Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Neutron scattering and thermodynamic evidence for emergent photons and fractionalization in a pyrochlore spin ice

Abstract

The three-dimensional pyrochlore lattice of corner-sharing tetrahedra can host a quantum spin ice, a quantum analogue of the classical spin ice found in other pyrochlore compounds. This state can manifest a quantum spin liquid, and indeed, these compounds are predicted to have emergent gauge fields that produce linearly dispersing collective magnetic excitations near zero energy, in addition to the presence of higher-energy spinon excitations. Here we use polarized neutron scattering experiments on single crystals of the Ce2Zr2O7 pyrochlore. We find evidence for magnetic excitations near zero energy, in addition to signatures of spinons at higher energies. Furthermore, we perform heat capacity measurements and find behaviour consistent with the cubic-in-temperature dependence expected for linearly dispersing gapless bosonic modes. Comparing the observed magnetic excitations with theoretical calculations, we argue that Ce2Zr2O7 is a strong candidate for a dipolar–octupolar quantum spin ice with dominant dipolar Ising interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Summary of crystal structure, Brillouin zone, phase diagram, expected experimental signatures and excitations of Ce2Zr2O7.
Fig. 2: Energy scans of the polarized neutron scattering cross-sections at different momentum positions for Ce2Zr2O7.
Fig. 3: Wavevector and polarization dependencies of magnetic scattering at E = 0 ± 0.03 meV for Ce2Zr2O7.
Fig. 4: Wavevector and polarization dependencies of magnetic scattering at E = 0.1 ± 0.03 meV for Ce2Zr2O7.
Fig. 5: Specific heat of Ce2Zr2O7.

Similar content being viewed by others

Data availability

The data presented in the article are available from the corresponding authors upon request.

References

  1. Gardner, J. S., Gingras, M. J. P. & Greedan, J. E. Magnetic pyrochlore oxides. Rev. Mod. Phys. 82, 53–107 (2010).

    Article  ADS  Google Scholar 

  2. Savary, L. & Balents, L. Quantum spin liquids: a review. Rep. Prog. Phys. 80, 016502 (2017).

    Article  ADS  Google Scholar 

  3. Zhou, Y., Kanoda, K. & Ng, T.-K. Quantum spin liquid states. Rev. Mod. Phys. 89, 025003 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  4. Hallas, A. M., Gaudet, J. & Gaulin, B. D. in Annual Review of Condensed Matter Physics Vol. 9 (eds Sachdev, S. & Marchetti, M. C.) 105–124 (Annual Reviews, 2018).

  5. Broholm, C. et al. Quantum spin liquids. Science 367, eaay0668 (2020).

    Article  Google Scholar 

  6. Anderson, P. W. Resonating valence bonds: a new kind of insulator? Mater. Res. Bull. 8, 153–160 (1973).

    Article  Google Scholar 

  7. Anderson, P. W. The resonating valence bond state in La2CuO4 and superconductivity. Science 235, 1196–1198 (1987).

    Article  ADS  Google Scholar 

  8. Lee, P. A., Nagaosa, N. & Wen, X. G. Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).

    Article  ADS  Google Scholar 

  9. Kitaev, A. Y. Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  10. Kitaev, A. Anyons in an exactly solved model and beyond. Ann. Phys. 321, 2–111 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  11. Takagi, H., Takayama, T., Jackeli, G., Khaliullin, G. & Nagler, S. E. Concept and realization of Kitaev quantum spin liquids. Nat. Rev. Phys. 1, 264–280 (2019).

    Article  Google Scholar 

  12. Han, T. H. et al. Fractionalized excitations in the spin-liquid state of a kagome-lattice antiferromagnet. Nature 492, 406–410 (2012).

    Article  ADS  Google Scholar 

  13. Norman, M. R. Colloquium: herbertsmithite and the search for the quantum spin liquid. Rev. Mod. Phys. 88, 041002 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  14. Shen, Y. et al. Evidence for a spinon Fermi surface in a triangular-lattice quantum-spin-liquid candidate. Nature 540, 559–562 (2016).

    Article  Google Scholar 

  15. Paddison, J. A. M. et al. Continuous excitations of the triangular-lattice quantum spin liquid YbMgGaO4. Nat. Phys. 13, 117–122 (2016).

    Article  Google Scholar 

  16. Dai, P.-L. et al. Spinon Fermi surface spin liquid in a triangular lattice antiferromagnet NaYbSe2. Phys. Rev. 11, 021044 (2021).

    Article  Google Scholar 

  17. Balz, C. et al. Physical realization of a quantum spin liquid based on a complex frustration mechanism. Nat. Phys. 12, 942–947 (2016).

    Article  Google Scholar 

  18. Scheie, A. O. et al. Proximate spin liquid and fractionalization in the triangular antiferromagnet KYbSe2.Nat. Phys. 20, 74–79 (2024).

    Article  Google Scholar 

  19. Xie, T. et al. Complete field-induced spectral response of the spin-1/2 triangular-lattice antiferromagnet CsYbSe2. npj Quantum Mater. 8, 48 (2023).

    Article  ADS  Google Scholar 

  20. Scheie, A. et al. Witnessing entanglement in quantum magnets using neutron scattering. Phys. Rev. B 103, 224434 (2021).

    Article  ADS  Google Scholar 

  21. Sherman, N. E., Dupont, M. & Moore, J. E. Spectral function of the J1J2 Heisenberg model on the triangular lattice. Phys. Rev. B 107, 165146 (2023).

    Article  ADS  Google Scholar 

  22. Bramwell, S. T. & Gingras, M. J. P. Spin ice state in frustrated magnetic pyrochlore materials. Science 294, 1495–1501 (2001).

    Article  ADS  Google Scholar 

  23. Bramwell, S. T. & Harris, M. J. The history of spin ice. J. Phys. Condens. Matter 32, 374010 (2020).

    Article  Google Scholar 

  24. Fennell, T. et al. Magnetic Coulomb phase in the spin ice Ho2Ti2O7. Science 326, 415–417 (2009).

  25. Gingras, M. J. P. & McClarty, P. A. Quantum spin ice: a search for gapless quantum spin liquids in pyrochlore magnets. Rep. Prog. Phys. 77, 056501 (2014).

    Article  ADS  Google Scholar 

  26. Hermele, M., Fisher, M. P. A. & Balents, L. Pyrochlore photons: the U⁡(1) spin liquid in a S = 1/2 three-dimensional frustrated magnet. Phys. Rev. B 69, 064404 (2004).

    Article  ADS  Google Scholar 

  27. Banerjee, A., Isakov, S. V., Damle, K. & Kim, Y. B. Unusual liquid state of hard-core bosons on the pyrochlore lattice. Phys. Rev. Lett. 100, 047208 (2008).

    Article  ADS  Google Scholar 

  28. Huang, C.-J., Deng, Y., Wan, Y. & Meng, Z. Y. Dynamics of topological excitations in a model quantum spin ice. Phys. Rev. Lett. 120, 167202 (2018).

    Article  ADS  Google Scholar 

  29. Kato, Y. & Onoda, S. Numerical evidence of quantum melting of spin ice: quantum-to-classical crossover. Phys. Rev. Lett. 115, 077202 (2015).

    Article  ADS  Google Scholar 

  30. Benton, O., Sikora, O. & Shannon, N. Seeing the light: experimental signatures of emergent electromagnetism in a quantum spin ice. Phys. Rev. B 86, 075154 (2012).

    Article  ADS  Google Scholar 

  31. Shannon, N., Sikora, O., Pollmann, F., Penc, K. & Fulde, P. Quantum ice: a quantum Monte Carlo study. Phys. Rev. Lett. 108, 067204 (2012).

    Article  ADS  Google Scholar 

  32. Pace, S. D., Morampudi, S. C., Moessner, R. & Laumann, C. R. Emergent fine structure constant of quantum spin ice is large. Phys. Rev. Lett. 127, 117205 (2021).

    Article  ADS  Google Scholar 

  33. Savary, L. & Balents, L. Coulombic quantum liquids in spin-1/2 pyrochlores. Phys. Rev. Lett. 108, 037202 (2012).

    Article  ADS  Google Scholar 

  34. Ross, K. A., Savary, L., Gaulin, B. D. & Balents, L. Quantum excitations in quantum spin ice. Phys. Rev. 1, 021002 (2011).

    Article  Google Scholar 

  35. Thompson, J. D. et al. Quasiparticle breakdown and spin Hamiltonian of the frustrated quantum pyrochlore Yb2Ti2O7 in a magnetic field. Phys. Rev. Lett. 119, 057203 (2017).

    Article  ADS  Google Scholar 

  36. Sibille, R. et al. Experimental signatures of emergent quantum electrodynamics in Pr2Hf2O7. Nat. Phys. 14, 711–715 (2018).

    Article  Google Scholar 

  37. Scheie, A. et al. Multiphase magnetism in Yb2Ti2O7. Proc. Natl Acad. Sci. USA 117, 27245–27254 (2020).

    Article  ADS  Google Scholar 

  38. Gaudet, J. et al. Quantum spin ice dynamics in the dipole-octupole pyrochlore magnet Ce2Zr2O7. Phys. Rev. Lett. 122, 187201 (2019).

  39. Gao, B. et al. Experimental signatures of a three-dimensional quantum spin liquid in effective spin-1/2 Ce2Zr2O7 pyrochlore. Nat. Phys. 15, 1052–1057 (2019).

  40. Sibille, R. et al. Candidate quantum spin liquid in the Ce3+ pyrochlore stannate Ce2Sn2O7. Phys. Rev. Lett. 115, 097202 (2015).

  41. Sibille, R. et al. A quantum liquid of magnetic octupoles on the pyrochlore lattice. Nat. Phys. 16, 546–552 (2020).

    Article  Google Scholar 

  42. Smith, E. M. et al. The case for a U(1) quantum spin liquid ground state in the dipole-octupole pyrochlore Ce2Zr2O7. Phys. Rev. X 12, 021015 (2022).

  43. Porée, V. et al. Crystal-field states and defect levels in candidate quantum spin ice Ce2Hf2O7. Phys. Rev. Mater. 6, 044406 (2022).

  44. Porée, V. et al. Dipolar-octupolar correlations and hierarchy of exchange interactions in Ce2Hf2O7. Preprint at https://arxiv.org/abs/2305.08261 (2023).

  45. Yahne, D. R. et al. Dipolar spin ice regime proximate to an all-in-all-out Néel ground state in the dipolar-octupolar pyrochlore Ce2⁢Sn2⁢O7. Phys. Rev. X 14, 011005 (2024).

  46. Huang, Y.-P., Chen, G. & Hermele, M. Quantum spin ices and topological phases from dipolar-octupolar doublets on the pyrochlore lattice. Phys. Rev. Lett. 112, 167203 (2014).

    Article  ADS  Google Scholar 

  47. Li, Y.-D. & Chen, G. Symmetry enriched U(1) topological orders for dipole-octupole doublets on a pyrochlore lattice. Phys. Rev. B 95, 041106 (2017).

    Article  ADS  Google Scholar 

  48. Benton, O. Ground-state phase diagram of dipolar-octupolar pyrochlores. Phys. Rev. B 102, 104408 (2020).

    Article  ADS  Google Scholar 

  49. Bhardwaj, A. et al. Sleuthing out exotic quantum spin liquidity in the pyrochlore magnet Ce2Zr2O7. npj Quantum Mater. 7, 51 (2022).

  50. Hosoi, M., Zhang, E. Z., Patri, A. S. & Kim, Y. B. Uncovering footprints of dipolar-octupolar quantum spin ice from neutron scattering signatures. Phys. Rev. Lett. 129, 097202 (2022).

    Article  ADS  Google Scholar 

  51. Desrochers, F., Chern, L. E. & Kim, Y. B. Symmetry fractionalization in the gauge mean-field theory of quantum spin ice. Phys. Rev. B 107, 064404 (2023).

    Article  ADS  Google Scholar 

  52. Desrochers, F. & Kim, Y. B. Spectroscopic signatures of fractionalization in octupolar quantum spin ice. Phys. Rev. Lett. 132, 066502 (2024).

    Article  ADS  Google Scholar 

  53. Gao, B. et al. Magnetic field effects in an octupolar quantum spin liquid candidate. Phys. Rev. B 106, 094425 (2022).

    Article  ADS  Google Scholar 

  54. Smith, E. M. et al. Quantum spin ice response to a magnetic field in the dipole-octupole pyrochlore Ce2Zr2O7. Phys. Rev. B 108, 054438 (2023).

    Article  ADS  Google Scholar 

  55. Beare, J. et al. µSR study of the dipole-octupole quantum spin ice candidate Ce2Zr2O7. Phys. Rev. B 108, 174411 (2023).

    Article  ADS  Google Scholar 

  56. Porée, V. et al. Evidence for fractional matter coupled to an emergent gauge field in a quantum spin ice. Nat. Phys. 21, 83–88 (2024).

    Article  Google Scholar 

  57. Moon, R. M., Riste, T. & Koehler, W. C. Polarization analysis of thermal-neutron scattering. Phys. Rev. 181, 920–931 (1969).

    Article  ADS  Google Scholar 

  58. Liu, P. et al. In-plane uniaxial pressure-induced out-of-plane antiferromagnetic moment and critical fluctuations in BaFe2As2. Nat. Commun. 11, 5728 (2020).

    Article  ADS  Google Scholar 

  59. Dai, P. Antiferromagnetic order and spin dynamics in iron-based superconductors. Rev. Mod. Phys. 87, 855–896 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  60. Lee, S., Onoda, S. & Balents, L. Generic quantum spin ice. Phys. Rev. B 86, 104412 (2012).

    Article  ADS  Google Scholar 

  61. Chen, G. Spectral periodicity of the spinon continuum in quantum spin ice. Phys. Rev. B 96, 085136 (2017).

    Article  ADS  Google Scholar 

  62. Yao, X.-P., Li, Y.-D. & Chen, G. Pyrochlore U(1) spin liquid of mixed-symmetry enrichments in magnetic fields. Phys. Rev. Res. 2, 013334 (2020).

    Article  Google Scholar 

  63. Patri, A. S., Hosoi, M. & Kim, Y. B. Distinguishing dipolar and octupolar quantum spin ices using contrasting magnetostriction signatures. Phys. Rev. Res. 2, 023253 (2020).

    Article  Google Scholar 

  64. Wen, J. J. et al. Disordered route to the Coulomb quantum spin liquid: random transverse fields on spin ice in Pr2Zr2O7. Phys. Rev. Lett. 118, 107206 (2017).

    Article  ADS  Google Scholar 

  65. Kofu, M. et al. Magnetic boson peak in classical spin glasses. Phys. Rev. Res. 6, 013006 (2024).

    Article  Google Scholar 

  66. Matsumoto, Y. & Nakatsuji, S. Relaxation calorimetry at very low temperatures for systems with internal relaxation. Rev. Sci. Instrum. 89, 033908 (2018).

    Article  ADS  Google Scholar 

  67. Popa, K. et al. A re-evaluation of the heat capacity of cerium zirconate Ce2Zr2O7. J. Phys. Chem. Solids 69, 70–75 (2008).

    Article  ADS  Google Scholar 

  68. Lan, G., Ouyang, B. & Song, J. The role of low-lying optical phonons in lattice thermal conductance of rare-earth pyrochlores: a first-principle study. Acta Mater. 91, 304–317 (2015).

    Article  ADS  Google Scholar 

  69. Anderson, P. W., Halperin, B. I. & Varma, C. M. Anomalous low-temperature thermal properties of glasses and spin glasses. Philos. Mag.-J. Theor. Exp. Appl. Phys. 25, 1–9 (1972).

    Google Scholar 

  70. Binder, K. & Young, A. P. Spin glasses: experimental facts, theoretical concepts, and open questions. Rev. Mod. Phys. 58, 801–976 (1986).

    Article  ADS  Google Scholar 

  71. Ramirez, A. P., Espinosa, G. P. & Cooper, A. S. Strong frustration and dilution-enhanced order in a quasi-2D spin glass. Phys. Rev. Lett. 64, 2070–2073 (1990).

    Article  ADS  Google Scholar 

  72. Nakatsuji, S. et al. Spin disorder on a triangular lattice. Science 309, 1697–1700 (2005).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank H. Yan, A. Nevidomskyy, A. Scheie, P. Laurell and M. Gingras for helpful discussions and M. Taupin for initial support in setting up the specific heat measurements. The neutron scattering work at Rice is supported by the United States Department of Energy, Basic Energy Sciences, DE-SC0012311 (P.D.). The single-crystal growth work at Rice is supported by the Robert A. Welch Foundation under grant no. C-1839 (P.D.). Crystal growth by B.G. and S.-W.C. at Rutgers was supported by the visitor program at the Center for Quantum Materials Synthesis (cQMS), funded by the Gordon and Betty Moore Foundation’s EPiQS initiative through grant no. GBMF6402 and by Rutgers University. F.D. and Y.B.K. are supported by the Natural Science and Engineering Research Council of Canada and the Center for Quantum Materials at the University of Toronto. F.D. is further supported by the Vanier Canada Graduate Scholarship (CGV—186886). D.W.T. acknowledges funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 884104 (PSI-FELLOW-III-3i). Neutron data (https://doi.org/10.5291/ILL-DATA.4-05-851; https://doi.org/10.5291/ILL-DATA.4-05-904) were obtained using OrientExpress and ThALES instruments at the Institut Laue Langevin with support from proposal nos 4-05-851 and 4-05-904. The specific heat measurements and analyses in Vienna were supported by the European Research Council (ERC Advanced Grant 101055088—CorMeTop) and the Austrian Science Fund (FWF project nos I 5868-N, F 86 and 10.55776/COE1).

Author information

Authors and Affiliations

Authors

Contributions

P.D. and B.G. conceived of the project. B.G. and S.-W.C. prepared the samples. The neutron scattering experiments were carried out and analysed by D.W.T., P.S., A.H., Y.S., B.G. and P.D. The specific heat measurements were performed by D.M.K., D.H.N. and S.P. Theoretical analysis was supervised by Y.B.K. and performed by F.D. and Y.B.K. The entire project was supervised by P.D. The paper is written by P.D., Y.B.K., B.G. and F.D., with contributions from D.M.K. and S.P. All authors made comments.

Corresponding authors

Correspondence to Silke Paschen, Yong Baek Kim or Pengcheng Dai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Pictures of samples.

a, One piece of single-crystalline Ce2Zr2O7 was mounted on a copper holder. b, The X-ray Laue pattern in the [0, 0, 1] direction. The sample is mounted inside a dilution refrigerator maintained at \(T=50\) mK for the entire experiment. The sample is tied inside copper foils to ensure good thermalization at 50 mK (sample 1). c, d show pictures of sample 2 and its Laue pattern, respectively.

Extended Data Fig. 2 Raw data of energy scans.

a-c, The energy scan of \({\sigma }_{x}^{{NSF}}({\boldsymbol{Q}},E)\) channel at \({\boldsymbol{Q}}=\left(\mathrm{0,0,1}\right),(3/4,3/\mathrm{4,0})\) and \((\mathrm{1,1,0})\) using \({E}_{f}=3.23\), 3.23, and 2.52 meV, respectively, measured on sample 1. We use the Gaussian fit to determine the energy resolution to be 0.076 meV, 0.062 meV, and 0.042 meV in FWHM, respectively. d, The energy scan of \({\sigma }_{x}^{{NSF}}({\boldsymbol{Q}},E)\) channel at \({\boldsymbol{Q}}=\left(\mathrm{0,0,1}\right)\) using \({E}_{f}=2.52\) meV on sample 2, which has an energy resolution of 0.035 meV in FWHM. The curve is shown as the solid black line in Fig. 2n. e, Similar energy scan using \({E}_{f}=3.23\) meV on sample 2, which gives an energy resolution of 0.052 meV in FWHM. The vertical error bars in ae are statistical errors of 1 standard deviation.

Extended Data Fig. 3 Raw data of energy scans.

a-f, Comparison of the polarized NSF neutron scattering cross sections \({\sigma }_{x}^{{NSF}}({\boldsymbol{Q}},E)\) and SF neutron scattering cross sections \({\sigma }_{x,y,z}^{{SF}}({\boldsymbol{Q}},E)\) (a-c) and \({\sigma }_{x,y}^{{SF}}({\boldsymbol{Q}},E)\) (d-f) at E = 0 ± 0.03 meV along the [0, 0, l], [h, h, 1], [h, h, 0], [h, h, 0.25], [h, h, 0.5] and [h, h, 0.75] directions. \({\sigma }_{x}^{{NSF}}\left({\boldsymbol{Q}},E\right) > {\sigma }_{x,y,z}^{{SF}}({\boldsymbol{Q}},E)\) at all \({\boldsymbol{Q}}\) points in the scattering plane. g-h, Comparison of the polarized \({\sigma }_{x}^{{NSF}}({\boldsymbol{Q}},E)\) and \({\sigma }_{x,y,z}^{{SF}}({\boldsymbol{Q}},E)\) at E = 0.1 ± 0.03 meV along the [0, 0, l] and [h, h, 0] directions. \({\sigma }_{x}^{{NSF}}\left({\boldsymbol{Q}},E\right) < {\sigma }_{x,y,z}^{{SF}}({\boldsymbol{Q}},E)\) at most \({\boldsymbol{Q}}\) points in the scattering plane. Gray windows in panels b, c & h indicate nuclear Bragg peaks at (1, 1, 1) and (2, 2, 0) points, respectively. Data are obtained with \({E}_{f}=3.23\) meV. The vertical error bars in ah are statistical errors of 1 standard deviation.

Extended Data Fig. 4 Unpolarized neutron scattering data.

a,b, The raw scattering intensity at 35 mK and 12 K using Ei = 1.55 meV at the elastic line (E = 0 ± 0.03 meV) from our previous unpolarized neutron scattering experiment at CNCS17. c,d, The comparison of raw scattering intensity at 35 mK and 12 K along the [0, 0, l] and [h, h, 0] directions from cuts using panel a. As one can see, the scattering is highly structured and the scattering has higher intensity at 12 K at almost all \({\boldsymbol{Q}}\) space probed. e,f, Inelastic scattering signals obtained at 35 mK by subtracting 12 K as background along the (h, h, 0) and (0, 0, l) directions from our previous unpolarized INS experiment at CNCS17 and the corresponding Gaussian fits. The vertical error bars in c-f are statistical errors of 1 standard deviation.

Extended Data Fig. 5 Theoretical calculations.

Predictions from GMFT for the width of the two-spinon continuum as a function of transverse coupling for a, 0-flux QSI and b, \({\rm{\pi }}\)-flux QSI. We compare these with QMC results of Ref. 47 and the 32-site ED results of Ref. 29 extracted from the transverse dynamical spin structure factor \({S}^{\pm }\left({\boldsymbol{Q}},E\right)\) for 0- and \({\rm{\pi }}\)-flux QSI, respectively. The dashed and dashed-dotted lines denote the parameter sets obtained in Refs. 28,20.

Extended Data Fig. 6 Comparison of theory and data.

a-c, Total magnetic scattering \({M}_{z}+{M}_{y}\) as a function of energy and theoretical prediction for the spinon contribution using \({{\mathscr{J}}}_{\parallel }=0.06\) meV and \({{\mathscr{J}}}_{\pm }/{{\mathscr{J}}}_{\parallel }=-0.35\) at \({\boldsymbol{Q}}=(\mathrm{0,0,1})\) (X point), \({\boldsymbol{Q}}=(3/\mathrm{4,3}/\mathrm{4,0})\) (K point), and \({\boldsymbol{Q}}=(\mathrm{1,1,0}).\) The theoretical results are broadened using a Gaussian with a FWHM of 0.076 meV, 0.062 meV, and 0.042 meV at the X, K and \({\boldsymbol{Q}}=(\mathrm{1,1,0})\) point, respectively. d-f, Residual of the fit using only the spinons. The residual is fitted at all three momentum transfers using a Gaussian function centered close to the elastic line. The vertical error bars are propagating errors using Eq. (3).

Extended Data Fig. 7 Comparison of theory and data.

a-i, The energy scan of pure magnetic components \({M}_{z}+{M}_{y}\), \({M}_{z}\), and \({M}_{y}\) at \({\boldsymbol{Q}}=\left(\mathrm{0,0,1}\right),(3/4,3/\mathrm{4,0})\) and \((\mathrm{1,1,0})\). We use the Gaussian fit to determine the relative shift of the signals compared with the elastic line. The vertical error bars are propagating errors using Eq. (3).

Extended Data Fig. 8 Raw data of high resolution measurements.

a, The raw energy scan around the elastic line of the second sample at \({\boldsymbol{Q}}=\left(\mathrm{0,0,1}\right)\) using the same setup as the first sample, Ef = 3.23 meV. b, The raw data of the polarized \({\sigma }_{x}^{{NSF}}({\boldsymbol{Q}},E)\) and \({\sigma }_{x,y}^{{SF}}({\boldsymbol{Q}},E)\) at E = 0 ± 0.02 meV using Ef = 3.23 meV along the [0, 0, l] direction. The vertical error bars represent statistical errors of 1 standard deviation.

Extended Data Fig. 9 Summary of heat capacity measurements.

a Top view of the sample holder for specific heat measurements, showing the silver sample stage suspended by NbTi wires from the silver frame that was directly screwed to the mixing chamber of the cryostat, as well as the gold wire serving as thermal link to the bath. b Bottom view of the sample holder showing the thermometer (left) and heater (right) chips that are glued to the sample stage with GE varnish. c Single-crystalline sample of Ce2Zr2O7 used for specific heat measurements. d Comparison of the specific heat data of Ce2Zr2O7 obtained in this work with published results39,42,67. The grey line is a guide to the eyes. e Same data as in a, except for the data measured on powder down to only 0.4 K67, rescaled to the average of the data points of Smith et al.42 and Gao et al.39 at 100 mK, which is deemed to be the most precise estimate of the absolute magnitude of the specific heat of Ce2Zr2O7 at this temperature. The grey line is a cubic-in-temperature fit to data below 50 mK. f Magnetic specific heat data on Ce2Zr2O7 as a function of temperature on double-logarithmic scales, compared to power-law fits, \(A{T}^{\alpha }\), with fixed powers \(\alpha\) of 3 (grey), and 2.5 (red) and 3.5 (blue) for comparison, illustrating that \(\alpha =3\) describes the data best. A minimization procedure with open α yields the \({\chi }_{v}^{2}(\alpha)\) dependence shown in the inset, confirming that, within the error bars, α = 3 is the best description of the data. g Arrhenius plot of the magnetic specific heat together with a linear fit to the data (grey line), showing that the low-temperature specific heat of Ce2Zr2O7 could also be accounted for by a thermally activated behavior, with a gap of 0.1 K (inset). Both fits yield similar minimal \({\chi }_{v}^{2}\), preventing discrimination between the two on purely statistical grounds. h Magnetic entropy release as function of temperature obtained by integrating our Cmag/T data (full black symbols) together with previously published Cmag/T data39 (open symbols), both scaled as done in e. Within the error of the measurements, the full entropy of \(\bar{R}\mathrm{ln}2\) is reached at 10 K (grey shaded area). The vertical error bars in d-g are estimated to be at a maximum 10 % at 100 mK and up to 20 % at the lowest temperatures. Horizontal error bars represent maximal errors in the temperatures of the sample, which amount to 10 % on average (depending on whether a larger or smaller heater power was used).

Supplementary information

Supplementary Information

Supplementary Tables 1–5.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, B., Desrochers, F., Tam, D.W. et al. Neutron scattering and thermodynamic evidence for emergent photons and fractionalization in a pyrochlore spin ice. Nat. Phys. 21, 1203–1210 (2025). https://doi.org/10.1038/s41567-025-02922-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41567-025-02922-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing