Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High-power electrically pumped microcombs

Abstract

Integrated microcombs are promising for numerous applications that require a small footprint, high output power and high efficiency, such as data communications, sensing and spectroscopy. Electrically pumped microcombs have been recently demonstrated via the integration of gain chips with high-quality-factor integrated resonators. However, the overall optical power remains well below what is necessary for practical solutions. Here we demonstrate high-power electrically pumped Kerr-frequency microcombs by integrating a low-coherence source with high output power and silicon nitride ring resonators. We design the resonators with normal group velocity dispersion and leverage self-injection locking in the nonlinear regime for generating high on-chip power combs whereas, simultaneously, purifying the coherence of the pump source. We show microcombs with total on-chip power levels up to 158 mW and comb lines with an intrinsic linewidth as narrow as 200 kHz. We demonstrate more than twice the number of comb lines exceeding 100 μW and an order-of-magnitude higher on-chip power levels compared with previously reported results. Our novel electrically pumped microcomb source has the size, power and linewidth required for data communications, and could strongly impact other areas such as high-performance computing and ubiquitous devices for spectral-sensing and time-keeping applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Integrated high-power microcomb source.
Fig. 2: Generation of high-power frequency combs.
Fig. 3: Narrow-linewidth frequency comb lines.
Fig. 4: Comparison between high-noise and low-noise comb states.

Data availability

The experimental data and supporting analyses are included in the article and the Supplementary Information. Additional datasets are available from the corresponding authors upon reasonable request.

References

  1. Rizzo, A. et al. Massively scalable Kerr comb-driven silicon photonic link. Nat. Photon.17, 781–790 (2023).

    Article  ADS  Google Scholar 

  2. Pfeifle, J. et al. Coherent terabit communications with microresonator Kerr frequency combs. Nat. Photon. 8, 375–380 (2014).

    Article  ADS  Google Scholar 

  3. Marin-Palomo, P. et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature 546, 274–279 (2017).

    Article  ADS  Google Scholar 

  4. Shu, H. et al. Microcomb-driven silicon photonic systems. Nature 605, 457–463 (2022).

    Article  ADS  Google Scholar 

  5. Fülöp, A. et al. High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators. Nat. Commun. 9, 1598 (2018).

    Article  ADS  Google Scholar 

  6. Corcoran, B. et al. Ultra-dense optical data transmission over standard fibre with a single chip source. Nat. Commun. 11, 2568 (2020).

    Article  ADS  Google Scholar 

  7. Stern, B., Ji, X., Okawachi, Y., Gaeta, A. L. & Lipson, M. Battery-operated integrated frequency comb generator. Nature 562, 401–405 (2018).

    Article  ADS  Google Scholar 

  8. Raja, A. S. et al. Electrically pumped photonic integrated soliton microcomb. Nat. Commun. 10, 680 (2019).

    Article  ADS  Google Scholar 

  9. Shen, B. et al. Integrated turnkey soliton microcombs. Nature 582, 365–369 (2020).

    Article  ADS  Google Scholar 

  10. Jin, W. et al. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators. Nat. Photon. 15, 346–353 (2021).

    Article  ADS  Google Scholar 

  11. Briles, T. C. et al. Hybrid InP and SiN integration of an octave-spanning frequency comb. APL Photonics 6, 026102 (2021).

    Article  ADS  Google Scholar 

  12. Voloshin, A. S. et al. Dynamics of soliton self-injection locking in optical microresonators. Nat. Commun. 12, 235 (2021).

    Article  ADS  Google Scholar 

  13. Lihachev, G. et al. Platicon microcomb generation using laser self-injection locking. Nat. Commun. 13, 1771 (2022).

    Article  ADS  Google Scholar 

  14. Dmitriev, N. Y. et al. Hybrid integrated dual-microcomb source. Phys. Rev. Appl. 18, 034068 (2022).

    Article  ADS  Google Scholar 

  15. Boust, S. et al. Microcomb source based on InP DFB/Si3N4 microring butt-coupling. J. Light. Technol. 38, 5517–5525 (2020).

    Article  ADS  Google Scholar 

  16. Lobanov, V. E., Lihachev, G. & Gorodetsky, M. L. Generation of platicons and frequency combs in optical microresonators with normal GVD by modulated pump. EPL Europhys. Lett. 112, 54008 (2015).

    Article  ADS  Google Scholar 

  17. Kim, B. Y. et al. Turn-key, high-efficiency Kerr comb source. Opt. Lett. 44, 4475–4478 (2019).

    Article  Google Scholar 

  18. Xue, X. et al. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators. Nat. Photon. 9, 594–600 (2015).

    Article  ADS  Google Scholar 

  19. Xue, X. et al. Normal-dispersion microcombs enabled by controllable mode interactions. Laser Photon. Rev. 9, L23–L28 (2015).

    Article  Google Scholar 

  20. Liu, Y. et al. Investigation of mode coupling in normal-dispersion silicon nitride microresonators for Kerr frequency comb generation. Optica 1, 137–144 (2014).

    Article  ADS  Google Scholar 

  21. Jang, J. K. et al. Dynamics of mode-coupling-induced microresonator frequency combs in normal dispersion. Opt. Express 24, 28794–28803 (2016).

    Article  ADS  Google Scholar 

  22. Yu, S.-P., Lucas, E., Zang, J. & Papp, S. B. A continuum of bright and dark-pulse states in a photonic-crystal resonator. Nat. Commun. 13, 3134 (2022).

    Article  ADS  Google Scholar 

  23. Helgason, Ó. B. et al. Dissipative solitons in photonic molecules. Nat. Photon. 15, 305–310 (2021).

    Article  ADS  Google Scholar 

  24. Partanen, H., Tervo, J. & Turunen, J. Spatial coherence of broad-area laser diodes. Appl. Opt. 52, 3221–3228 (2013).

    Article  ADS  Google Scholar 

  25. Gapontsev, V. et al. High-efficiency 970-nm multimode pumps. In Proc. SPIE High-Power Diode Laser Technology and Applications III 42–51 (SPIE, 2005).

  26. Liang, W. et al. Generation of a coherent near-infrared Kerr frequency comb in a monolithic microresonator with normal GVD. Opt. Lett. 39, 2920–2923 (2014).

    Article  Google Scholar 

  27. Gondarenko, A., Levy, J. S. & Lipson, M. High confinement micron-scale silicon nitride high Q ring resonator. Opt. Express 17, 11366–11370 (2009).

    Article  ADS  Google Scholar 

  28. Luke, K., Dutt, A., Poitras, C. B. & Lipson, M. Overcoming Si3N4 film stress limitations for high quality factor ring resonators. Opt. Express 21, 22829–22833 (2013).

    Article  ADS  Google Scholar 

  29. Ji, X. et al. Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold. Optica 4, 619–624 (2017).

    Article  Google Scholar 

  30. Gorodetsky, M. L., Pryamikov, A. D. & Ilchenko, V. S. Rayleigh scattering in high-Q microspheres. J. Opt. Soc. Am. B 17, 1051 (2000).

    Article  ADS  Google Scholar 

  31. Kippenberg, T. J., Spillane, S. M. & Vahala, K. J. Modal coupling in traveling-wave resonators. Opt. Lett. 27, 1669–1671 (2002).

    Article  Google Scholar 

  32. Kondratiev, N. M. et al. Self-injection locking of a laser diode to a high-Q WGM microresonator. Opt. Express 25, 28167–28178 (2017).

    Article  Google Scholar 

  33. Galiev, R. R. et al. Spectrum collapse, narrow linewidth, and Bogatov effect in diode lasers locked to high-Q optical microresonators. Opt. Express 26, 30509–30519 (2018).

    Article  Google Scholar 

  34. Antman, Y. et al. High power chip-scale laser. Opt. Express 32, 47306–47312 (2024).

    Article  ADS  Google Scholar 

  35. Gil-Molina, A. et al. Robust hybrid III-V/Si3N4 laser with kHz-linewidth and GHz-pulling range. In Proc. Conference on Lasers and Electro-Optics (CLEO) 1–2 (IEEE, 2020).

  36. Corato-Zanarella, M. et al. Widely tunable and narrow-linewidth chip-scale lasers from near-ultraviolet to near-infrared wavelengths. Nat. Photon. 17, 157–164 (2023).

    Article  ADS  Google Scholar 

  37. Cole, D. C., Lamb, E. S., Del’Haye, P., Diddams, S. A. & Papp, S. B. Soliton crystals in Kerr resonators. Nat. Photon. 11, 671–676 (2017).

    Article  ADS  Google Scholar 

  38. Karpov, M. et al. Dynamics of soliton crystals in optical microresonators. Nat. Phys. 15, 1071–1077 (2019).

    Article  Google Scholar 

  39. Gu, X. et al. Experimental studies of the coherence of microstructure-fiber supercontinuum. Opt. Express 11, 2697–2703 (2003).

    Article  ADS  Google Scholar 

  40. Webb, K. E. et al. Measurement of microresonator frequency comb coherence by spectral interferometry. Opt. Lett. 41, 277–280 (2016).

    Article  ADS  Google Scholar 

  41. Ji, Q.-X. et al. Engineered zero-dispersion microcombs using CMOS-ready photonics. Optica 10, 279–285 (2023).

    Article  ADS  Google Scholar 

  42. Wang, H. et al. Self-regulating soliton switching waves in microresonators. Phys. Rev. A 106, 053508 (2022).

    Article  ADS  Google Scholar 

  43. Gaeta, A. L., Lipson, M. & Kippenberg, T. J. Photonic-chip-based frequency combs. Nat. Photon. 13, 158–169 (2019).

    Article  ADS  Google Scholar 

  44. Kippenberg, T. J., Holzwarth, R. & Diddams, S. A. Microresonator-based optical frequency combs. Science 332, 555–559 (2011).

    Article  ADS  Google Scholar 

  45. Kim, B. Y. et al. Coherent combining for high-power Kerr combs. Laser Photon. Rev. 17, 2200607 (2023).

    Article  ADS  Google Scholar 

  46. Kim, B. Y. et al. Synchronization of nonsolitonic Kerr combs. Sci. Adv. 7, eabi4362 (2021).

    Article  ADS  Google Scholar 

  47. Sanyal, S. et al. Deterministic access of high-power, normal-GVD Kerr-comb states. In Proc. Conference on Lasers and Electro-Optics (CLEO) 2023 FW4B.3 (Optica Publishing Group, 2023).

  48. Boller, K.-J. et al. Hybrid integrated semiconductor lasers with silicon nitride feedback circuits. Photonics 7, 4 (2020).

    Article  Google Scholar 

  49. Kharas, D. et al. High-power (>300 mW) on-chip laser with passively aligned silicon-nitride waveguide DBR cavity. IEEE Photon. J. 12, 1504612 (2020).

    Article  Google Scholar 

  50. Martin, O. J. F., Bona, G.-L. & Wolf, P. Thermal behavior of visible AlGaInP-GaInP ridge laser diodes. IEEE J. Quantum Electron. 28, 2582–2588 (1992).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported as part of ARPA-E, PINE, Photonic Integrated Network Energy Efficient Datacenters program (DE-AR0000843); PIPES, Embedded Photonics ultra-bandwidth dense optical interconnect (EmPho) program (HR0011-19-2-0014); ARO, Novel Chip-Based Nonlinear Photonic Sources from the Visible to Mid-Infrared program (W911NF2110286); IMOD, Optimizing Microresonator’s Based Sensor (OMA-1936345). Fabrication of the Si3N4 chips was done at the Cornell NanoScale Facility, a member of the National Nanotechnology Coordinated Infrastructure (NNCI), which is supported by the National Science Foundation (grant NNCI2025233); Columbia Nano-initiative; and the Nanofabrication Facility at the Advanced Science Research Center at The Graduate Center of the City University of New York. We thank K. Bergman and her students A. Novick and S. Daudlin for facilitating important high-frequency equipment and helpful discussions. We also thank M. Corato-Zanarella, U. D. Dave, E. Shim, A. Mohanty, J. K. Jang and Y. Zhao for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

A.G.-M., Y.A., O.W., M.L. and A.L.G. conceived the high-power electrically pumped microcomb source. A.G.-M. and O.W. designed the Si3N4 chips. X.J. fabricated the Si3N4 devices. A.G.-M. and O.W. built the active alignment setup. A.G.-M. and Y.A. performed the measurements and analysed the results. A.G.-M., M.C.S. and G.R.B. designed and assembled the Si3N4 chip mounting and integrated heater control. A.G.-M. and I.D. performed the high-speed transmission experiments. Y.O. and B.Y.K. suggested crucial experiments to understand the comb coherence. A.G.-M. and M.L. prepared the paper with helpful inputs from Y.A. M.L. and A.L.G. supervised the project. All authors discussed the results and edited the paper.

Corresponding authors

Correspondence to Andres Gil-Molina or Michal Lipson.

Ethics declarations

Competing interests

A.G.-M., Y.A., O.W., X.J., M.C.S., G.R.B., B.Y.K., Y.O., A.L.G. and M.L. are named inventors on US provisional patent application 63/337,257 regarding the technology reported in this article. The other authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Xiaoxiao Xue and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–8, Figs. 1–8, Table 1 and Discussion.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gil-Molina, A., Antman, Y., Westreich, O. et al. High-power electrically pumped microcombs. Nat. Photon. (2025). https://doi.org/10.1038/s41566-025-01769-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41566-025-01769-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing