Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nanophotonic quantum skyrmions enabled by semiconductor cavity quantum electrodynamics

Abstract

Skyrmions are topologically stable quasiparticles that have been investigated in contexts including particle physics, quantum field theory, acoustics and condensed-matter physics. Quantum optical skyrmions with local topological textures are expected to reshape the landscape of quantum photonic technology, although their experimental implementation has not yet been demonstrated. Here we present experimental realizations of nanophotonic quantum skyrmions using a semiconductor cavity quantum electrodynamics system. By manipulating the photonic spin–orbit coupling in a Gaussian microcavity, we obtained a confined optical mode whose polarizations feature skyrmionic topologies. With pronounced cavity quantum electrodynamics effects, we generated and detected single-photon skyrmions from a solid-state quantum emitter deterministically coupled to the Gaussian microcavity. The polarity associated with single-photon skyrmions can be swapped by flipping the polarization of the quantum emitter through the Zeeman effect. We also investigated the topological protection of quantum optical skyrmions under different perturbations. Our work opens an unexplored aspect of quantum light–matter interactions in the nanoscale and might advance resilient photonic quantum technology with high-dimensional qubits and high-capacity quantum memories.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Single-photon skyrmions emitted from a QD coupled to a Gaussian microcavity.
Fig. 2: Skyrmionic modes of the Gaussian microcavity.
Fig. 3: Single-photon emission coupled to the skyrmionic cavity modes.
Fig. 4: Polarization profiles of the cavity-enhanced single-photon skyrmions.
Fig. 5: Robustness of quantum optical skyrmions under different perturbations.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available via figshare at https://doi.org/10.6084/m9.figshare.29162057 (ref. 56). Source data are provided with this paper. All other data used in this study are available from the corresponding authors upon reasonable request.

Code availability

All codes produced during this research are available from the corresponding authors upon reasonable request.

References

  1. Skyrme, T. H. R. A non-linear field theory. Proc. R. Soc. A 260, 127–138 (1961).

    MathSciNet  ADS  Google Scholar 

  2. Skyrme, T. H. R. A unified field theory of mesons and baryons. Nucl. Phys. 31, 556–569 (1962).

    Article  MathSciNet  Google Scholar 

  3. Duzgun, A. & Nisoli, C. Skyrmion spin ice in liquid crystals. Phys. Rev. Lett. 126, 047801 (2021).

    Article  ADS  Google Scholar 

  4. Al Khawaja, U. & Stoof, H. Skyrmions in a ferromagnetic Bose–Einstein condensate. Nature 411, 918–920 (2001).

    Article  ADS  Google Scholar 

  5. Han, L. et al. High-density switchable skyrmion-like polar nanodomains integrated on silicon. Nature 603, 63–67 (2022).

    Article  ADS  Google Scholar 

  6. Song, K. M. et al. Skyrmion-based artificial synapses for neuromorphic computing. Nat. Electron. 3, 148–155 (2020).

    Article  Google Scholar 

  7. Bogdanov, A. N. & Panagopoulos, C. Physical foundations and basic properties of magnetic skyrmions. Nat. Rev. Phys. 2, 492–498 (2020).

    Article  Google Scholar 

  8. Wang, A. A. et al. Topological protection of optical skyrmions through complex media. Light: Sci. Appl. 13, 314 (2024).

    Article  ADS  Google Scholar 

  9. Wang, R. et al. Observation of resilient propagation and free-space skyrmions in toroidal electromagnetic pulses. Appl. Phys. Rev. 11, 031411 (2024).

  10. He, C., Shen, Y. & Forbes, A. Towards higher-dimensional structured light. Light: Sci. Appl. 11, 205 (2022).

    Article  ADS  Google Scholar 

  11. Shen, Y. et al. Optical skyrmions and other topological quasiparticles of light. Nat. Photonics 18, 15–25 (2024).

    Article  ADS  Google Scholar 

  12. Tsesses, S. et al. Optical skyrmion lattice in evanescent electromagnetic fields. Science 361, 993–996 (2018).

    Article  MathSciNet  ADS  Google Scholar 

  13. Du, L., Yang, A., Zayats, A. V. & Yuan, X. Deep-subwavelength features of photonic skyrmions in a confined electromagnetic field with orbital angular momentum. Nat. Phys. 15, 650–654 (2019).

    Article  Google Scholar 

  14. Gao, S. et al. Paraxial skyrmionic beams. Phys. Rev. A 102, 053513 (2020).

    Article  ADS  Google Scholar 

  15. Kuratsuji, H. & Tsuchida, S. Evolution of the Stokes parameters, polarization singularities, and optical skyrmion. Phys. Rev. A 103, 023514 (2021).

    Article  MathSciNet  ADS  Google Scholar 

  16. Shen, Y., Martínez, E. C. & Rosales-Guzmán, C. Generation of optical skyrmions with tunable topological textures. ACS Photonics 9, 296–303 (2022).

    Article  Google Scholar 

  17. Lin, W., Ota, Y., Arakawa, Y. & Iwamoto, S. On-chip optical skyrmionic beam generators. Optica 11, 1588–1594 (2024).

    Article  ADS  Google Scholar 

  18. Shen, Y., Hou, Y., Papasimakis, N. & Zheludev, N. I. Supertoroidal light pulses as electromagnetic skyrmions propagating in free space. Nat. Commun. 12, 5891 (2021).

    Article  ADS  Google Scholar 

  19. Karnieli, A., Tsesses, S., Bartal, G. & Arie, A. Emulating spin transport with nonlinear optics, from high-order skyrmions to the topological Hall effect. Nat. Commun. 12, 1092 (2021).

    Article  ADS  Google Scholar 

  20. Shen, Y. Topological bimeronic beams. Opt. Lett. 46, 3737–3740 (2021).

    Article  ADS  Google Scholar 

  21. Zhang, Q. et al. Optical topological lattices of Bloch-type skyrmion and meron topologies. Photonics Res. 10, 947–957 (2022).

    Article  Google Scholar 

  22. Marco, D., Herrera, I., Brasselet, S. & Alonso, M. A. Propagation-invariant optical meron lattices. ACS Photonics 11, 2397–2405 (2024).

  23. Sugic, D. et al. Particle-like topologies in light. Nat. Commun. 12, 6785 (2021).

    Article  ADS  Google Scholar 

  24. Ehrmanntraut, D. et al. Optical second-order skyrmionic hopfion. Optica 10, 725–731 (2023).

    Article  ADS  Google Scholar 

  25. Shen, Y. et al. Topological transformation and free-space transport of photonic hopfions. Adv. Photonics 5, 015001 (2023).

    Article  ADS  Google Scholar 

  26. Kerridge-Johns, W. R., Rao, A. S. & Omatsu, T. Optical skyrmion laser using a wedged output coupler. Optica 11, 769–775 (2024).

    Article  ADS  Google Scholar 

  27. He, T. et al. Optical skyrmions from metafibers with subwavelength features. Nat. Commun. 15, 10141 (2024).

    Article  ADS  Google Scholar 

  28. Shen, Y. et al. Topologically controlled multiskyrmions in photonic gradient-index lenses. Phys. Rev. Appl. 21, 024025 (2024).

    Article  ADS  Google Scholar 

  29. Mata-Cervera, N. et al. Tailoring propagation-invariant topology of optical skyrmions with dielectric metasurfaces. Nanophotonics https://doi.org/10.1515/nanoph-2024-0736 (2025).

  30. Hakobyan, V., Shen, Y. & Brasselet, E. Unitary spin-orbit optical-skyrmionic wave plates. Phys. Rev. Appl. 22, 054038 (2024).

    Article  ADS  Google Scholar 

  31. Hakobyan, V. & Brasselet, E. Q-plates: from optical vortices to optical skyrmions. Phys. Rev. Lett. 134, 083802 (2025).

    Article  ADS  Google Scholar 

  32. Ornelas, P., Nape, I., de Mello Koch, R. & Forbes, A. Non-local skyrmions as topologically resilient quantum entangled states of light. Nat. Photonics 18, 258–266 (2024).

    Article  ADS  Google Scholar 

  33. Luo, X. et al. Non-Hermitian control of confined optical skyrmions in microcavities formed by photonic spin–orbit coupling. Photonics Res. 11, 610–621 (2023).

    Article  Google Scholar 

  34. Zhou, X., Zhai, L. & Liu, J. Epitaxial quantum dots: a semiconductor launchpad for photonic quantum technologies. Photonics Insights 1, R07 (2023).

    Article  Google Scholar 

  35. Wang, J. et al. Multidimensional quantum entanglement with large-scale integrated optics. Science 360, 285–291 (2018).

    Article  MathSciNet  ADS  Google Scholar 

  36. Chen, B. et al. Bright solid-state sources for single photons with orbital angular momentum. Nat. Nanotechnol. 16, 302–307 (2021).

    Article  ADS  Google Scholar 

  37. Liu, X. et al. Heralded entanglement distribution between two absorptive quantum memories. Nature 594, 41–45 (2021).

    Article  ADS  Google Scholar 

  38. Yang, J. et al. Tunable quantum dots in monolithic Fabry-Perot microcavities for high-performance single-photon sources. Light: Sci. Appl. 13, 33 (2024).

    Article  ADS  Google Scholar 

  39. Li, F. et al. Tunable open-access microcavities for solid-state quantum photonics and polaritonics. Adv. Quantum Technol. 2, 1900060 (2019).

    Article  Google Scholar 

  40. Whittaker, C. et al. Effect of photonic spin-orbit coupling on the topological edge modes of a Su-Schrieffer-Heeger chain. Phys. Rev. B 99, 081402 (2019).

    Article  ADS  Google Scholar 

  41. Winger, M. et al. Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot–cavity system. Phys. Rev. Lett. 103, 207403 (2009).

    Article  ADS  Google Scholar 

  42. Dufferwiel, S. et al. Spin textures of exciton-polaritons in a tunable microcavity with large TE-TM splitting. Phys. Rev. Lett. 115, 246401 (2015).

    Article  ADS  Google Scholar 

  43. Lin, W., Ota, Y., Arakawa, Y. & Iwamoto, S. Microcavity-based generation of full Poincaré beams with arbitrary skyrmion numbers. Phys. Rev. Res. 3, 023055 (2021).

    Article  Google Scholar 

  44. Bayer, M. et al. Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots. Phys. Rev. B 65, 195315 (2002).

    Article  ADS  Google Scholar 

  45. Petrovic, A. P., Psaroudaki, C., Fischer, P., Garst, M. & Panagopoulos, C. Colloquium: quantum properties and functionalities of magnetic skyrmions. Preprint at arxiv.org/abs/2410.11427 (2024).

  46. Lodahl, P. et al. Chiral quantum optics. Nature 541, 473–480 (2017).

    Article  ADS  Google Scholar 

  47. Chen, J., Forbes, A. & Qiu, C.-W. More than just a name? From magnetic to optical skyrmions and the topology of light. Light Sci. Appl. 14, 28 (2025).

    Article  ADS  Google Scholar 

  48. Zheng, F. et al. Direct imaging of a zero-field target skyrmion and its polarity switch in a chiral magnetic nanodisk. Phys. Rev. Lett. 119, 197205 (2017).

    Article  ADS  Google Scholar 

  49. Song, C. et al. Field-tuned spin excitation spectrum of kπ skyrmion. New J. Phys. 21, 083006 (2019).

    Article  ADS  Google Scholar 

  50. Reindl, M. et al. Highly indistinguishable single photons from incoherently excited quantum dots. Phys. Rev. B 100, 155420 (2019).

    Article  ADS  Google Scholar 

  51. Allen, L., Beijersbergen, M. W., Spreeuw, R. & Woerdman, J. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 45, 8185 (1992).

    Article  ADS  Google Scholar 

  52. Leyder, C. et al. Observation of the optical spin Hall effect. Nat. Phys. 3, 628–631 (2007).

    Article  Google Scholar 

  53. Solnyshkov, D. & Malpuech, G. Chirality in photonic systems. Comptes Rendus Phys. 17, 920–933 (2016).

    Article  ADS  Google Scholar 

  54. Göbel, B., Mertig, I. & Tretiakov, O. A. Beyond skyrmions: review and perspectives of alternative magnetic quasiparticles. Phys. Rep. 895, 1–28 (2021).

    Article  MathSciNet  ADS  Google Scholar 

  55. Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 8, 899–911 (2013).

    Article  ADS  Google Scholar 

  56. Ma, J. et al. Nanophotonic quantum skyrmions enabled by semiconductor cavity quantum electrodynamics. figshare https://doi.org/10.6084/m9.figshare.29162057 (2025).

Download references

Acknowledgements

This research was supported by the National Key Research and Development Program of China (Grant Number 2023YFA1407100 to F.L.), the National Natural Science Foundation of China (Grant Numbers 62035017 and 12361141824 to J.L., 62422516 and 12474397 to Y.Y., and 12474392 and 12074303 to F.L.), the Natural Science Foundation of Guangdong Province (Grant Number 2023B1515120070 to J.L.) and the National Super-Computer Center in Guangzhou.

Author information

Authors and Affiliations

Contributions

J.L. conceived the project. J.M., J.Y., S.L., Y.Y. and J.L. designed the epitaxial structure. J.Y. and C.S. grew the QD wafers. J.M., J.Y., S.L. and G.Q. developed the theoretical model and designed the devices. J.Y. and C.S. fabricated the devices. J.M., S.L., X.L., B.C. and K.Z. built the set-up and performed the optical measurements. J.M., F.L. and J.L. analysed the data. J.L. and J.M. prepared the paper with inputs from all authors. X.H., Y.Y. and J.L. supervised the project.

Corresponding authors

Correspondence to Ying Yu or Jin Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Yang Chen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Fabrication process of the Gaussian microcavity.

(a) Epitaxial growth of the bottom semiconductor DBR and QDs. (b) Fabrication of alignment markers. (c) QD positioning by the wide-field fluorescence imaging technique. (d) SiNx and SiO2 deposition by chemical vapor deposition (CVD). (e) Wafer with patterned exposed photoresist after aligned EBL. (f) Lensed-shape photoresist after heat reflow. (g) Lensed-shape SiO2 defect after dry etching. (h) Deterministically coupled QD-microcavity devices after the top dielectric DBR is evaporated.

Extended Data Fig. 2 Characterization of the engineered planar cavity with asymmetry.

(a) Deterministically coupled QD-microcavity devices. (b) Cross sections of the planar cavity. (c) Stimulated reflective spectrum of the symmetric planar cavity with cavity resonance in the center of the stopband. (d) Stimulated cavity modes of the symmetric Gaussian cavity, featuring vanishing SO coupling and exhibiting no mode splitting. (e) Stimulated reflective spectrum of the asymmetric planar cavity with the cavity resonance close to the edge of the stopband. (f) Stimulated cavity modes of the asymmetric Gaussian cavity, featuring appreciable SO coupling and exhibiting pronounced mode splittings. (g) Measured reflective spectrum of the asymmetric planar cavity in (e). (h) Measured cavity modes of the asymmetric Gaussian cavity in (f).

Source data

Extended Data Fig. 3 Principle of the formation of the skyrmion modes in Gaussian microcavity.

(a) Energy levels of the eigenstates of the third mode of the Gaussian cavity with strong spin-orbit coupling. (b) Calculated polarization states and Stokes components of mode 3-Ia and mode 3-Ib of analytical solutions and numerical simulation, which are in excellent agreement. The analytical solutions of the non-Hermitian model are done following the mathematics of Ref. 33 where the definitions of the parameters A and B are from the same reference.

Extended Data Fig. 4 Schematic of the setup for optical characterizations.

The sample with QDs embedded in Gaussian microcavities is located in a closed-cycle cryostat with a superconducting magnet. The base temperature of the closed-cycle cryostat is 1.8 K. The QDs can be excited by 785 nm continuous wave (CW) or pulsed lasers. The emitted single-photons are collected by a × 50 objective with a numerical aperture of 0.65 and sent to an electron-multiplying charge-coupled device (EMCCD) camera for imaging or coupled to a multimode fiber for spectral analysis, lifetime measurements and Hanbury-Brown-Twiss (HBT) measurements. DM1: 650 nm long-pass dichroic mirror, DM2: 805 nm long-pass dichroic mirror, BPF: band-pass filter, BS: beamsplitter, QWP: quarter-wave plate, HWP: half-wave plate.

Extended Data Fig. 5 Skyrmionium in the high-order mode of the Gaussian cavity.

(a) Simulated cavity modes of the Gaussian cavity with a radius of defect equal to 4 μm, which are excited by a σ+ dipole at the center of the cavity. (b) The polarization states and the extracted Stokes components of mode 5-I, mode 5-II, mode 7-I and mode 7-II shown in (a).

Source data

Supplementary information

Source data

Source Data Fig. 2

This source data file contains the raw data used to generate the plots in Fig. 2a,b.

Source Data Fig. 3

This source data file contains the raw data used to generate the plots in Fig. 3b,d–f.

Source Data Extended Data Fig. 2

This source data file contains the raw data used to generate the plots in Extended Data Fig. 2c–h.

Source Data Extended Data Fig. 5

This source data file contains the raw data used to generate the plots in Extended Data Fig. 5a.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Yang, J., Liu, S. et al. Nanophotonic quantum skyrmions enabled by semiconductor cavity quantum electrodynamics. Nat. Phys. 21, 1462–1468 (2025). https://doi.org/10.1038/s41567-025-02973-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41567-025-02973-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing