Abstract
Higher-order hyperbolic phonon polaritons (HoHPhPs), arising from photon–phonon coupling under geometric confinement and resonance conditions, exhibit larger wavevectors, field confinement and tunability compared with fundamental hyperbolic phonon polariton (HPhP) modes, making them promising for compact nanophotonic devices. However, their excitation remains challenging due to stringent momentum compensation requirements, leaving their properties and applications largely unexplored. Here we overcome this challenge by introducing a boundary-induced scattering mechanism that facilitates the efficient stepwise excitation of HoHPhPs. By creating a high-contrast dielectric environment with a gold–air hybrid substrate, we achieve substantial momentum compensation through scattering at the gold edge. Our approach is validated by theoretical analysis using dyadic Green’s function theory, demonstrating more than a sixfold increase in the excitation efficiency of HoHPhPs compared with conventional antenna-launching of HPhP. Experimentally, we observe HoHPhPs in α-MoO3 layers with a propagation distance of up to 15.2 μm and report a pseudo-birefringence effect with an ultrahigh equivalent birefringence ranging from 17.6 to 41.8. Thus, different polariton orders are spatially separated by their propagation direction without altering their polarization state. Our work introduces a novel strategy for the efficient excitation of HoHPhPs and establishes them as a versatile platform for nanophotonic applications such as mode routing in nanocircuits.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
Data availability
The data that support the findings of this study are available in the Article and the Supplementary Information. Source data are provided with this paper.
References
Basov, D., Fogler, M. & García de Abajo, F. J. S. Polaritons in van der Waals materials. Science 354, aag1992 (2016).
Low, T. et al. Polaritons in layered two-dimensional materials. Nat. Mater. 16, 182–194 (2017).
Zhang, Q. et al. Interface nano-optics with van der Waals polaritons. Nature 597, 187–195 (2021).
Galiffi, E. et al. Extreme light confinement and control in low-symmetry phonon-polaritonic crystals. Nat. Rev. Mater. 9, 9–28 (2024).
Wu, Y. et al. Manipulating polaritons at the extreme scale in van der Waals materials. Nat. Rev. Phys. 4, 578–594 (2022).
Chen, J. et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 487, 77–81 (2012).
Fei, Z. et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82–85 (2012).
Dai, S. et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 343, 1125–1129 (2014).
Huber, A., Ocelic, N., Kazantsev, D. & Hillenbrand, R. Near-field imaging of mid-infrared surface phonon polariton propagation. Appl. Phys. Lett. 87, 081103 (2005).
Orsini, L. et al. Deep subwavelength topological edge state in a hyperbolic medium. Nat. Nanotechnol. 19, 1485–1490 (2024).
Woessner, A. et al. Highly confined low-loss plasmons in graphene–boron nitride heterostructures. Nat. Mater. 14, 421–425 (2015).
Ocelic, N. & Hillenbrand, R. Subwavelength-scale tailoring of surface phonon polaritons by focused ion-beam implantation. Nat. Mater. 3, 606–609 (2004).
Woessner, A. et al. Electrical 2π phase control of infrared light in a 350-nm footprint using graphene plasmons. Nat. Photon. 11, 421–424 (2017).
Xiong, L. et al. Photonic crystal for graphene plasmons. Nat. Commun. 10, 4780 (2019).
Hu, H. et al. Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons. Nat. Commun. 7, 12334 (2016).
Freitag, M. et al. Photocurrent in graphene harnessed by tunable intrinsic plasmons. Nat. Commun. 4, 1951 (2013).
Luo, Y. et al. Electrically switchable anisotropic polariton propagation in a ferroelectric van der Waals semiconductor. Nat. Nanotechnol. 18, 350–356 (2023).
Teng, H., Chen, N., Hu, H., García de Abajo, F. J. & Dai, Q. Steering and cloaking of hyperbolic polaritons at deep-subwavelength scales. Nat. Commun. 15, 4463 (2024).
Norrman, A., Setälä, T. & Friberg, A. T. Long-range higher-order surface-plasmon polaritons. Phys. Rev. A 90, 053849 (2014).
Lu, G. et al. Launching and manipulation of higher‐order in‐plane hyperbolic phonon polaritons in low‐dimensional heterostructures. Adv. Mater. 35, 2300301 (2023).
Zhang, Y., Kartashov, Y., Torner, L., Li, Y. & Ferrando, A. Nonlinear higher-order polariton topological insulator. Opt. Lett. 45, 4710–4713 (2020).
García de Abajo, F. J. Optical excitations in electron microscopy. Rev. Mod. Phys. 82, 209–275 (2010).
Chen, X. et al. Modern scattering‐type scanning near‐field optical microscopy for advanced material research. Adv. Mater. 31, 1804774 (2019).
Keilmann, F. & Hillenbrand, R. Near-field microscopy by elastic light scattering from a tip. Phys. Eng. Sci. 362, 787–805 (2004).
Hillenbrand, R., Abate, Y., Liu, M., Chen, X. & Basov, D. Visible-to-THz near-field nanoscopy. Nat. Rev. Mater. 10, 285–310 (2025).
Alonso-González, P. et al. Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns. Science 344, 1369–1373 (2014).
Ni, G. et al. Fundamental limits to graphene plasmonics. Nature 557, 530–533 (2018).
Pons-Valencia, P. et al. Launching of hyperbolic phonon-polaritons in h-BN slabs by resonant metal plasmonic antennas. Nat. Commun. 10, 3242 (2019).
Dai, S. et al. Efficiency of launching highly confined polaritons by infrared light incident on a hyperbolic material. Nano Lett. 17, 5285–5290 (2017).
Huth, F. et al. Resonant antenna probes for tip-enhanced infrared near-field microscopy. Nano Lett. 13, 1065–1072 (2013).
Chen, S. et al. Real-space observation of ultraconfined in-plane anisotropic acoustic terahertz plasmon polaritons. Nat. Mater. 22, 860–866 (2023).
Bechtel, H. A., Johnson, S. C., Khatib, O., Muller, E. A. & Raschke, M. B. Synchrotron infrared nano-spectroscopy and -imaging. Nat. Commun. 75, 100493 (2020).
Mayer, R. A. et al. Paratellurite nanowires as a versatile material for THz phonon polaritons. ACS Photon. 11, 4323–4333 (2024).
Xu, R. et al. Highly confined epsilon-near-zero and surface phonon polaritons in SrTiO3 membranes. Nat. Commun. 15, 4743 (2024).
Kehr, S. C., Döring, J., Gensch, M., Helm, M. & Eng, L. M. FEL-based near-field infrared to THz nanoscopy. Synchrotron Radiat. News 30, 31–35 (2017).
Álvarez-Cuervo, J. et al. Unidirectional ray polaritons in twisted asymmetric stacks. Nat. Commun. 15, 9042 (2024).
Huth, F. et al. Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution. Nano Lett. 12, 3973–3978 (2012).
Mastel, S. et al. Understanding the image contrast of material boundaries in IR nanoscopy reaching 5 nm spatial resolution. ACS Photon. 5, 3372–3378 (2018).
Sternbach, A. et al. Programmable hyperbolic polaritons in van der Waals semiconductors. Science 371, 617–620 (2021).
Nishida, J. et al. Ultrafast infrared nano-imaging of far-from-equilibrium carrier and vibrational dynamics. Nat. Commun. 13, 1083 (2022).
Wehmeier, L. et al. Landau-phonon polaritons in Dirac heterostructures. Sci. Adv. 10, eadp3487 (2024).
Alonso-González, P. et al. Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy. Nat. Nanotechnol. 12, 31–35 (2017).
Xiong, L. et al. Polaritonic vortices with a half-integer charge. Nano Lett. 21, 9256–9261 (2021).
Schnell, M. et al. Real-space mapping of the chiral near-field distributions in spiral antennas and planar metasurfaces. Nano Lett. 16, 663–670 (2016).
Virmani, D. et al. Amplitude-and phase-resolved infrared nanoimaging and nanospectroscopy of polaritons in a liquid environment. Nano Lett. 21, 1360–1367 (2021).
Schnell, M. et al. Controlling the near-field oscillations of loaded plasmonic nanoantennas. Nat. Photon. 3, 287–291 (2009).
Schnell, M., Garcia-Etxarri, A., Alkorta, J., Aizpurua, J. & Hillenbrand, R. Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps. Nano Lett. 10, 3524–3528 (2010).
Shi, Z. et al. Amplitude-and phase-resolved nanospectral imaging of phonon polaritons in hexagonal boron nitride. ACS Photon. 2, 790–796 (2015).
Li, P. et al. Infrared hyperbolic metasurface based on nanostructured van der Waals materials. Science 359, 892–896 (2018).
Ma, Y., Zhong, G., Dai, Z. & Ou, Q. In-plane hyperbolic phonon polaritons: materials, properties, and nanophotonic devices. npj Nanophoton. 1, 25 (2024).
Wang, H. et al. Planar hyperbolic polaritons in 2D van der Waals materials. Nat. Commun. 15, 69 (2024).
Menabde, S. G. et al. Near-field probing of image phonon-polaritons in hexagonal boron nitride on gold crystals. Sci. Adv. 8, eabn0627 (2022).
Lee, I.-H. et al. Image polaritons in boron nitride for extreme polariton confinement with low losses. Nat. Commun. 11, 3649 (2020).
Ma, W. et al. In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal. Nature 562, 557–562 (2018).
Zheng, Z. et al. A mid-infrared biaxial hyperbolic van der Waals crystal. Sci. Adv. 5, eaav8690 (2019).
Hu, H. et al. Doping-driven topological polaritons in graphene/α-MoO3 heterostructures. Nat. Nanotechnol. 17, 940–946 (2022).
Abdullah, S., Dias, E. J., Krpenský, J., Mkhitaryan, V. & García de Abajo, F. J. Toward complete optical coupling to confined surface polaritons. ACS Photon. 11, 2183–2193 (2024).
Nikitin, A. Y., Garcia-Vidal, F. J. & Martin-Moreno, L. Analytical expressions for the electromagnetic dyadic Green’s function in graphene and thin layers. IEEE J. Sel. Topics Quantum Electron. 19, 4600611 (2012).
Virmani, D., Maciel-Escudero, C., Hillenbrand, R. & Schnell, M. Experimental verification of field-enhanced molecular vibrational scattering at single infrared antennas. Nat. Commun. 15, 6760 (2024).
Menabde, S. G., Heiden, J. T., Cox, J. D., Mortensen, N. A. & Jang, M. S. Image polaritons in van der Waals crystals. Nanophotonics 11, 2433–2452 (2022).
Nikitin, A. Y., Brucoli, G., García-Vidal, F. & Martín-Moreno, L. Scattering of surface plasmon polaritons by impedance barriers: dependence on angle of incidence. Phys. Rev. B 77, 195441 (2008).
Kang, J.-H. et al. Goos-Hänchen shift and even–odd peak oscillations in edge-reflections of surface polaritons in atomically thin crystals. Nano Lett. 17, 1768–1774 (2017).
Guo, Z. et al. Facile synthesis of micrometer-sized gold nanoplates through an aniline-assisted route in ethylene glycol solution. Colloids Surf. A Physicochem. Eng. Asp. 278, 33–38 (2006).
Voronin, K. V., Álvarez-Pérez, G., Lanza, C., Alonso-González, P. & Nikitin, A. Y. Fundamentals of polaritons in strongly anisotropic thin crystal layers. ACS Photon. 11, 550–560 (2024).
Ni, G. et al. Long-lived phonon polaritons in hyperbolic materials. Nano Lett. 21, 5767–5773 (2021).
Zhang, T., Zheng, C., Chen, Z. N. & Qiu, C.-W. Negative reflection and negative refraction in biaxial van der Waals materials. Nano Lett. 22, 5607–5614 (2022).
Hu, H. et al. Gate-tunable negative refraction of mid-infrared polaritons. Science 379, 558–561 (2023).
Duan, J. et al. Planar refraction and lensing of highly confined polaritons in anisotropic media. Nat. Commun. 12, 4325 (2021).
Álvarez-Pérez, G. et al. Negative reflection of nanoscale-confined polaritons in a low-loss natural medium. Sci. Adv. 8, eabp8486 (2022).
Tudi, A., Han, S., Yang, Z. & Pan, S. Potential optical functional crystals with large birefringence: recent advances and future prospects. Coordin. Chem. Rev. 459, 214380 (2022).
Fali, A. et al. Refractive index-based control of hyperbolic phonon-polariton propagation. Nano Lett. 19, 7725–7734 (2019).
Folland, T. G. et al. Reconfigurable infrared hyperbolic metasurfaces using phase change materials. Nat. Commun. 9, 4371 (2018).
Hu, H. et al. Active control of micrometer plasmon propagation in suspended graphene. Nat. Commun. 13, 1465 (2022).
Ocelic, N., Huber, A. & Hillenbrand, R. Pseudoheterodyne detection for background-free near-field spectroscopy. Appl. Phys. Lett. 89, 101124 (2006).
Acknowledgements
We acknowledge D. N. Basov (Columbia University) for valuable discussions and are grateful to X. Xi and X. Wang (State Key Laboratory of New Ceramics & Fine Processing, Tsinghua University) for scanning near-field optical microscopy measurements. The work was financially supported by the National Natural Science Foundation of China (grant numbers 52322209, 52172139 and 52350314 to H.H.), the National Key Research and Development Program of China (grant number 2021YFA1201500, to Q.D.), Beijing Nova Program (grant numbers 2022012 and 20240484600 to H.H.), Youth Innovation Promotion Association of Chinese Academy of Sciences (grant number 2022037 to H.H.), and the Postdoctoral Fellowship Program and China Postdoctoral Science Foundation (grant numbers BX20250181 and 2024M760685, to N.C.). R.H. acknowledges grant number CEX2020-001038-M funded by the Spanish MICIU/AEI/10.13039/50110001103 and grant number PID2021-123949OB-I00 funded by the Spanish MICIU/AEI/10.13039/501100011033 and ERDF/EU. F.J.G.A. acknowledges the ERC (grant number 789104-eNANO) and the Spanish MICINN (grant numbers PID2020-112625GB-I00 and SEV2015-0522).
Author information
Authors and Affiliations
Contributions
Q.D., R.H. and H.H. conceived the idea. Q.D., R.H. and F.J.G.A. supervised the project. N.C. and H.H. prepared the samples and conducted the near-field measurements. H.T. and F.J.G.A. developed the theoretical framework and performed the simulations. All authors contributed to the data analysis and discussion of the results. H.H., N.C. and H.T. co-wrote the manuscript with input and feedback from Q.D., R.H. and F.J.G.A.
Corresponding authors
Ethics declarations
Competing interests
R.H. is a co-founder of Neaspec GmbH, now part of attocube systems GmbH, a company that manufactures s-SNOM systems, including the one used in this study. The remaining authors declare no competing interests.
Peer review
Peer review information
Nature Photonics thanks Joshua Caldwell, William Wilson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figs. 1–20 and Notes 1 and 2.
Source data
Source Data Fig. 3
Statistical source data.
Source Data Fig. 4
Statistical source data.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Chen, N., Teng, H., Hu, H. et al. Boundary-induced excitation of higher-order hyperbolic phonon polaritons. Nat. Photon. (2025). https://doi.org/10.1038/s41566-025-01755-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41566-025-01755-5