Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Integrated electro-optic digital-to-analogue link for efficient computing and arbitrary waveform generation

Abstract

The rapid growth in artificial intelligence and modern communication systems demands innovative solutions for increased computational power and advanced signalling capabilities. Integrated photonics, leveraging the analogue nature of electromagnetic waves at the chip scale, offers a promising complement to approaches based on digital electronics. To fully unlock their potential as analogue processors, establishing a common technological base between conventional digital electronics and analogue photonics is imperative for building next-generation computing and communications systems. However, the absence of an efficient interface has thus far critically challenged a comprehensive demonstration of the advantages of analogue photonic hardware, with the scalability, speed and energy consumption as primary bottlenecks. Here we address this challenge and demonstrate a general electro-optic digital-to-analogue link enabled using foundry-based lithium niobate nanophotonics. Using purely digital electronic inputs, we achieve the on-demand generation of both analogue optical and electronic waveforms at information rates of up to 186 Gb s−1. The optical waveforms address the digital-to-analogue electro-optic conversion challenge in photonic computing, showcasing high-fidelity Modified National Institute of Standards and Technology image encoding with an ultralow power consumption of 0.058 pJ b−1. The electronic waveforms enable a pulse-shaping-free microwave arbitrary waveform generation method with ultrabroadband tunable delay and gain. Our results pave the way for efficient and compact digital-to-analogue conversion paradigms enabled by integrated photonics, and underscore the transformative impact that analogue photonic hardware may have on various applications, such as computing, optical interconnects and high-speed ranging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Photonic-integrated EO-DiAL concept.
Fig. 2: EO-DiAL implementation and device characterization.
Fig. 3: High-speed and energy-efficient EO conversion of data.
Fig. 4: Microwave photonic RF-AWG.

Similar content being viewed by others

Data availability

All data needed to evaluate the conclusions of the paper are available within the Article and its Supplementary Information.

References

  1. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

    Article  ADS  Google Scholar 

  2. Winzer, P. J., Neilson, D. T. & Chraplyvy, A. R. Fiber-optic transmission and networking: the previous 20 and the next 20 years. Opt. Express 26, 24190–24239 (2018).

    Article  ADS  Google Scholar 

  3. Graves, A. et al. Hybrid computing using a neural network with dynamic external memory. Nature 538, 471–476 (2016).

    Article  ADS  Google Scholar 

  4. Akopyan, F. et al. TrueNorth: design and tool flow of a 65 mW 1 million neuron programmable neurosynaptic chip. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 34, 1537–1557 (2015).

    Article  ADS  Google Scholar 

  5. Chen, X. et al. All-electronic 100-GHz bandwidth digital-to-analog converter generating PAM signals up to 190 GBaud. J. Lightwave Technol. 35, 411–417 (2017).

    Article  ADS  Google Scholar 

  6. Song, H.-J. & Lee, N. Terahertz communications: challenges in the next decade. IEEE Trans. Terahertz Sci. Technol. 12, 105–117 (2022).

    Article  ADS  Google Scholar 

  7. Miller, D. A. B. Attojoule optoelectronics for low-energy information processing and communications. J. Lightwave Technol. 35, 346–396 (2017).

    Article  ADS  Google Scholar 

  8. Wetzstein, G. et al. Inference in artificial intelligence with deep optics and photonics. Nature 588, 39–47 (2020).

    Article  ADS  Google Scholar 

  9. Shastri, B. J. et al. Photonics for artificial intelligence and neuromorphic computing. Nat. Photonics 15, 102–114 (2021).

    Article  ADS  Google Scholar 

  10. Capmany, J. & Novak, D. Microwave photonics combines two worlds. Nat. Photonics 1, 319–330 (2007).

    Article  ADS  Google Scholar 

  11. Marpaung, D., Yao, J. & Capmany, J. Integrated microwave photonics. Nat. Photonics 13, 80–90 (2019).

    Article  ADS  Google Scholar 

  12. McMahon, P. L. The physics of optical computing. Nat. Rev. Phys. 5, 717–734 (2023).

    Article  Google Scholar 

  13. Marković, D., Mizrahi, A., Querlioz, D. & Grollier, J. Physics for neuromorphic computing. Nat. Rev. Phys. 2, 499–510 (2020).

    Article  Google Scholar 

  14. Rashidinejad, A., Li, Y. & Weiner, A. M. Recent advances in programmable photonic-assisted ultrabroadband radio-frequency arbitrary waveform generation. IEEE J. Quantum Electron. 52, 1–17 (2016).

    Article  Google Scholar 

  15. Bogaerts, W. et al. Programmable photonic circuits. Nature 586, 207–216 (2020).

    Article  ADS  Google Scholar 

  16. Shu, H. et al. Microcomb-driven silicon photonic systems. Nature 605, 457–463 (2022).

    Article  ADS  Google Scholar 

  17. Zhang, M., Wang, C., Kharel, P., Zhu, D. & Lončar, M. Integrated lithium niobate electro-optic modulators: when performance meets scalability. Optica 8, 652–667 (2021).

    Article  ADS  Google Scholar 

  18. Xu, M. et al. Dual-polarization thin-film lithium niobate in-phase quadrature modulators for terabit-per-second transmission. Optica 9, 61–62 (2022).

    Article  ADS  Google Scholar 

  19. Patel, D., Samani, A., Veerasubramanian, V., Ghosh, S. & Plant, D. V. Silicon photonic segmented modulator-based electro-optic DAC for 100 Gb/s PAM-4 generation. IEEE Photonics Technol. Lett. 27, 2433–2436 (2015).

    Article  ADS  Google Scholar 

  20. Dubé-Demers, R., LaRochelle, S. & Shi, W. Low-power DAC-less PAM-4 transmitter using a cascaded microring modulator. Opt. Lett. 41, 5369–5372 (2016).

    Article  ADS  Google Scholar 

  21. Simard, A. D., Filion, B., Patel, D., Plant, D. & LaRochelle, S. Segmented silicon MZM for PAM-8 transmissions at 114 Gb/s with binary signaling. Opt. Express 24, 19467–19472 (2016).

    Article  ADS  Google Scholar 

  22. Huynh, T. N. et al. Flexible transmitter employing silicon-segmented Mach–Zehnder modulator with 32-nm CMOS distributed driver. J. Lightwave Technol. 34, 5129–5136 (2016).

    Article  ADS  Google Scholar 

  23. Samani, A. et al. Experimental parametric study of 128 Gb/s PAM-4 transmission system using a multi-electrode silicon photonic Mach Zehnder modulator. Opt. Express 25, 13252–13262 (2017).

    Article  ADS  Google Scholar 

  24. Sobu, Y. et al. High-speed optical digital-to-analog converter operation of compact two-segment all-silicon Mach–Zehnder modulator. J. Lightwave Technol. 39, 1148–1154 (2021).

    Article  ADS  Google Scholar 

  25. Jafari, O., Zhalehpour, S., Shi, W. & LaRochelle, S. DAC-less PAM-4 slow-light silicon photonic modulator providing high efficiency and stability. J. Lightwave Technol. 39, 5074–5082 (2021).

    Article  ADS  Google Scholar 

  26. Wang, C. et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562, 101–104 (2018).

    Article  ADS  Google Scholar 

  27. Hu, Y. et al. On-chip electro-optic frequency shifters and beam splitters. Nature 599, 587–593 (2021).

    Article  ADS  Google Scholar 

  28. Hu, Y. et al. Integrated electro-optics on thin-film lithium niobate. Nat. Rev. Phys. 7, 237–254 (2025).

    Article  Google Scholar 

  29. Zhang, M., Wang, C., Cheng, R., Shams-Ansari, A. & Lončar, M. Monolithic ultra-high-Q lithium niobate microring resonator. Optica 4, 1536–1537 (2017).

    Article  ADS  Google Scholar 

  30. Zhu, X. et al. Twenty-nine million intrinsic Q-factor monolithic microresonators on thin-film lithium niobate. Photonics Res. 12, A63–A68 (2024).

    Article  Google Scholar 

  31. Zhou, H. et al. Photonic matrix multiplication lights up photonic accelerator and beyond. Light Sci. Appl. 11, 30 (2022).

    Article  ADS  Google Scholar 

  32. Cundiff, S. T. & Weiner, A. M. Optical arbitrary waveform generation. Nat. Photonics 4, 760–766 (2010).

    Article  ADS  Google Scholar 

  33. Wang, J. et al. Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip. Nat. Commun. 6, 5957 (2015).

    Article  ADS  Google Scholar 

  34. Tan, M. et al. Photonic RF arbitrary waveform generator based on a soliton crystal micro-comb source. J. Lightwave Technol. 38, 6221–6226 (2020).

    Article  ADS  Google Scholar 

  35. Fischer, B. et al. Autonomous on-chip interferometry for reconfigurable optical waveform generation. Optica 8, 1268–1276 (2021).

    Article  ADS  Google Scholar 

  36. Cox, C. H., Ackerman, E. I., Betts, G. E. & Prince, J. L. Limits on the performance of RF-over-fiber links and their impact on device design. IEEE Trans. Microw. Theory Tech. 54, 906–920 (2006).

    Article  ADS  Google Scholar 

  37. Kharel, P., Reimer, C., Luke, K., He, L. & Zhang, M. Breaking voltage–bandwidth limits in integrated lithium niobate modulators using micro-structured electrodes. Optica 8, 357–363 (2021).

    Article  ADS  Google Scholar 

  38. St-Arnault, C. et al. Net 3.2 Tbps 225 Gbaud PAM4 O-band IM/DD 2 km transmission using FR8 and DR8 with a CMOS 3 nm SerDes and TFLN modulators. Preprint at https://arxiv.org/abs/2503.24147 (2025).

  39. Della Torre, A. et al. Folded electro-optical modulators operating at CMOS voltage level in a thin-film lithium niobate foundry process. Opt. Express 33, 6747–6757 (2025).

    Article  ADS  Google Scholar 

  40. Xue, S. et al. Full-spectrum visible electro-optic modulator. Optica 10, 125–126 (2023).

    Article  ADS  Google Scholar 

  41. Renaud, D. et al. Sub-1 Volt and high-bandwidth visible to near-infrared electro-optic modulators. Nat. Commun. 14, 1496 (2023).

    Article  ADS  Google Scholar 

  42. He, L. et al. Low-loss fiber-to-chip interface for lithium niobate photonic integrated circuits. Opt. Lett. 44, 2314–2317 (2019).

    Article  ADS  Google Scholar 

  43. Liu, X. et al. Ultra-broadband and low-loss edge coupler for highly efficient second harmonic generation in thin-film lithium niobate. Adv. Photonics Nexus 1, 016001 (2022).

    Article  ADS  Google Scholar 

  44. Cheng, R. et al. Single-drive electro-optic frequency comb source on a photonic-wire-bonded thin-film lithium niobate platform. Opt. Lett. 49, 3504–3507 (2024).

    Article  ADS  Google Scholar 

  45. Franken, C. A. A. et al. High-power and narrow-linewidth laser on thin-film lithium niobate enabled by photonic wire bonding. APL Photonics 10, 026107 (2025).

    Article  ADS  Google Scholar 

  46. Zeng, B. et al. Cryogenic packaging of nanophotonic devices with a low coupling loss <1 dB. Appl. Phys. Lett. 123, 161106 (2023).

    Article  ADS  Google Scholar 

  47. Assumpcao, D. et al. A thin film lithium niobate near-infrared platform for multiplexing quantum nodes. Nat. Commun. 15, 10459 (2024).

    Article  ADS  Google Scholar 

  48. Botez, D., Garrod, T. & Mawst, L. J. High CW wallplug efficiency 1.5 micron-emitting diode lasers. In 2015 IEEE Photonics Conference (IPC) 551–552 (IEEE, 2015); https://doi.org/10.1109/IPCon.2015.7323726

  49. Mashanovitch, M. et al. High-power, efficient DFB laser technology for RF photonics links. In 2018 IEEE Avionics and Vehicle Fiber-Optics and Photonics Conference (AVFOP) 1–2 (IEEE, 2018); https://doi.org/10.1109/AVFOP.2018.8550469

  50. Jin, W. et al. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators. Nat. Photonics 15, 346–353 (2021).

    Article  ADS  Google Scholar 

  51. Yu, M. et al. Integrated electro-optic isolator on thin-film lithium niobate. Nat. Photonics 17, 666–671 (2023).

    Article  ADS  Google Scholar 

  52. Xiang, C. et al. 3D integration enables ultralow-noise isolator-free lasers in silicon photonics. Nature 620, 78–85 (2023).

    Article  ADS  Google Scholar 

  53. Guo, X. et al. High-performance modified uni-traveling carrier photodiode integrated on a thin-film lithium niobate platform. Photonics Res. 10, 1338–1343 (2022).

    Article  Google Scholar 

  54. Shams-Ansari, A. et al. Electrically pumped laser transmitter integrated on thin-film lithium niobate. Optica 9, 408–411 (2022).

    Article  ADS  Google Scholar 

  55. Lin, Z. et al. 120 GOPS Photonic tensor core in thin-film lithium niobate for inference and in situ training. Nat. Commun. 15, 9081 (2024).

    Article  ADS  Google Scholar 

  56. Hu, Y. et al. Integrated lithium niobate photonic computing circuit based on efficient and high-speed electro-optic conversion. Preprint at https://arxiv.org/abs/2411.02734 (2024)

  57. Nahmias, M. A. et al. Photonic multiply-accumulate operations for neural networks. IEEE J. Sel. Top. Quantum Electron. 26, 1–18 (2020).

    Article  Google Scholar 

  58. Shen, Y. et al. Deep learning with coherent nanophotonic circuits. Nat. Photonics 11, 441–446 (2017).

    Article  ADS  Google Scholar 

  59. Gupta, S., Agrawal, A., Gopalakrishnan, K. & Narayanan, P. Deep learning with limited numerical precision. In Proc. 32nd International Conference on Machine Learning Vol. 37 (eds Bach, F. & Blei, D.) 1737–1746 (PMLR, 2015).

  60. DeepSeek-AI et al. DeepSeek-V3 technical report. Preprint at https://arxiv.org/abs/2412.19437 (2025).

  61. Dettmers, T. & Zettlemoyer, L. The case for 4-bit precision: k-bit inference scaling laws. In Proc. 40th International Conference on Machine Learning Vol. 202 (eds Krause, A. et al.) 7750–7774 (PMLR, 2023).

  62. Hamerly, R., Bernstein, L., Sludds, A., Soljačić, M. & Englund, D. Large-scale optical neural networks based on photoelectric multiplication. Phys. Rev. X 9, 021032 (2019).

    Google Scholar 

  63. Chen, Z. et al. Deep learning with coherent VCSEL neural networks. Nat. Photonics 17, 723–730 (2023).

    Article  ADS  Google Scholar 

  64. Ou, S. et al. Hypermultiplexed integrated photonics-based optical tensor processor. Sci. Adv. 11, eadu0228 (2025).

    Article  ADS  Google Scholar 

  65. Hu, Y. et al. High-efficiency and broadband on-chip electro-optic frequency comb generators. Nat. Photonics 16, 679–685 (2022).

    Article  ADS  Google Scholar 

  66. Song, Y., Hu, Y., Zhu, X., Yang, K. & Lončar, M. Octave-spanning Kerr soliton frequency combs in dispersion- and dissipation-engineered lithium niobate microresonators. Light Sci. Appl. 13, 225 (2024).

    Article  ADS  Google Scholar 

  67. Song, Y., Zhu, X., Zuo, X., Huang, G. & Lončar, M. Stable gigahertz- and mmWave-repetition-rate soliton microcombs on X-cut lithium niobate. Optica 12, 693–701 (2025).

    Article  ADS  Google Scholar 

  68. Xu, X. et al. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature 589, 44–51 (2021).

    Article  ADS  Google Scholar 

  69. Bai, B. et al. Microcomb-based integrated photonic processing unit. Nat. Commun. 14, 66 (2023).

    Article  ADS  Google Scholar 

  70. Chen, Z. et al. Efficient erbium-doped thin-film lithium niobate waveguide amplifiers. Opt. Lett. 46, 1161–1164 (2021).

    Article  ADS  Google Scholar 

  71. Zhou, J. et al. On-chip integrated waveguide amplifiers on erbium-doped thin-film lithium niobate on insulator. Laser Photon. Rev. 15, 2100030 (2021).

    Article  ADS  Google Scholar 

  72. Jia, Y. et al. Integrated photonics based on rare-earth ion-doped thin-film lithium niobate. Laser Photon. Rev. 16, 2200059 (2022).

    Article  ADS  Google Scholar 

  73. Cardenas, J. et al. Wide-bandwidth continuously tunable optical delay line using silicon microring resonators. Opt. Express 18, 26525–26534 (2010).

    Article  ADS  Google Scholar 

  74. Koenig, S. et al. Wireless sub-THz communication system with high data rate. Nat. Photonics 7, 977–981 (2013).

    Article  ADS  Google Scholar 

  75. Pfeifle, J. et al. Coherent terabit communications with microresonator Kerr frequency combs. Nat. Photonics 8, 375–380 (2014).

    Article  ADS  Google Scholar 

  76. Marin-Palomo, P. et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature 546, 274–279 (2017).

    Article  ADS  Google Scholar 

  77. Rizzo, A. et al. Massively scalable Kerr comb-driven silicon photonic link. Nat. Photonics 17, 781–790 (2023).

    Article  ADS  Google Scholar 

  78. Siddharth, A. et al. Ultrafast tunable photonic-integrated extended-DBR Pockels laser. Nat. Photonics 19, 709–717 (2025).

    Article  ADS  Google Scholar 

  79. Xue, S. et al. Pockels laser directly driving ultrafast optical metrology. Light Sci. Appl. 14, 209 (2025).

    Article  ADS  Google Scholar 

  80. Ghelfi, P. et al. A fully photonics-based coherent radar system. Nature 507, 341–345 (2014).

    Article  ADS  Google Scholar 

  81. Zhu, S. et al. Integrated lithium niobate photonic millimetre-wave radar. Nat. Photonics 19, 204–211 (2025).

    Article  ADS  Google Scholar 

  82. Liu, W. et al. A fully reconfigurable photonic integrated signal processor. Nat. Photonics 10, 190–195 (2016).

    Article  ADS  Google Scholar 

  83. Feng, H. et al. Integrated lithium niobate microwave photonic processing engine. Nature 627, 80–87 (2024).

    Article  ADS  Google Scholar 

  84. Maity, S. et al. Coherent acoustic control of a single silicon vacancy spin in diamond. Nat. Commun. 11, 193 (2020).

    Article  ADS  Google Scholar 

  85. Riedel, D. et al. Efficient photonic integration of diamond color centers and thin-film lithium niobate. ACS Photonics 10, 4236–4243 (2023).

    Article  Google Scholar 

  86. Knaut, C. M. et al. Entanglement of nanophotonic quantum memory nodes in a telecom network. Nature 629, 573–578 (2024).

    Article  ADS  Google Scholar 

  87. Menssen, A. J. et al. Scalable photonic integrated circuits for high-fidelity light control. Optica 10, 1366–1372 (2023).

    Article  ADS  Google Scholar 

  88. Christen, I. et al. An integrated photonic engine for programmable atomic control. Nat. Commun. 16, 82 (2025).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank K. Richard, N. Hoffman, M. Roberts and Keysight Technologies, Inc. for technological support, J. Jacobson for assistance and D. Plant and G. Hills for discussions. This work is supported by the Korea Advanced Institute of Science and Technology, grant number NRF-2022M3K4A1094782 (to Y.S., Y.H. and X.L.), the Defense Advanced Research Projects Agency, grant number HR001120C0137 (to Y.H. and L.M.), the National Science Foundation (NSF), grant numbers OMA-2137723 (to Y.H.), NSF 2138068 (to Y.H.) and NSF EEC-1941583 (to K.P., H.K.W. and N.S.), the Department of the Navy, grant number N6833522C0413 (to X.Z. and K.P.), Amazon Web Services (AWS), grant number A50791 (to K.P., L.M. and D.R.), DRS Daylight Solutions, Inc., award A56097 (to L.M.), NASA grant number 80NSSC22K0262 (to N.S.), the National Institutes of Health, grant numbers NIH P41EB015903 (to N.L. and B.V.) and NIH R21EY031895 (to N.L. and B.V.) and the Singapore National Research Foundation grant numbers NRF2022-QEP2-01-P07 and NRF-NRFF15-2023-0005 (to D.Z.). Y.S. acknowledges support from the AWS Generation Q Fund at the Harvard Quantum Initiative. L.M. acknowledges support from the Capes-Fulbright and Behring Foundation fellowships. H.K.W. acknowledges support from the National Science Foundation Graduate Research Fellowship Program. S.L. acknowledges support from the A*STAR National Science Scholarship. The views, opinions and/or findings expressed are those of the authors and should not be interpreted as representing the official views or policies of the Department of Defense or the US Government.

Author information

Authors and Affiliations

Authors

Contributions

M.L. and Y.H. conceived the project. Y.S. and Y.H. designed the experiments. Y.S. performed the measurements and analysed the data with Y.H. assisting. Y.H. led the foundry tapeout with F.Y. assisting. X.Z., Y.S. and Y.H. fabricated the early versions of the device. K.P., L.M., H.K.W., S.L., X.L., D.R., N.L., D.Z., B.V., M.Z. and N.S. helped with the project. Y.S., Y.H. and M.L. wrote the manuscript with contributions from all authors. M.L. supervised the project.

Corresponding authors

Correspondence to Yunxiang Song, Yaowen Hu or Marko Lončar.

Ethics declarations

Competing interests

F.Y., D.R., M.Z. and M.L. are involved in developing lithium niobate technologies at HyperLight Corporation. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Jose Capmany, Charles Roques-Carmes and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion and Figs. 1–5.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Y., Hu, Y., Zhu, X. et al. Integrated electro-optic digital-to-analogue link for efficient computing and arbitrary waveform generation. Nat. Photon. 19, 1107–1115 (2025). https://doi.org/10.1038/s41566-025-01719-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41566-025-01719-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing