Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Boundary-induced excitation of higher-order hyperbolic phonon polaritons

Abstract

Higher-order hyperbolic phonon polaritons (HoHPhPs), arising from photon–phonon coupling under geometric confinement and resonance conditions, exhibit larger wavevectors, field confinement and tunability compared with fundamental hyperbolic phonon polariton (HPhP) modes, making them promising for compact nanophotonic devices. However, their excitation remains challenging due to stringent momentum compensation requirements, leaving their properties and applications largely unexplored. Here we overcome this challenge by introducing a boundary-induced scattering mechanism that facilitates the efficient stepwise excitation of HoHPhPs. By creating a high-contrast dielectric environment with a gold–air hybrid substrate, we achieve substantial momentum compensation through scattering at the gold edge. Our approach is validated by theoretical analysis using dyadic Green’s function theory, demonstrating more than a sixfold increase in the excitation efficiency of HoHPhPs compared with conventional antenna-launching of HPhP. Experimentally, we observe HoHPhPs in α-MoO3 layers with a propagation distance of up to 15.2 μm and report a pseudo-birefringence effect with an ultrahigh equivalent birefringence ranging from 17.6 to 41.8. Thus, different polariton orders are spatially separated by their propagation direction without altering their polarization state. Our work introduces a novel strategy for the efficient excitation of HoHPhPs and establishes them as a versatile platform for nanophotonic applications such as mode routing in nanocircuits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Two-step excitation of HoHPhPs.
Fig. 2: Real-space imaging of boundary-induced HoHPhP excitation using s-SNOM.
Fig. 3: Dispersion and loss analysis of HoHPhPs.
Fig. 4: Spatial separation of FPhPs and HoHPhPs via pseudo-birefringence.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available in the Article and the Supplementary Information. Source data are provided with this paper.

References

  1. Basov, D., Fogler, M. & García de Abajo, F. J. S. Polaritons in van der Waals materials. Science 354, aag1992 (2016).

    Article  Google Scholar 

  2. Low, T. et al. Polaritons in layered two-dimensional materials. Nat. Mater. 16, 182–194 (2017).

    Article  ADS  Google Scholar 

  3. Zhang, Q. et al. Interface nano-optics with van der Waals polaritons. Nature 597, 187–195 (2021).

    Article  ADS  Google Scholar 

  4. Galiffi, E. et al. Extreme light confinement and control in low-symmetry phonon-polaritonic crystals. Nat. Rev. Mater. 9, 9–28 (2024).

    Article  ADS  Google Scholar 

  5. Wu, Y. et al. Manipulating polaritons at the extreme scale in van der Waals materials. Nat. Rev. Phys. 4, 578–594 (2022).

    Article  Google Scholar 

  6. Chen, J. et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 487, 77–81 (2012).

    Article  ADS  Google Scholar 

  7. Fei, Z. et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82–85 (2012).

    Article  ADS  Google Scholar 

  8. Dai, S. et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 343, 1125–1129 (2014).

    Article  ADS  Google Scholar 

  9. Huber, A., Ocelic, N., Kazantsev, D. & Hillenbrand, R. Near-field imaging of mid-infrared surface phonon polariton propagation. Appl. Phys. Lett. 87, 081103 (2005).

  10. Orsini, L. et al. Deep subwavelength topological edge state in a hyperbolic medium. Nat. Nanotechnol. 19, 1485–1490 (2024).

    Article  ADS  Google Scholar 

  11. Woessner, A. et al. Highly confined low-loss plasmons in graphene–boron nitride heterostructures. Nat. Mater. 14, 421–425 (2015).

    Article  ADS  Google Scholar 

  12. Ocelic, N. & Hillenbrand, R. Subwavelength-scale tailoring of surface phonon polaritons by focused ion-beam implantation. Nat. Mater. 3, 606–609 (2004).

    Article  ADS  Google Scholar 

  13. Woessner, A. et al. Electrical 2π phase control of infrared light in a 350-nm footprint using graphene plasmons. Nat. Photon. 11, 421–424 (2017).

    Article  ADS  Google Scholar 

  14. Xiong, L. et al. Photonic crystal for graphene plasmons. Nat. Commun. 10, 4780 (2019).

    Article  ADS  Google Scholar 

  15. Hu, H. et al. Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons. Nat. Commun. 7, 12334 (2016).

    Article  ADS  Google Scholar 

  16. Freitag, M. et al. Photocurrent in graphene harnessed by tunable intrinsic plasmons. Nat. Commun. 4, 1951 (2013).

    Article  ADS  Google Scholar 

  17. Luo, Y. et al. Electrically switchable anisotropic polariton propagation in a ferroelectric van der Waals semiconductor. Nat. Nanotechnol. 18, 350–356 (2023).

    Article  ADS  Google Scholar 

  18. Teng, H., Chen, N., Hu, H., García de Abajo, F. J. & Dai, Q. Steering and cloaking of hyperbolic polaritons at deep-subwavelength scales. Nat. Commun. 15, 4463 (2024).

    Article  ADS  Google Scholar 

  19. Norrman, A., Setälä, T. & Friberg, A. T. Long-range higher-order surface-plasmon polaritons. Phys. Rev. A 90, 053849 (2014).

    Article  ADS  Google Scholar 

  20. Lu, G. et al. Launching and manipulation of higher‐order in‐plane hyperbolic phonon polaritons in low‐dimensional heterostructures. Adv. Mater. 35, 2300301 (2023).

    Article  Google Scholar 

  21. Zhang, Y., Kartashov, Y., Torner, L., Li, Y. & Ferrando, A. Nonlinear higher-order polariton topological insulator. Opt. Lett. 45, 4710–4713 (2020).

    Article  ADS  Google Scholar 

  22. García de Abajo, F. J. Optical excitations in electron microscopy. Rev. Mod. Phys. 82, 209–275 (2010).

    Article  ADS  Google Scholar 

  23. Chen, X. et al. Modern scattering‐type scanning near‐field optical microscopy for advanced material research. Adv. Mater. 31, 1804774 (2019).

    Article  Google Scholar 

  24. Keilmann, F. & Hillenbrand, R. Near-field microscopy by elastic light scattering from a tip. Phys. Eng. Sci. 362, 787–805 (2004).

    Article  Google Scholar 

  25. Hillenbrand, R., Abate, Y., Liu, M., Chen, X. & Basov, D. Visible-to-THz near-field nanoscopy. Nat. Rev. Mater. 10, 285–310 (2025).

    Article  ADS  Google Scholar 

  26. Alonso-González, P. et al. Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns. Science 344, 1369–1373 (2014).

    Article  ADS  Google Scholar 

  27. Ni, G. et al. Fundamental limits to graphene plasmonics. Nature 557, 530–533 (2018).

    Article  ADS  Google Scholar 

  28. Pons-Valencia, P. et al. Launching of hyperbolic phonon-polaritons in h-BN slabs by resonant metal plasmonic antennas. Nat. Commun. 10, 3242 (2019).

    Article  ADS  Google Scholar 

  29. Dai, S. et al. Efficiency of launching highly confined polaritons by infrared light incident on a hyperbolic material. Nano Lett. 17, 5285–5290 (2017).

    Article  ADS  Google Scholar 

  30. Huth, F. et al. Resonant antenna probes for tip-enhanced infrared near-field microscopy. Nano Lett. 13, 1065–1072 (2013).

    Article  ADS  Google Scholar 

  31. Chen, S. et al. Real-space observation of ultraconfined in-plane anisotropic acoustic terahertz plasmon polaritons. Nat. Mater. 22, 860–866 (2023).

    Article  ADS  Google Scholar 

  32. Bechtel, H. A., Johnson, S. C., Khatib, O., Muller, E. A. & Raschke, M. B. Synchrotron infrared nano-spectroscopy and -imaging. Nat. Commun. 75, 100493 (2020).

    Google Scholar 

  33. Mayer, R. A. et al. Paratellurite nanowires as a versatile material for THz phonon polaritons. ACS Photon. 11, 4323–4333 (2024).

    Google Scholar 

  34. Xu, R. et al. Highly confined epsilon-near-zero and surface phonon polaritons in SrTiO3 membranes. Nat. Commun. 15, 4743 (2024).

    Article  ADS  Google Scholar 

  35. Kehr, S. C., Döring, J., Gensch, M., Helm, M. & Eng, L. M. FEL-based near-field infrared to THz nanoscopy. Synchrotron Radiat. News 30, 31–35 (2017).

    Article  ADS  Google Scholar 

  36. Álvarez-Cuervo, J. et al. Unidirectional ray polaritons in twisted asymmetric stacks. Nat. Commun. 15, 9042 (2024).

    Article  ADS  Google Scholar 

  37. Huth, F. et al. Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution. Nano Lett. 12, 3973–3978 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  38. Mastel, S. et al. Understanding the image contrast of material boundaries in IR nanoscopy reaching 5 nm spatial resolution. ACS Photon. 5, 3372–3378 (2018).

    Article  Google Scholar 

  39. Sternbach, A. et al. Programmable hyperbolic polaritons in van der Waals semiconductors. Science 371, 617–620 (2021).

    Article  ADS  Google Scholar 

  40. Nishida, J. et al. Ultrafast infrared nano-imaging of far-from-equilibrium carrier and vibrational dynamics. Nat. Commun. 13, 1083 (2022).

    Article  ADS  Google Scholar 

  41. Wehmeier, L. et al. Landau-phonon polaritons in Dirac heterostructures. Sci. Adv. 10, eadp3487 (2024).

    Article  Google Scholar 

  42. Alonso-González, P. et al. Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy. Nat. Nanotechnol. 12, 31–35 (2017).

    Article  ADS  Google Scholar 

  43. Xiong, L. et al. Polaritonic vortices with a half-integer charge. Nano Lett. 21, 9256–9261 (2021).

    Article  ADS  Google Scholar 

  44. Schnell, M. et al. Real-space mapping of the chiral near-field distributions in spiral antennas and planar metasurfaces. Nano Lett. 16, 663–670 (2016).

    Article  ADS  Google Scholar 

  45. Virmani, D. et al. Amplitude-and phase-resolved infrared nanoimaging and nanospectroscopy of polaritons in a liquid environment. Nano Lett. 21, 1360–1367 (2021).

    Article  ADS  Google Scholar 

  46. Schnell, M. et al. Controlling the near-field oscillations of loaded plasmonic nanoantennas. Nat. Photon. 3, 287–291 (2009).

    Article  ADS  Google Scholar 

  47. Schnell, M., Garcia-Etxarri, A., Alkorta, J., Aizpurua, J. & Hillenbrand, R. Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps. Nano Lett. 10, 3524–3528 (2010).

    Article  ADS  Google Scholar 

  48. Shi, Z. et al. Amplitude-and phase-resolved nanospectral imaging of phonon polaritons in hexagonal boron nitride. ACS Photon. 2, 790–796 (2015).

    Article  Google Scholar 

  49. Li, P. et al. Infrared hyperbolic metasurface based on nanostructured van der Waals materials. Science 359, 892–896 (2018).

    Article  ADS  Google Scholar 

  50. Ma, Y., Zhong, G., Dai, Z. & Ou, Q. In-plane hyperbolic phonon polaritons: materials, properties, and nanophotonic devices. npj Nanophoton. 1, 25 (2024).

    Article  Google Scholar 

  51. Wang, H. et al. Planar hyperbolic polaritons in 2D van der Waals materials. Nat. Commun. 15, 69 (2024).

    Article  ADS  Google Scholar 

  52. Menabde, S. G. et al. Near-field probing of image phonon-polaritons in hexagonal boron nitride on gold crystals. Sci. Adv. 8, eabn0627 (2022).

    Article  Google Scholar 

  53. Lee, I.-H. et al. Image polaritons in boron nitride for extreme polariton confinement with low losses. Nat. Commun. 11, 3649 (2020).

    Article  ADS  Google Scholar 

  54. Ma, W. et al. In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal. Nature 562, 557–562 (2018).

    Article  ADS  Google Scholar 

  55. Zheng, Z. et al. A mid-infrared biaxial hyperbolic van der Waals crystal. Sci. Adv. 5, eaav8690 (2019).

    Article  ADS  Google Scholar 

  56. Hu, H. et al. Doping-driven topological polaritons in graphene/α-MoO3 heterostructures. Nat. Nanotechnol. 17, 940–946 (2022).

    Article  ADS  Google Scholar 

  57. Abdullah, S., Dias, E. J., Krpenský, J., Mkhitaryan, V. & García de Abajo, F. J. Toward complete optical coupling to confined surface polaritons. ACS Photon. 11, 2183–2193 (2024).

    Article  Google Scholar 

  58. Nikitin, A. Y., Garcia-Vidal, F. J. & Martin-Moreno, L. Analytical expressions for the electromagnetic dyadic Green’s function in graphene and thin layers. IEEE J. Sel. Topics Quantum Electron. 19, 4600611 (2012).

    Article  ADS  Google Scholar 

  59. Virmani, D., Maciel-Escudero, C., Hillenbrand, R. & Schnell, M. Experimental verification of field-enhanced molecular vibrational scattering at single infrared antennas. Nat. Commun. 15, 6760 (2024).

    Article  ADS  Google Scholar 

  60. Menabde, S. G., Heiden, J. T., Cox, J. D., Mortensen, N. A. & Jang, M. S. Image polaritons in van der Waals crystals. Nanophotonics 11, 2433–2452 (2022).

    Article  Google Scholar 

  61. Nikitin, A. Y., Brucoli, G., García-Vidal, F. & Martín-Moreno, L. Scattering of surface plasmon polaritons by impedance barriers: dependence on angle of incidence. Phys. Rev. B 77, 195441 (2008).

    Article  ADS  Google Scholar 

  62. Kang, J.-H. et al. Goos-Hänchen shift and even–odd peak oscillations in edge-reflections of surface polaritons in atomically thin crystals. Nano Lett. 17, 1768–1774 (2017).

    Article  ADS  Google Scholar 

  63. Guo, Z. et al. Facile synthesis of micrometer-sized gold nanoplates through an aniline-assisted route in ethylene glycol solution. Colloids Surf. A Physicochem. Eng. Asp. 278, 33–38 (2006).

    Article  Google Scholar 

  64. Voronin, K. V., Álvarez-Pérez, G., Lanza, C., Alonso-González, P. & Nikitin, A. Y. Fundamentals of polaritons in strongly anisotropic thin crystal layers. ACS Photon. 11, 550–560 (2024).

    Article  Google Scholar 

  65. Ni, G. et al. Long-lived phonon polaritons in hyperbolic materials. Nano Lett. 21, 5767–5773 (2021).

    Article  ADS  Google Scholar 

  66. Zhang, T., Zheng, C., Chen, Z. N. & Qiu, C.-W. Negative reflection and negative refraction in biaxial van der Waals materials. Nano Lett. 22, 5607–5614 (2022).

    Article  ADS  Google Scholar 

  67. Hu, H. et al. Gate-tunable negative refraction of mid-infrared polaritons. Science 379, 558–561 (2023).

    Article  ADS  Google Scholar 

  68. Duan, J. et al. Planar refraction and lensing of highly confined polaritons in anisotropic media. Nat. Commun. 12, 4325 (2021).

    Article  ADS  Google Scholar 

  69. Álvarez-Pérez, G. et al. Negative reflection of nanoscale-confined polaritons in a low-loss natural medium. Sci. Adv. 8, eabp8486 (2022).

    Article  Google Scholar 

  70. Tudi, A., Han, S., Yang, Z. & Pan, S. Potential optical functional crystals with large birefringence: recent advances and future prospects. Coordin. Chem. Rev. 459, 214380 (2022).

    Article  Google Scholar 

  71. Fali, A. et al. Refractive index-based control of hyperbolic phonon-polariton propagation. Nano Lett. 19, 7725–7734 (2019).

    Article  ADS  Google Scholar 

  72. Folland, T. G. et al. Reconfigurable infrared hyperbolic metasurfaces using phase change materials. Nat. Commun. 9, 4371 (2018).

    Article  ADS  Google Scholar 

  73. Hu, H. et al. Active control of micrometer plasmon propagation in suspended graphene. Nat. Commun. 13, 1465 (2022).

    Article  ADS  Google Scholar 

  74. Ocelic, N., Huber, A. & Hillenbrand, R. Pseudoheterodyne detection for background-free near-field spectroscopy. Appl. Phys. Lett. 89, 101124 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge D. N. Basov (Columbia University) for valuable discussions and are grateful to X. Xi and X. Wang (State Key Laboratory of New Ceramics & Fine Processing, Tsinghua University) for scanning near-field optical microscopy measurements. The work was financially supported by the National Natural Science Foundation of China (grant numbers 52322209, 52172139 and 52350314 to H.H.), the National Key Research and Development Program of China (grant number 2021YFA1201500, to Q.D.), Beijing Nova Program (grant numbers 2022012 and 20240484600 to H.H.), Youth Innovation Promotion Association of Chinese Academy of Sciences (grant number 2022037 to H.H.), and the Postdoctoral Fellowship Program and China Postdoctoral Science Foundation (grant numbers BX20250181 and 2024M760685, to N.C.). R.H. acknowledges grant number CEX2020-001038-M funded by the Spanish MICIU/AEI/10.13039/50110001103 and grant number PID2021-123949OB-I00 funded by the Spanish MICIU/AEI/10.13039/501100011033 and ERDF/EU. F.J.G.A. acknowledges the ERC (grant number 789104-eNANO) and the Spanish MICINN (grant numbers PID2020-112625GB-I00 and SEV2015-0522).

Author information

Authors and Affiliations

Authors

Contributions

Q.D., R.H. and H.H. conceived the idea. Q.D., R.H. and F.J.G.A. supervised the project. N.C. and H.H. prepared the samples and conducted the near-field measurements. H.T. and F.J.G.A. developed the theoretical framework and performed the simulations. All authors contributed to the data analysis and discussion of the results. H.H., N.C. and H.T. co-wrote the manuscript with input and feedback from Q.D., R.H. and F.J.G.A.

Corresponding authors

Correspondence to Hai Hu, Rainer Hillenbrand or Qing Dai.

Ethics declarations

Competing interests

R.H. is a co-founder of Neaspec GmbH, now part of attocube systems GmbH, a company that manufactures s-SNOM systems, including the one used in this study. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Joshua Caldwell, William Wilson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–20 and Notes 1 and 2.

Source data

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, N., Teng, H., Hu, H. et al. Boundary-induced excitation of higher-order hyperbolic phonon polaritons. Nat. Photon. (2025). https://doi.org/10.1038/s41566-025-01755-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41566-025-01755-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing