Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multi-octave frequency comb from an ultra-low-threshold nanophotonic parametric oscillator

Abstract

Ultra-broadband frequency combs coherently unite distant portions of the electromagnetic spectrum. They underpin discoveries in ultra-fast science and serve as the building blocks of modern photonic technologies. Despite tremendous progress in integrated sources of frequency combs, achieving multi-octave operation on chip has remained elusive mainly because of the energy demand of typical spectral broadening processes. Here we break this barrier and demonstrate multi-octave frequency comb generation using an optical parametric oscillator in nanophotonic lithium niobate with only femtojoules of pump energy. Leveraging this ultra-low threshold and dispersion engineering, we accessed a previously unexplored optical parametric oscillator regime that enables highly efficient and stable coherent spectral broadening. We achieve orders-of-magnitude reduction in the energy requirement compared with the other techniques, confirm the coherence of the comb, and present a path towards more efficient and wider spectral broadening. Our results pave the way for ultra-short-pulse and ultra-broadband on-chip nonlinear photonic systems for numerous applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Principle and design of the multi-octave nanophotonic OPO.
Fig. 2: OPO characterization.
Fig. 3: Simulation results showing different operation regimes of the nanophotonic OPO.
Fig. 4: Performance comparison of integrated spectral broadening and frequency comb sync-pumped OPOs.

Similar content being viewed by others

Data availability

All data are available in the Article or the Supplementary Information. The data files supporting the plots in the main text are available via figshare at https://figshare.com/s/a9e01f7ca865c5dfd390 (ref. 68).

Code availability

The code used for finding both effective index and solving the nonlinear propagation is based on the snow library available via GitHub at https://github.com/ledezmaluism/snow (ref. 69). Any further computer code used in this paper is available from the corresponding author upon reasonable request.

References

  1. Carlson, D. R. et al. Ultrafast electro-optic light with subcycle control. Science 361, 1358–1363 (2018).

    Article  ADS  Google Scholar 

  2. Diddams, S. A., Vahala, K. & Udem, T. Optical frequency combs: coherently uniting the electromagnetic spectrum. Science 369, eaay3676 (2020).

    Article  Google Scholar 

  3. Kippenberg, T. J., Gaeta, A. L., Lipson, M. & Gorodetsky, M. L. Dissipative Kerr solitons in optical microresonators. Science 361, eaan8083 (2018).

    Article  Google Scholar 

  4. Chang, L., Liu, S. & Bowers, J. E. Integrated optical frequency comb technologies. Nat. Photon. 16, 95–108 (2022).

    Article  ADS  Google Scholar 

  5. Gaeta, A. L., Lipson, M. & Kippenberg, T. J. Photonic-chip-based frequency combs. Nat. Photon. 13, 158–169 (2019).

    Article  ADS  Google Scholar 

  6. Suh, M.-G., Yang, Q.-F., Yang, K. Y., Yi, X. & Vahala, K. J. Microresonator soliton dual-comb spectroscopy. Science 354, 600–603 (2016).

    Article  ADS  Google Scholar 

  7. Marin-Palomo, P. et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature 546, 274–279 (2017).

    Article  ADS  Google Scholar 

  8. Spencer, D. T. et al. An optical-frequency synthesizer using integrated photonics. Nature 557, 81–85 (2018).

    Article  ADS  Google Scholar 

  9. Tran, M. A. et al. Extending the spectrum of fully integrated photonics to submicrometre wavelengths. Nature 610, 54–60 (2022).

    Article  ADS  Google Scholar 

  10. Riemensberger, J. et al. Massively parallel coherent laser ranging using a soliton microcomb. Nature 581, 164–170 (2020).

    Article  ADS  Google Scholar 

  11. Lesko, D. M. B. et al. A six-octave optical frequency comb from a scalable few-cycle erbium fibre laser. Nat. Photon. 15, 281–286 (2021).

    Article  ADS  Google Scholar 

  12. Elu, U. et al. Seven-octave high-brightness and carrier-envelope-phase-stable light source. Nat. Photon. 15, 277–280 (2021).

    Article  ADS  Google Scholar 

  13. Wirth, A. et al. Synthesized light transients. Science 334, 195–200 (2011).

    Article  ADS  Google Scholar 

  14. Corkum, P. B. & Krausz, F. Attosecond science. Nat. Phys. 3, 381–387 (2007).

    Article  Google Scholar 

  15. Muraviev, A. V., Smolski, V. O., Loparo, Z. E. & Vodopyanov, K. L. Massively parallel sensing of trace molecules and their isotopologues with broadband subharmonic mid-infrared frequency combs. Nat. Photon. 12, 209–214 (2018).

    Article  ADS  Google Scholar 

  16. Picqué, N. & Hänsch, T. W. Frequency comb spectroscopy. Nat. Photon. 13, 146–157 (2019).

    Article  ADS  Google Scholar 

  17. Chang, C.-I. Hyperspectral Imaging (Springer, 2003).

  18. Yu, M. et al. Integrated femtosecond pulse generator on thin-film lithium niobate. Nature 612, 252–258 (2022).

    Article  ADS  Google Scholar 

  19. Guo, Q. et al. Ultrafast mode-locked laser in nanophotonic lithium niobate. Science 382, 708–713 (2023).

    Article  ADS  Google Scholar 

  20. Stern, B., Ji, X., Okawachi, Y., Gaeta, A. L. & Lipson, M. Battery-operated integrated frequency comb generator. Nature 562, 401–405 (2018).

    Article  ADS  Google Scholar 

  21. Pfeiffer, M. H. P. et al. Octave-spanning dissipative Kerr soliton frequency combs in Si3N4 microresonators. Optica 4, 684–691 (2017).

    Article  ADS  Google Scholar 

  22. Li, Q. et al. Stably accessing octave-spanning microresonator frequency combs in the soliton regime. Optica 4, 193–203 (2017).

    Article  ADS  Google Scholar 

  23. Obrzud, E. et al. A microphotonic astrocomb. Nat. Photon. 13, 31–35 (2019).

    Article  ADS  Google Scholar 

  24. Wu, T.-H. et al. Visible-to-ultraviolet frequency comb generation in lithium niobate nanophotonic waveguides. Nat. Photon. 18, 218–223 (2024).

    Article  ADS  Google Scholar 

  25. Oh, D. Y. et al. Coherent ultra-violet to near-infrared generation in silica ridge waveguides. Nat. Commun. 8, 13922 (2017).

    Article  ADS  Google Scholar 

  26. Ludwig, M. et al. Ultraviolet astronomical spectrograph calibration with laser frequency combs from nanophotonic lithium niobate waveguides. Nat. Commun. 15, 7614 (2024).

    Article  Google Scholar 

  27. Dudley, J. M., Genty, G. & Coen, S. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78, 1135–1184 (2006).

    Article  ADS  Google Scholar 

  28. Vasilyev, S. et al. Multi-octave visible to long-wave IR femtosecond continuum generated in Cr:ZnS-GaSe tandem. Opt. Express 27, 16405–16412 (2019).

    Article  ADS  Google Scholar 

  29. Jankowski, M. et al. Ultrabroadband nonlinear optics in nanophotonic periodically poled lithium niobate waveguides. Optica 7, 40–46 (2020).

    Article  ADS  Google Scholar 

  30. Anderson, M. H. et al. Photonic chip-based resonant supercontinuum via pulse-driven Kerr microresonator solitons. Optica 8, 771–779 (2021).

    Article  ADS  Google Scholar 

  31. Anderson, M. H. et al. Zero dispersion Kerr solitons in optical microresonators. Nat. Commun. 13, 4764 (2022).

    Article  ADS  Google Scholar 

  32. Molesky, S. et al. Inverse design in nanophotonics. Nat. Photon. 12, 659–670 (2018).

    Article  ADS  Google Scholar 

  33. McMahon, P. L. et al. A fully programmable 100-spin coherent Ising machine with all-to-all connections. Science 354, 614–617 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  34. Marandi, A., Leindecker, N. C., Pervak, V., Byer, R. L. & Vodopyanov, K. L. Coherence properties of a broadband femtosecond mid-IR optical parametric oscillator operating at degeneracy. Opt. Express 20, 7255–7262 (2012).

    Article  ADS  Google Scholar 

  35. Marandi, A., Ingold, K. A., Jankowski, M. & Byer, R. L. Cascaded half-harmonic generation of femtosecond frequency combs in the mid-infrared. Optica 3, 324–327 (2016).

    Article  ADS  Google Scholar 

  36. Sun, J. H., Gale, B. J. S. & Reid, D. T. Composite frequency comb spanning 0.4–2.4 μm from a phase-controlled femtosecond Ti:sapphire laser and synchronously pumped optical parametric oscillator. Opt. Lett. 32, 1414–1416 (2007).

    Article  ADS  Google Scholar 

  37. Roy, A. et al. Temporal walk-off induced dissipative quadratic solitons. Nat. Photon. 16, 162–168 (2022).

    Article  ADS  Google Scholar 

  38. Ledezma, L. et al. Intense optical parametric amplification in dispersion-engineered nanophotonic lithium niobate waveguides. Optica 9, 303–308 (2022).

    Article  ADS  Google Scholar 

  39. Roy, A. et al. Visible-to-mid-IR tunable frequency comb in nanophotonics. Nat. Commun. 14, 6549 (2023).

    Article  ADS  Google Scholar 

  40. Ledezma, L. et al. Octave-spanning tunable infrared parametric oscillators in nanophotonics. Sci. Adv. 9, eadf9711 (2023).

    Article  Google Scholar 

  41. Hamerly, R. et al. Reduced models and design principles for half-harmonic generation in synchronously pumped optical parametric oscillators. Phys. Rev. A 94, 063809 (2016).

    Article  ADS  Google Scholar 

  42. Ning, C., Feng, X., Heng, J. & Zhang, Z. Supercontinuum generation from a quasi-stationary doubly resonant optical parametric oscillator. Opt. Lett. 46, 4280–4283 (2021).

    Article  ADS  Google Scholar 

  43. Suret, P., Lefranc, M., Derozier, D., Zemmouri, J. & Bielawski, S. Fast oscillations in an optical parametric oscillator. Opt. Commun. 200, 369–379 (2001).

    Article  ADS  Google Scholar 

  44. Leidinger, M. et al. Comparative study on three highly sensitive absorption measurement techniques characterizing lithium niobate over its entire transparent spectral range. Opt. Express 23, 21690–21705 (2015).

    Article  ADS  Google Scholar 

  45. Okawachi, Y. et al. Chip-based self-referencing using integrated lithium niobate waveguides. Optica 7, 702–707 (2020).

    Article  ADS  Google Scholar 

  46. Yu, M., Desiatov, B., Okawachi, Y., Gaeta, A. L. & Lončar, M. Coherent two-octave-spanning supercontinuum generation in lithium-niobate waveguides. Opt. Lett. 44, 1222–1225 (2019).

    Article  ADS  Google Scholar 

  47. Carlson, D. R. et al. Photonic-chip supercontinuum with tailored spectra for counting optical frequencies. Phys. Rev. Appl. 8, 014027 (2017).

    Article  ADS  Google Scholar 

  48. Spaun, B. et al. Continuous probing of cold complex molecules with infrared frequency comb spectroscopy. Nature 533, 517–520 (2016).

    Article  ADS  Google Scholar 

  49. Bjork, B. J. et al. Direct frequency comb measurement of OD + CO → DOCO kinetics. Science 354, 444–448 (2016).

    Article  ADS  Google Scholar 

  50. Weng, W. et al. Gain-switched semiconductor laser driven soliton microcombs. Nat. Commun. 12, 1425 (2021).

    Article  ADS  Google Scholar 

  51. Xu, Y. et al. Harmonic and rational harmonic driving of microresonator soliton frequency combs. Optica 7, 940–946 (2020).

    Article  ADS  Google Scholar 

  52. Obrzud, E., Lecomte, S. & Herr, T. Temporal solitons in microresonators driven by optical pulses. Nat. Photon. 11, 600–607 (2017).

    Article  Google Scholar 

  53. Inagaki, T. et al. Large-scale Ising spin network based on degenerate optical parametric oscillators. Nat. Photon. 10, 415–419 (2016).

    Article  ADS  Google Scholar 

  54. Devgan, P.S. et al. 10-GHz dispersion-managed soliton fiber-optical parametric oscillator using regenerative mode-locking.Opt. Lett. 30, 528–530 (2005). erratum 30, 1743. (2005).

    Article  ADS  Google Scholar 

  55. Roy, A., Nehra, R., Langrock, C., Fejer, M. & Marandi, A. Non-equilibrium spectral phase transitions in coupled nonlinear optical resonators. Nat. Phys. 19, 427–434 (2023).

    Article  Google Scholar 

  56. Ingold, K. A., Marandi, A., Digonnet, M. J. F. & Byer, R. L. Fiber-feedback optical parametric oscillator for half-harmonic generation of sub-100-fs frequency combs around 2 μm. Opt. Lett. 40, 4368–4371 (2015).

    Article  ADS  Google Scholar 

  57. Langrock, C. & Fejer, M. M. Fiber-feedback continuous-wave and synchronously-pumped singly-resonant ring optical parametric oscillators using reverse-proton-exchanged periodically-poled lithium niobate waveguides. Opt. Lett. 32, 2263–2265 (2007).

    Article  ADS  Google Scholar 

  58. Sharping, J. E., Fiorentino, M., Kumar, P. & Windeler, R. S. Optical parametric oscillator based on four-wave mixing in microstructure fiber. Opt. Lett. 27, 1675–1677 (2002).

    Article  ADS  Google Scholar 

  59. Deng, Y., Lin, Q., Lu, F., Agrawal, G. P. & Knox, W. H. Broadly tunable femtosecond parametric oscillator using a photonic crystal fiber. Opt. Lett. 30, 1234–1236 (2005).

    Article  ADS  Google Scholar 

  60. Sharping, J. E. et al. Octave-spanning, high-power microstructure-fiber-based optical parametric oscillators. Opt. Express 15, 1474–1479 (2007).

    Article  ADS  Google Scholar 

  61. Gao, M., Lüpken, N. M., Boller, K.-J. & Fallnich, C. Optical parametric oscillator based on silicon nitride waveguides. In Optica Advanced Photonics Congress 2022, Technical Digest Series JTh4A.3 (Optica Publishing Group, 2022).

  62. Marandi, A., Wang, Z., Takata, K., Byer, R. L. & Yamamoto, Y. Network of time-multiplexed optical parametric oscillators as a coherent Ising machine. Nat. Photon. 8, 937–942 (2014).

    Article  ADS  Google Scholar 

  63. Heckl, O. H. et al. Three-photon absorption in optical parametric oscillators based on OP-GaAs. Opt. Lett. 41, 5405–5408 (2016).

    Article  ADS  Google Scholar 

  64. Reid, D. T., Kennedy, G. T., Miller, A., Sibbett, W. & Ebrahimzadeh, M. Widely tunable, near- to mid-infrared femtosecond and picosecond optical parametric oscillators using periodically poled LiNbO3 and RbTiOAsO4. IEEE J. Sel. Topics Quantum Electron. 4, 238–248 (1998).

    Article  ADS  Google Scholar 

  65. Sekine, R., Gray, R., Ledezma, L., Guo, Q. & Marandi, A. Sync-pumped femtosecond OPO based on dispersion-engineered nanophotonic PPLN with 3-octave spectrum. In Conference on Lasers and Electro-Optics (CLEO) 2022 SM5K.2 (Optica Publishing Group, 2022).

  66. Li, J. et al. Efficiency of pulse pumped soliton microcombs. Optica 9, 231–239 (2022).

    Article  ADS  Google Scholar 

  67. Burr, K. C., Tang, C. L., Arbore, M. A. & Fejer, M. M. Broadly tunable mid-infrared femtosecond optical parametric oscillator using all-solid-state-pumped periodically poled lithium niobate. Opt. Lett. 22, 1458–1460 (1997).

    Article  ADS  Google Scholar 

  68. Sekine, R. Multi-octave frequency comb from an ultra-low-threshold nanophotonic parametric oscillator. figshare https://figshare.com/s/a9e01f7ca865c5dfd390 (2025).

  69. Ledezma, L. snow: Simulator for nonlinear optical waveguides. GitHub https://github.com/ledezmaluism/snow (2025).

Download references

Acknowledgements

The device nanofabrication was performed at the Kavli Nanoscience Institute (KNI) at Caltech. We thank M. Bagheri for loaning equipment. We gratefully acknowledge support from ARO grant number W911NF-23-1-0048, NSF grant numbers 1846273, 1918549 and 2408297, AFOSR award number FA9550-23-1-0755, DARPA award number D23AP00158, the Center for Sensing to Intelligence at Caltech, and NASA/JPL. We wish to thank NTT Research for their financial support.

Author information

Authors and Affiliations

Authors

Contributions

R.S. and A.M. conceived the project. R.S. fabricated the devices with assistance from L.L., S.Z. and Q.G. R.M.G. and R.S. performed the measurements and R.M.G. carried out the simulations with initial input from L.L. R.S. and A.M. wrote the manuscript with inputs from all authors. A.M. supervised the project.

Corresponding author

Correspondence to Alireza Marandi.

Ethics declarations

Competing interests

L.L. and A.M. are inventors on granted US patent 11,226,538 that covers thin-film optical parametric oscillators. R.S., R.M.G., L.L., A. Roy and A.M. are inventors on a US provisional patent application filed by the California Institute of Technology (application number 63/466,188). R.M.G., L.L. and A.M. are inventors on a US provisional patent application filed by the California Institute of Technology (application number 63/434,015) on 20 December 2022. R.S., L.L. and A.M. are involved in developing photonic integrated nonlinear circuits at PINC Technologies Inc. R.S., L.L. and A.M. have an equity interest in PINC Technologies Inc. The other authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Jens Biegert and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections I–IV, Figs. 1–24 and Discussion.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sekine, R., Gray, R.M., Ledezma, L. et al. Multi-octave frequency comb from an ultra-low-threshold nanophotonic parametric oscillator. Nat. Photon. (2025). https://doi.org/10.1038/s41566-025-01753-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41566-025-01753-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing