Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Organic permeable base transistors for high-performance photodetection with photo-memory effect

Abstract

Organic semiconductor phototransistors have attracted remarkable academic and industry interest owing to their potential for applications in optoelectronic devices and for enhancing the performance of image sensors. Thanks to their high responsivity, typically attributed to substantial photoconductive gain mechanisms, these devices are well suited for detecting weak light. Here we introduce organic permeable base transistors as memory phototransistors, achieving high responsivity and detectivity. By leveraging the unique structure of organic permeable base transistors and conducting a detailed investigation into the underlying charge-storing mechanism, we achieve responsivity values as high as 109 A W−1, detectivity of 1015 Jones between 300 nm and 500 nm, and retention times exceeding 105 s. The excellent performance can be attributed to a charge carrier trapping process at the porous base electrode, as confirmed through comprehensive electrical and optical characterizations and technology computer-aided design (TCAD) simulations. These findings illustrate the potential of our organic permeable base transistors for sensitive photodetection applications, thereby paving the way for advancements in low-light imaging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structure and operating principles of the photo-OPBT.
Fig. 2: Operating modes of the OPBT detector.
Fig. 3: TCAD simulated OPBT transfer characteristics with trapped charges.
Fig. 4: Performance parameters of the photo-OPBTs.
Fig. 5: Detectivity and responsivity benchmarking of photo-OPBTs.

Similar content being viewed by others

Data availability

The experimental data in the main figures are provided as source data in tabulated Excel files. Additional supporting data are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

References

  1. Pierre, A., Gaikwad, A. & Arias, A. C. Charge-integrating organic heterojunction phototransistors for wide-dynamic-range image sensors. Nat. Photon. 11, 193–199 (2017).

    Article  ADS  Google Scholar 

  2. Rauch, T. et al. Near-infrared imaging with quantum-dot-sensitized organic photodiodes. Nat. Photon. 3, 332–336 (2009).

    Article  ADS  Google Scholar 

  3. Guo, F. et al. A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection. Nat. Nanotechnol. 7, 798–802 (2012).

    Article  ADS  Google Scholar 

  4. Kim, Y. et al. A hemispherical image sensor array fabricated with organic photomemory transistors. Adv. Mater. 35, 2203541 (2023).

    Article  ADS  Google Scholar 

  5. Ren, H., Chen, J.-D., Li, Y.-Q. & Tang, J.-X. Recent progress in organic photodetectors and their applications. Adv. Sci. 8, 2002418 (2021).

    Article  Google Scholar 

  6. Nie, R. et al. Highly sensitive and broadband organic photodetectors with fast speed gain and large linear dynamic range at low forward bias. Small 13, 1603260 (2017).

    Article  Google Scholar 

  7. Coburn, C., Fan, D. & Forrest, S. R. Organic charge-coupled device. ACS Photon. 6, 2090–2095 (2019).

    Article  Google Scholar 

  8. Bronstein, H., Nielsen, C. B., Schroeder, B. C. & McCulloch, I. The role of chemical design in the performance of organic semiconductors. Nat. Rev. Chem. 4, 66–77 (2020).

    Article  Google Scholar 

  9. Guo, D., Yang, D., Zhao, J., Vadim, A. & Ma, D. Role of interfaces in controlling charge accumulation and injection in the photodetection performance of photomultiplication-type organic photodetectors. J. Mater. Chem. C 8, 9024–9031 (2020).

    Article  Google Scholar 

  10. Winkler, L. C., Kublitski, J., Benduhn, J. & Leo, K. Photomultiplication enabling high-performance narrowband near-infrared organic photodetectors. Adv. Electron. Mater. 9, 2201350 (2023).

    Article  Google Scholar 

  11. Kublitski, J. et al. Enhancing sub-bandgap external quantum efficiency by photomultiplication for narrowband organic near-infrared photodetectors. Nat. Commun. 12, 4259 (2021).

    Article  ADS  Google Scholar 

  12. Wu, Y.-L., Fukuda, K., Yokota, T. & Someya, T. A highly responsive organic image sensor based on a two-terminal organic photodetector with photomultiplication. Adv. Mater. 31, 1903687 (2019).

    Article  Google Scholar 

  13. Dan, Y., Zhao, X., Chen, K. & Mesli, A. A photoconductor intrinsically has no gain. ACS Photon. 5, 4111–4116 (2018).

    Article  Google Scholar 

  14. Miao, J. & Zhang, F. Recent progress on photomultiplication type organic photodetectors. Laser Photon. Rev. 13, 1800204 (2019).

    Article  ADS  Google Scholar 

  15. Xing, S. et al. Miniaturized VIS-NIR spectrometers based on narrowband and tunable transmission cavity organic photodetectors with ultrahigh specific detectivity above 1014 Jones. Adv. Mater. 33, 2102967 (2021).

    Article  Google Scholar 

  16. Zhang, T. et al. High-performance filterless blue narrowband organic photodetectors. Adv. Funct. Mater. 34, 2308719 (2024).

    Article  Google Scholar 

  17. Park, S., Lim, B. T., Kim, B., Son, H. J. & Chung, D. S. High mobility polymer based on a π-extended benzodithiophene and its application for fast switching transistor and high gain photoconductor. Sci. Rep. 4, 5482 (2014).

    Article  ADS  Google Scholar 

  18. Jin, Z. & Wang, J. PIN architecture for ultrasensitive organic thin film photoconductors. Sci. Rep. 4, 5331 (2014).

    Article  ADS  Google Scholar 

  19. Beesley, D. J. et al. Sub-15-nm patterning of asymmetric metal electrodes and devices by adhesion lithography. Nat. Commun. 5, 3933 (2014).

    Article  ADS  Google Scholar 

  20. Shen, Y. et al. High-performance nanogap photodetectors based on 2D halide perovskites with a novel spacer cation. Adv. Funct. Mater. 34, 2403746 (2024).

    Article  Google Scholar 

  21. Ren, X. & Chan, P. K. L. 23 bits optical sensor based on nonvolatile organic memory transistor. Appl. Phys. Lett. 104, 113302 (2014).

    Article  ADS  Google Scholar 

  22. Zhou, Y. et al. An upconverted photonic nonvolatile memory. Nat. Commun. 5, 4720 (2014).

    Article  ADS  Google Scholar 

  23. Zheng, L. et al. High-performance optical memory transistors based on a novel organic semiconductor with nanosprouts. Nanoscale 11, 7117–7122 (2019).

    Article  Google Scholar 

  24. Wu, X. et al. High performance flexible multilevel optical memory based on a vertical organic field effect transistor with ultrashort channel length. J. Mater. Chem. C 7, 9229–9240 (2019).

    Article  Google Scholar 

  25. Liu, X., Dong, G., Duan, L., Wang, L. & Qiu, Y. High performance low-voltage organic phototransistors: interface modification and the tuning of electrical, photosensitive and memory properties. J. Mater. Chem. 22, 11836–11842 (2012).

    Article  Google Scholar 

  26. Kim, M. et al. Efficient organic photomemory with photography-ready programming speed. Sci. Rep. 6, 30536 (2016).

    Article  ADS  Google Scholar 

  27. Wang, Q., Yang, J., Braun, S., Fahlman, M. & Liu, X. An organic memory phototransistor based on oxygen-assisted persistent photoconductivity. Org. Electron. 100, 106375 (2022).

    Article  Google Scholar 

  28. Frolova, L. A. et al. Photoswitchable organic field-effect transistors and memory elements comprising an interfacial photochromic layer. Chem. Commun. 51, 6130–6132 (2015).

    Article  Google Scholar 

  29. Kleemann, H. et al. Direct structuring of C60 thin film transistors by photo-lithography under ambient conditions. Org. Electron. 13, 506–513 (2012).

    Article  Google Scholar 

  30. Park, B., Choi, S., Graham, S. & Reichmanis, E. Memory and photovoltaic elements in organic field effect transistors with donor/acceptor planar-hetero junction interfaces. J. Phys. Chem. C 116, 9390–9397 (2012).

    Article  Google Scholar 

  31. Kleemann, H., Krechan, K., Fischer, A. & Leo, K. A review of vertical organic transistors. Adv. Funct. Mater. 30, 1907113 (2020).

    Article  Google Scholar 

  32. Wang, J., Bonil, A., Vahland, J. & Kleemann, H. Reliable p-type organic permeable base transistors—the missing component for integrated circuits. Nano Futures 7, 035002 (2023).

    Article  ADS  Google Scholar 

  33. Guo, E., Dollinger, F., Amaya, B., Fischer, A. & Kleemann, H. Organic permeable base transistors—insights and perspectives. Adv. Opt. Mater. 9, 2002058 (2021).

    Article  Google Scholar 

  34. Dollinger, F. et al. Vertical organic thin-film transistors with an anodized permeable base for very low leakage current. Adv. Mater. 31, 1900917 (2019).

    Article  Google Scholar 

  35. Kheradmand-Boroujeni, B. et al. A pulse-biasing small-signal measurement technique enabling 40 MHz operation of vertical organic transistors. Sci. Rep. 8, 7643 (2018).

    Article  ADS  Google Scholar 

  36. Bonil, A. et al. Organic permeable base transistors—reliable large-scale anodization for high frequency devices. Adv. Funct. Mater. 35, 2418270 (2025).

    Article  Google Scholar 

  37. Kaschura, F. et al. Operation mechanism of high performance organic permeable base transistors with an insulated and perforated base electrode. J. Appl. Phys. 120, 094501 (2016).

    Article  ADS  Google Scholar 

  38. Darbandy, G. et al. Unraveling structure and device operation of organic permeable base transistors. Adv. Electron. Mater. 6, 2000230 (2020).

    Article  Google Scholar 

  39. Klinger, M. P. et al. Organic power electronics: transistor operation in the kA/cm2 regime. Sci. Rep. 7, 44713 (2017).

    Article  ADS  Google Scholar 

  40. Hahn, T. et al. Role of intrinsic photogeneration in single layer and bilayer solar cells with C60 and PCBM. J. Phys. Chem. C 120, 25083–25091 (2016).

    Article  Google Scholar 

  41. Pai, D. M. & Enck, R. C. Onsager mechanism of photogeneration in amorphous selenium. Phys. Rev. B 11, 5163–5174 (1975).

    Article  ADS  Google Scholar 

  42. Shibuta, M. et al. Direct observation of photocarrier electron dynamics in C60 films on graphite by time-resolved two-photon photoemission. Sci. Rep. 6, 35853 (2016).

    Article  ADS  Google Scholar 

  43. Frankevich, E., Maruyama, Y., Ogata, H., Achiba, Y. & Kikuchi, K. Mobilities of charge carriers in C60 orthorhombic single crystal. Solid State Commun. 88, 177–181 (1993).

    Article  ADS  Google Scholar 

  44. Kotadiya, N. B., Mondal, A., Blom, P. W. M., Andrienko, D. & Wetzelaer, G.-J. A. H. A window to trap-free charge transport in organic semiconducting thin films. Nat. Mater. 18, 1182–1186 (2019).

    Article  ADS  Google Scholar 

  45. Mort, J., Machonkin, M., Ziolo, R. & Chen, I. Electronic carrier transport and photogeneration in buckminsterfullerene films. Appl. Phys. Lett. 61, 1829–1831 (1992).

    Article  ADS  Google Scholar 

  46. Lisiansky, M. et al. Peculiarities of hole trapping in Al2O3-SiO2 gate dielectric stack. Microelectron. Reliab. 79, 265–269 (2017).

    Article  ADS  Google Scholar 

  47. Larcher, L., Padovani, A., Della Marca, V., Pavan, P. & Bertacchini, A. Investigation of trapping/detrapping mechanisms in Al2O3 electron/hole traps and their influence on TANOS memory operations. In Proc. 2010 International Symposium on VLSI Technology, System and Application 52–53 (IEEE, 2010).

  48. Strand, J., Dicks, O. A., Kaviani, M. & Shluger, A. L. Hole trapping in amorphous HfO2 and Al2O3 as a source of positive charging. Microelectron. Eng 178, 235–239 (2017).

    Article  Google Scholar 

  49. Geiger, M. et al. Quantitative analysis of the density of trap states in semiconductors by electrical transport measurements on low-voltage field-effect transistors. Phys. Rev. Appl. 10, 044023 (2018).

    Article  ADS  Google Scholar 

  50. Darbandy, G., Pashaki, E. R., Iniguez, B., Kleemann, H. & Kloes, A. Modeling and simulation of vertical organic permeable base transistors. In 2024 IEEE Latin American Electron Devices Conference (LAEDC) 1–4 (IEEE, 2024).

  51. Darbandy, G. et al. High-frequency fT and fmax in organic transistors: performance and perspective. Adv. Electron. Mater. 10, 2300715 (2024).

    Article  Google Scholar 

  52. Stadtmüller, B. et al. Strong modification of the transport level alignment in organic materials after optical excitation. Nat. Commun. 10, 1470 (2019).

    Article  ADS  Google Scholar 

  53. Emmerich, S. et al. Ultrafast charge-transfer exciton dynamics in C60 thin films. J. Phys. Chem. C 124, 23579–23587 (2020).

    Article  Google Scholar 

  54. Bai, S. et al. Nanographene-based heterojunctions for high-performance organic phototransistor memory devices. Adv. Sci. 10, 2300057 (2023).

    Article  Google Scholar 

  55. He, Z. et al. Photomemory and pulse monitoring featured solution-processed near-infrared graphene/organic phototransistor with detectivity of 2.4 × 1013 Jones. Adv. Funct. Mater. 31, 2103988 (2021).

    Article  Google Scholar 

  56. Tao, J. et al. Organic UV-sensitive phototransistors based on distriphenylamineethynylpyrene derivatives with ultra-high detectivity approaching 1018. Adv. Mater. 32, 1907791 (2020).

    Article  Google Scholar 

  57. Chow, P. C. Y. et al. Dual-gate organic phototransistor with high-gain and linear photoresponse. Nat. Commun. 9, 4546 (2018).

    Article  ADS  Google Scholar 

  58. Zheng, X. et al. Optical-fiber-integrated high-speed organic phototransistor with broadband imaging capacity. Opt. Express 31, 33378–33386 (2023).

    Article  ADS  Google Scholar 

  59. Wang, C. et al. N-type 2D organic single crystals for high-performance organic field-effect transistors and near-infrared phototransistors. Adv. Mater. 30, 1706260 (2018).

    Article  Google Scholar 

  60. Chen, Y., Chu, Y., Wu, X., Ou-Yang, W. & Huang, J. High-performance inorganic perovskite quantum dot–organic semiconductor hybrid phototransistors. Adv. Mater. 29, 1704062 (2017).

    Article  Google Scholar 

  61. Ji, D. et al. Band-like transport in small-molecule thin films toward high mobility and ultrahigh detectivity phototransistor arrays. Nat. Commun. 10, 12 (2019).

    Article  ADS  Google Scholar 

  62. Xu, H. et al. Flexible organic/inorganic hybrid near-infrared photoplethysmogram sensor for cardiovascular monitoring. Adv. Mater. 29, 1700975 (2017).

    Article  Google Scholar 

  63. Zhang, Y. et al. Enabling a high-sensitivity and fast-response organic phototransistor based on an “embedded” heterojunction toward broadband high-speed imaging. Cryst. Growth Des. 24, 2783–2790 (2024).

    Article  Google Scholar 

  64. Zhang, S. et al. Photovoltaic nanocells for high-performance large-scale-integrated organic phototransistors. Nat. Nanotechnol. 19, 1323–1332 (2024).

    Article  ADS  Google Scholar 

  65. Yeliu, K. et al. High performance n-type vertical organic phototransistors. Org. Electron. 67, 200–207 (2019).

    Article  Google Scholar 

  66. Shou, M. et al. Ultrahigh detectivity in spatially separated hole/electron dual traps based near-infrared organic phototransistor. Adv. Opt. Mater. 9, 2002031 (2021).

    Article  Google Scholar 

  67. Gao, Y. et al. A novel hybrid-layered organic phototransistor enables efficient intermolecular charge transfer and carrier transport for ultrasensitive photodetection. Adv. Mater. 31, 1900763 (2019).

    Article  Google Scholar 

  68. Liu, X., Lee, E. K., Kim, D. Y., Yu, H. & Oh, J. H. Flexible organic phototransistor array with enhanced responsivity via metal–ligand charge transfer. ACS Appl. Mater. Interfaces 8, 7291–7299 (2016).

    Article  Google Scholar 

  69. Xu, H. et al. A high-sensitivity near-infrared phototransistor based on an organic bulk heterojunction. Nanoscale 5, 11850–11855 (2013).

    Article  ADS  Google Scholar 

  70. Du, Q. et al. Highly sensitive and ultrafast organic phototransistor based on rubrene single crystals. ACS Appl. Mater. Interfaces 13, 57735–57742 (2021).

    Article  Google Scholar 

  71. Zhong, J. et al. High performance flexible organic phototransistors with ultrashort channel length. ACS Photon. 5, 3712–3722 (2018).

    Article  Google Scholar 

  72. Rim, Y. S. et al. Boosting responsivity of organic–metal oxynitride hybrid heterointerface phototransistor. ACS Appl. Mater. Interfaces 8, 14665–14670 (2016).

    Article  Google Scholar 

  73. Xie, C., You, P., Liu, Z., Li, L. & Yan, F. Ultrasensitive broadband phototransistors based on perovskite/organic-semiconductor vertical heterojunctions. Light Sci. Appl. 6, e17023 (2017).

    Article  ADS  Google Scholar 

  74. Li, F. et al. High-performance near-infrared phototransistor based on n-type small-molecular organic semiconductor. Adv. Electron. Mater. 3, 1600430 (2017).

    Article  Google Scholar 

  75. Mukherjee, B. et al. Organic phototransistors based on solution grown, ordered single crystalline arrays of a π-conjugated molecule. J. Mater. Chem. 22, 3192–3200 (2012).

    Article  Google Scholar 

  76. Hoang, M. H. et al. Unusually high-performing organic field-effect transistors based on π-extended semiconducting porphyrins. Adv. Mater. 24, 5363–5367 (2012).

    Article  Google Scholar 

  77. Jones, G. F. et al. Highly efficient rubrene–graphene charge-transfer interfaces as phototransistors in the visible regime. Adv. Mater. 29, 1702993 (2017).

    Article  Google Scholar 

  78. Du, L. et al. Toward facile broadband high photoresponse of fullerene based phototransistor from the ultraviolet to the near-infrared region. Carbon 96, 685–694 (2016).

    Article  Google Scholar 

  79. Zhang, Y., Yuan, Y. & Huang, J. Detecting 100 fW cm2 light with trapped electron gated organic phototransistors. Adv. Mater. 29, 1603969 (2017).

    Article  Google Scholar 

  80. Chen, M.-N. et al. Unveiling the photoinduced recovery mystery in conjugated polymer-based transistor memory. ACS Appl. Mater. Interfaces 13, 44656–44662 (2021).

    Article  Google Scholar 

  81. Pei, K. et al. A high-performance optical memory array based on inhomogeneity of organic semiconductors. Adv. Mater. 30, 1706647 (2018).

    Article  Google Scholar 

  82. Li, W. et al. Solution-processed wide-bandgap organic semiconductor nanostructures arrays for nonvolatile organic field-effect transistor memory. Small 14, 1701437 (2018).

    Article  ADS  Google Scholar 

  83. Liao, M.-Y. et al. Realizing nonvolatile photomemories with multilevel memory behaviors using water-processable polymer dots-based hybrid floating gates. ACS Appl. Electron. Mater. 3, 1708–1718 (2021).

    Article  Google Scholar 

  84. Yang, H. et al. High-performance all-inorganic perovskite-quantum-dot-based flexible organic phototransistor memory with architecture design. Adv. Electron. Mater. 5, 1900864 (2019).

    Article  Google Scholar 

  85. Fuentes-Hernandez, C. et al. Large-area low-noise flexible organic photodiodes for detecting faint visible light. Science 370, 698–701 (2020).

    Article  ADS  Google Scholar 

  86. Strobel, N. et al. Color-selective printed organic photodiodes for filterless multichannel visible light communication. Adv. Mater. 32, 1908258 (2020).

    Article  Google Scholar 

  87. Song, Y., Yu, G., Xie, B., Zhang, K. & Huang, F. Visible-to-near-infrared organic photodiodes with performance comparable to commercial silicon-based detectors. Appl. Phys. Lett. 117, 093302 (2020).

    Article  ADS  Google Scholar 

  88. Nikolis, V. C. et al. Strong light-matter coupling for reduced photon energy losses in organic photovoltaics. Nat. Commun. 10, 3706 (2019).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge funding for the project ‘FLEXMONIRS’ (01DR20008A) provided by the German Federal Ministry of Education and Research (BMBF) and the Koselleck-project (456344071) from the German Research Foundation (DFG). L.C.W. acknowledges the Graduate Academy project 2767 (GRK 2767) funded by DFG. G.D. acknowledges the DFG projects ‘DA 2578/2-1’ and ‘INST169/22-1’. H.K. acknowledges funding for DFG project KL 2961/10-1 (496804567) and 495141293. J.B. and L.C.W. gratefully acknowledges funding from the Federal Ministry of Research, Technology and Space (BMFTR) as part of the project to establish the German Center for Astrophysics (03WSP1745). We acknowledge M. Roth for stimulating discussions about detector applications and K.-G. Lim for discussions about the OPBTs.

Author information

Authors and Affiliations

Authors

Contributions

J.S., K.L., H.K. and J.B. proposed and supervised the project. J.S., A.B. and J.W. designed and prepared the samples. J.S. designed the experiments together with A.B. and L.C.W. J.S. performed the device characterization and carried out the wavelength-dependent threshold analysis and noise measurements with L.C.W. G.D. performed the TCAD simulations. J.S. analysed the data, implemented the modelling of the observed effects and wrote the paper. J.F. analysed the OPBTs doped with absorber materials. All authors discussed the results and commented on the paper.

Corresponding authors

Correspondence to Jonas Schröder or Johannes Benduhn.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Nicola Gasparini and Debdatta Panigrahi for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–18, Notes 1–4 and Tables 1–3.

Source data

Source Data Fig. 1

Raw data of main text Fig. 1.

Source Data Fig. 2

Raw data of main text Fig. 2.

Source Data Fig. 3

Raw data of main text Fig. 3.

Source Data Fig. 4

Raw data of main text Fig. 4.

Source Data Fig. 5

Raw data of main text Fig. 5.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schröder, J., Bonil, A., Winkler, L.C. et al. Organic permeable base transistors for high-performance photodetection with photo-memory effect. Nat. Photon. 19, 1088–1098 (2025). https://doi.org/10.1038/s41566-025-01740-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41566-025-01740-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing