant no. R209LXZRSL, title PHorTUNA). This work utilized the computational resources of the HPC systems at the Max Planck Computing and Data Facility (MPCDF) and the Multidisciplinary Cooperative Research Program (MCRP) at the Center for Computational Sciences, University of Tsukuba.

Author information

Authors and Affiliations

Authors

Contributions

M.L., M.N. and R.B.-V. conceived the experiment. G.L.D, G.I., N.D.P. and B.M. performed the measurements and contributed to the definition of the experimental procedures. G.L.D. and M.L. evaluated and analysed the results. S.A.S. designed and performed all the simulations, including the three-band model. G.L.D., S.A.S. and M.L. defined the scientific interpretation of experimental data and calculations. All authors participated in the scientific discussion. M.L. wrote the first version of the paper, while G.L.D. and S.A.S. drafted the supplementary material. All authors contributed to the final version of the work.

Corresponding author

Correspondence to Matteo Lucchini.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Mohammed Hassan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–22 and discussion.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolso, G.L., Sato, S.A., Inzani, G. et al. Attosecond virtual charge dynamics in dielectrics. Nat. Photon. 19, 999–1005 (2025). https://doi.org/10.1038/s41566-025-01700-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41566-025-01700-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing