Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Optical sieve for nanoplastic detection, sizing and counting

Abstract

Micro- and nanoplastic particles are ubiquitous environmental pollutants, threatening human health, aquatic and soil ecosystems. These minute synthetic fragments, persisting for centuries, infiltrate the food chain, posing potential health risks through bioaccumulation in various tissues, toxicity and exposure to associated chemicals. Although macro- and microplastics are intensively examined in environmental and biological research, information on nanoplastics with diameters below 1 μm is limited. Such particles can cross biological borders, including the blood–brain barrier, posing a greater health risk than microplastics. Apart from the mere detection of such particles, gaining an understanding of size distribution, numbers and size limits will be crucial in assessing their impact on global ecosystems and human health. Here we establish an optical sieve that uses Mie void resonances for nanoplastic detection and sizing. The optical sieve consists of arrays of optically resonant voids with different diameters that simultaneously serve as filtering and sorting elements, as well as all-optical reporters, requiring only an optical microscope and a standard camera with an RGB sensor in combination with colorimetric analysis. The system is evaluated using a synthesized real-world sample with a plastic particle mass concentration of 150 μg ml−1. Our approach consequently delivers statistical information on numbers, size and size distribution via the observation of distinct colour changes, overcoming the need for advanced techniques such as scanning electron microscopy. The proposed method offers a straightforward, highly accessible and mobile solution, making it an efficient and easily implemented tool for environmental and biological research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Nanoplastic detection using the optical sieve.
Fig. 2: Colour change induced by single plastic particles.
Fig. 3: Nanoplastic particle sizing.
Fig. 4: Colorimetric analysis for nanoparticle counting.
Fig. 5: Detecting nanoplastic particles in synthesized real-world samples.

Similar content being viewed by others

Data availability

Further experimental and simulated data are available from the corresponding author on reasonable request. Source Data are provided within this paper

Code availability

The numerical simulation code and colour readout code are available from the corresponding author on reasonable request.

References

  1. Nanoplastic should be better understood. Nat. Nanotechnol. 14, 299 (2019).

  2. Andrady, A. L. The plastic in microplastics: a review. Mar. Pollut. Bull. 119, 12–22 (2017).

    Article  Google Scholar 

  3. Fusco, L. et al. Nanoplastics: immune impact, detection, and internalization after human blood exposure by single-cell mass cytometry. Adv. Mater. 37, 2413413 (2024).

    Article  Google Scholar 

  4. Carpenter, E. J. & Smith, K. L. Jr. Plastics on the Sargasso sea surface. Science 175, 1240–1241 (1972).

    Article  ADS  Google Scholar 

  5. Carpenter, E. J., Anderson, S. J., Harvey, G. R., Miklas, H. P. & Peck, B. B. Polystyrene spherules in coastal waters. Science 178, 749–750 (1972).

    Article  ADS  Google Scholar 

  6. Thompson, R. C. et al. Lost at sea: where is all the plastic? Science 304, 838 (2004).

    Article  Google Scholar 

  7. Hartmann, N. B. et al. Are we speaking the same language? Recommendations for a definition and categorization framework for plastic debris. Environ. Sci. Technol. 53, 1039–1047 (2019).

    Article  ADS  Google Scholar 

  8. Thompson, R. C. et al. Twenty years of microplastic pollution research—what have we learned? Science 386, 395 (2024).

    Article  Google Scholar 

  9. Chubarenko, I. & Stepanova, N. Microplastics in sea coastal zone: lessons learned from the Baltic amber. Environ. Pollut. 224, 243–254 (2017).

    Article  Google Scholar 

  10. Russell, M. & Webster, L. Microplastics in sea surface waters around Scotland. Mar. Pollut. Bull. 166, 112210 (2021).

    Article  Google Scholar 

  11. Van Cauwenberghe, L., Devriese, L., Galgani, F., Robbens, J. & Janssen, C. R. Microplastics in sediments: a review of techniques, occurrence and effects. Mar. Environ. Res. 111, 5–17 (2015).

    Article  Google Scholar 

  12. Hanvey, J. S. et al. A review of analytical techniques for quantifying microplastics in sediments. Anal. Methods 9, 1369–1383 (2017).

    Article  Google Scholar 

  13. Claessens, M., Van Cauwenberghe, L., Vandegehuchte, M. B. & Janssen, C. R. New techniques for the detection of microplastics in sediments and field collected organisms. Mar. Pollut. Bull. 70, 227–233 (2013).

    Article  Google Scholar 

  14. Samandra, S. et al. Quantifying environmental emissions of microplastics from urban rivers in Melbourne, Australia. Mar. Pollut. Bull. 189, 114709 (2023).

    Article  Google Scholar 

  15. Dikareva, N. & Simon, K. S. Microplastic pollution in streams spanning an urbanization gradient. Environ. Pollut. 250, 292–299 (2019).

    Article  Google Scholar 

  16. Dikareva, N. & Simon, K. S. Factors controlling transport dynamics of microplastics in streams. ACS EST Water 4, 4120–4128 (2024).

    Article  Google Scholar 

  17. Samandra, S. et al. Microplastic contamination of an unconfined groundwater aquifer in Victoria, Australia. Sci. Total Environ. 802, 149727 (2022).

    Article  Google Scholar 

  18. Truong, T. N. S. et al. Microplastic in atmospheric fallouts of a developing Southeast Asian megacity under tropical climate. Chemosphere 272, 129874 (2021).

    Article  Google Scholar 

  19. Zhang, Y. et al. Atmospheric microplastics: a review on current status and perspectives. Earth-Sci. Rev. 203, 103118 (2020).

    Article  Google Scholar 

  20. Padha, S., Kumar, R., Dhar, A. & Sharma, P. Microplastic pollution in mountain terrains and foothills: a review on source, extraction, and distribution of microplastics in remote areas. Environ. Res. 207, 112232 (2022).

    Article  Google Scholar 

  21. Ambrosini, R. et al. First evidence of microplastic contamination in the supraglacial debris of an alpine glacier. Environ. Pollut. 253, 297–301 (2019).

    Article  Google Scholar 

  22. Yang, Y. et al. Detection of various microplastics in patients undergoing cardiac surgery. Environ. Sci. Technol. 57, 10911–10918 (2023).

    Article  ADS  Google Scholar 

  23. Ragusa, A. et al. Plasticenta: first evidence of microplastics in human placenta. Environ. Int. 146, 106274 (2021).

    Article  Google Scholar 

  24. Horvatits, T. et al. Microplastics detected in cirrhotic liver tissue. eBioMedicine 82, 104147 (2022).

    Article  Google Scholar 

  25. Roslan, N. S. et al. Detection of microplastics in human tissues and organs: a scoping review. J. Glob. Health 14, 04179 (2024).

    Article  Google Scholar 

  26. Cverenkárová, K., Valachovičová, M., Mackul’ak, T., Žemlička, L. & Bírošová, L. Microplastics in the food chain. Life 11, 1349 (2021).

    Article  ADS  Google Scholar 

  27. Kwon, J. H. et al. Microplastics in food: a review on analytical methods and challenges. Int. J. Environ. Res. Public Health 17, 6710 (2020).

    Article  Google Scholar 

  28. Eerkes-Medrano, D., Leslie, H. A. & Quinn, B. Microplastics in drinking water: a review and assessment. Curr. Opin. Environ. Sci. Health 7, 69–75 (2019).

    Article  Google Scholar 

  29. Singh, S., Trushna, T., Kalyanasundaram, M., Tamhankar, A. J. & Diwan, V. Microplastics in drinking water: a macro issue. Water Supply 22, 5650–5674 (2022).

    Article  Google Scholar 

  30. Lau, W. W. Y. et al. Evaluating scenarios toward zero plastic pollution. Science 369, 1455–1461 (2020).

    Article  ADS  Google Scholar 

  31. Cai, H. et al. Analysis of environmental nanoplastics: progress and challenges. Chem. Eng. J. 410, 128208 (2021).

    Article  Google Scholar 

  32. Zhu, L. et al. Transport of microplastics in the body and interaction with biological barriers, and controlling of microplastics pollution. Ecotoxicol. Environ. Saf. 255, 114818 (2023).

    Article  Google Scholar 

  33. Zhao, X. et al. Defining the size ranges of polystyrene nanoplastics according to their ability to cross biological barriers. Environ. Sci. Nano 10, 2634–2645 (2023).

    Article  Google Scholar 

  34. Prata, J. C., da Costa, J. P., Lopes, I., Duarte, A. C. & Rocha-Santos, T. Environmental exposure to microplastics: an overview on possible human health effects. Sci. Total Environ. 702, 134455 (2020).

    Article  Google Scholar 

  35. Pozo, K. et al. Persistent organic pollutants sorbed in plastic resin pellet—“Nurdles” from coastal areas of Central Chile. Mar. Pollut. Bull. 151, 110786 (2020).

    Article  Google Scholar 

  36. Symeonides, C. et al. An umbrella review of meta-analyses evaluating associations between human health and exposure to major classes of plastic-associated chemicals. Ann. Glob. Health 90, 1–52 (2024).

    Google Scholar 

  37. da Costa, J. P., Santos, P. S., Duarte, A. C. & Rocha-Santos, T. (Nano)plastics in the environment—sources, fates and effects. Sci. Total Environ. 566567, 15–26 (2016).

    Article  ADS  Google Scholar 

  38. Liu, F., Zou, X., Yue, N., Zhang, W. & Zheng, W. Correlative Raman imaging and scanning electron microscopy for advanced functional materials characterization. Cell Rep. Phys. Sci. 4, 101607 (2023).

    Article  Google Scholar 

  39. Li, G. et al. Single-particle analysis of micro/nanoplastics by SEM-Raman technique. Talanta 249, 123701 (2022).

    Article  Google Scholar 

  40. Hernandez, L. M., Yousefi, N. & Tufenkji, N. Are there nanoplastics in your personal care products? Environ. Sci. Technol. Lett. 4, 280–285 (2017).

    Article  Google Scholar 

  41. Piccardo, M., Renzi, M. & Terlizzi, A. Nanoplastics in the oceans: theory, experimental evidence and real world. Mar. Pollut. Bull. 157, 111317 (2020).

    Article  Google Scholar 

  42. Parker, L. A. et al. Protocol for the production of micro and nanoplastic test materials. Microplast. Nanoplast. 3, 10 (2023).

    Article  ADS  Google Scholar 

  43. Kooi, M. & Koelmans, A. A. Simplifying microplastic via continuous probability distributions for size, shape, and density. Environ. Sci. Technol. Lett. 6, 551–557 (2019).

    Article  Google Scholar 

  44. Yesilkoy, F. et al. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces. Nat. Photon. 13, 390–396 (2019).

    Article  ADS  Google Scholar 

  45. Koshelev, K. et al. Subwavelength dielectric resonators for nonlinear nanophotonics. Science 367, 288–292 (2020).

    Article  ADS  Google Scholar 

  46. Kuznetsov, A. I., Miroshnichenko, A. E., Brongersma, M. L., Kivshar, Y. S. & Luk’yanchuk, B. Optically resonant dielectric nanostructures. Science 354, aag2472 (2016).

    Article  Google Scholar 

  47. Decker, M. & Staude, I. Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics. J. Opt. 18, 103001 (2016).

    Article  ADS  Google Scholar 

  48. Krasnok, A., Caldarola, M., Bonod, N. & Alú, A. Spectroscopy and biosensing with optically resonant dielectric nanostructures. Adv. Opt. Mater. 6, 1701094 (2018).

    Article  Google Scholar 

  49. Barreda, Á., Vitale, F., Minovich, A. E., Ronning, C. & Staude, I. Applications of hybrid metal–dielectric nanostructures: state of the art. Adv. Photon. Res. 3, 2100286 (2022).

    Article  Google Scholar 

  50. West, J. L. & Halas, N. J. Engineered nanomaterials for biophotonics applications: improving sensing, imaging, and therapeutics. Annu. Rev. Biomed. Eng. 5, 285–292 (2003).

    Article  Google Scholar 

  51. Lal, S., Link, S. & Halas, N. J. Nano-optics from sensing to waveguiding. Nat. Photon. 1, 641–648 (2007).

    Article  ADS  Google Scholar 

  52. Tittl, A., Giessen, H. & Liu, N. Plasmonic gas and chemical sensing. Nanophotonics 3, 157–180 (2014).

    Article  ADS  Google Scholar 

  53. Aigner, A. et al. Plasmonic bound states in the continuum to tailor light–matter coupling. Sci. Adv. 8, eadd4816 (2022).

    Article  Google Scholar 

  54. Kühner, L. et al. Radial bound states in the continuum for polarization-invariant nanophotonics. Nat. Commun. 13, 4992 (2022).

    Article  ADS  Google Scholar 

  55. Sadrieva, Z., Frizyuk, K., Petrov, M., Kivshar, Y. & Bogdanov, A. Multipolar origin of bound states in the continuum. Phys. Rev. B 100, 115303 (2019).

    Article  ADS  Google Scholar 

  56. Koshelev, K., Bogdanov, A. & Kivshar, Y. Meta-optics and bound states in the continuum. Sci. Bull. 64, 836–842 (2019).

    Article  Google Scholar 

  57. Hentschel, M. et al. Dielectric Mie voids: confining light in air. Light Sci. Appl. 12, 3 (2023).

    Article  ADS  Google Scholar 

  58. Caputo, F. et al. Measuring particle size distribution and mass concentration of nanoplastics and microplastics: addressing some analytical challenges in the sub-micron size range. J. Colloid Interface Sci. 588, 401–417 (2021).

    Article  ADS  Google Scholar 

  59. Molenaar, R. et al. Nanoplastic sizes and numbers: quantification by single particle tracking. Environ. Sci. Nano 8, 723–730 (2021).

    Article  Google Scholar 

  60. Arslan, S. et al. Attoliter Mie void sensing. ACS Photon. 12, 3950–3958 (2025).

    Article  Google Scholar 

  61. Mintenig, S. M., Bäuerlein, P. S., Koelmans, A. A., Dekker, S. C. & Van Wezel, A. P. Closing the gap between small and smaller: towards a framework to analyse nano- and microplastics in aqueous environmental samples. Environ. Sci. Nano 5, 1640–1649 (2018).

    Article  Google Scholar 

  62. Floess, M. et al. 3D stimulated Raman spectral imaging of water dynamics associated with pectin-glycocalyceal entanglement. Biomed. Opt. Express 14, 1460–1471 (2023).

    Article  Google Scholar 

  63. Floess, M. et al. Limits of the detection of microplastics in fish tissue using stimulated Raman scattering microscopy. Biomed. Opt. Express 15, 1528–1539 (2024).

    Article  Google Scholar 

  64. Aspnes, D. E., Kelso, S. M., Logan, R. A. & Bhat, R. Optical properties of AlxGa1–x As. J. Appl. Phys. 60, 754–767 (1986).

    Article  ADS  Google Scholar 

  65. Sultanova, N., Kasarova, S. & Nikolov, I. Dispersion properties of optical polymers. APPA 116, 585–587 (2009).

    Article  ADS  Google Scholar 

  66. Okoffo, E. D. & Thomas, K. V. Quantitative analysis of nanoplastics in environmental and potable waters by pyrolysis–gas chromatography–mass spectrometry. J. Hazard. Mater. 464, 133013 (2024).

    Article  Google Scholar 

  67. Rauert, C. et al. Assessing the efficacy of pyrolysis–gas chromatography–mass spectrometry for nanoplastic and microplastic analysis in human blood. Environ. Sci. Technol. 59, 1984–1994 (2025).

    Article  ADS  Google Scholar 

  68. Workman, J. A review of spectroscopic techniques used for the quantification and classification of microplastics and nanoplastics in the environment. Spectroscopy https://doi.org/10.56530/spectroscopy.ac7567r4 (2024).

Download references

Acknowledgements

We acknowledge a grant through the Australia–Germany Joint Research Cooperation Scheme (Deutscher Akademische Austauschdienst (UA-DAAD); Programm des Projektbezogenen Personenaustauschs Australien 2023–2025; grant number 57654632), Baden-Wüerttemberg-Stiftung (Opterial), Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg (RiSC, Innovation Campus Future Mobility; Sd Manu1, Lab7), Vector Stiftung (MINT Innovations), European Research Council (Advanced Grant Complex-plas, PoC Grant 3DPrintedOptics), the German Research Foundation (SPP1839 Tailored Disorder; grant number 431314977/GRK2642), Bundesministerium für Bildung und Forschung (Printoptics, Q.Link.X, QR.X), HORIZON EUROPE European Innovation Council (IV-LAB; grant number 101115-545), Carl-Zeiss-Stiftung (EndoPrint3D, QPhoton) and the University of Stuttgart (Terra Incognita). H.G. thanks the University of Melbourne for a Sir Thomas Lyle Fellowship. L.W., S.B.S. and A.R. acknowledge the Australian Government through the Australian Research Council Centre of Excellence Grant (grant number CE200100010). S.B.S. acknowledges the support of the Ernst and Grace Matthaei Scholarship and the Australian Government Research Training Program Scholarship.

Author information

Authors and Affiliations

Authors

Contributions

D.L., L.W., M.U. and M.H. performed the measurements and contributed to the definition of the experimental procedure. M.H. conceived the experiments. B.O.C, A.R., H.G. and M.H. supervised the project. D.L. and M.H. evaluated and analysed the results. J.S. designed and performed all simulations. D.L., J.K. and M.H. developed the code for the colour readout. L.W., S.B.S., B.O.C. and A.R. expanded the paper by interdisciplinary discussions. All authors participated in the generation of the paper and contributed to the final version of the work.

Corresponding authors

Correspondence to D. Ludescher or M. Hentschel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Thomas Krauss and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Figs. 1–11, supporting the findings presented in the main manuscript.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ludescher, D., Wesemann, L., Schwab, J. et al. Optical sieve for nanoplastic detection, sizing and counting. Nat. Photon. 19, 1138–1145 (2025). https://doi.org/10.1038/s41566-025-01733-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41566-025-01733-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing