Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A mechanical quantum memory for microwave photons

Subjects

Abstract

Superconducting qubits possess outstanding capabilities for processing quantum information in the microwave domain; however they have limited coherence times. An interface between photons and phonons could allow quantum information to be stored in long-lived mechanical oscillators. Here, we introduce a platform that relies on electrostatic forces in nanoscale structures to achieve strong coupling between a superconducting qubit and a nanomechanical oscillator with an energy decay time (T1) of approximately 25 ms, well beyond those achieved in integrated superconducting circuits. We use quantum operations in this system to investigate the microscopic origins of mechanical decoherence and mitigate its impact. By using two-pulse dynamical decoupling sequences, we can extend the coherence time (T2) from 64 μs to 1 ms. These findings establish that mechanical oscillators can act as quantum memories for superconducting devices, with potential future applications in quantum computing, sensing and transduction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental set-up.
Fig. 2: Coherent qubit–oscillator interaction.
Fig. 3: Quantum state preparation and tomography.
Fig. 4: Mechanical lifetime.
Fig. 5: Mitigating mechanical dephasing.

Similar content being viewed by others

Data availability

The source data used to generate the plots in the paper are available via Zenodo at https://doi.org/10.5281/zenodo.15069397 (ref. 68). Other datasets produced or examined in this study can be obtained from the corresponding author (M.M.) upon reasonable request.

References

  1. Wallquist, M., Hammerer, K., Rabl, P., Lukin, M. & Zoller, P. Hybrid quantum devices and quantum engineering. Phys. Scr. 2009, 014001 (2009).

    Article  Google Scholar 

  2. Kurizki, G. et al. Quantum technologies with hybrid systems. Proc. Natl Acad. Sci. USA 112, 3866–3873 (2015).

    Article  ADS  Google Scholar 

  3. Clerk, A. A., Lehnert, K. W., Bertet, P., Petta, J. R. & Nakamura, Y. Hybrid quantum systems with circuit quantum electrodynamics. Nat. Phys. 16, 257–267 (2020).

    Article  Google Scholar 

  4. Kjaergaard, M. et al. Superconducting qubits: current state of play. Annu. Rev. Condens. Matter Phys. 11, 369–395 (2020).

    Article  ADS  Google Scholar 

  5. de Leon, N. P. et al. Materials challenges and opportunities for quantum computing hardware. Science 372, eabb2823 (2021).

    Article  ADS  Google Scholar 

  6. Galliou, S. et al. Extremely low loss phonon-trapping cryogenic acoustic cavities for future physical experiments. Sci. Rep. 3, 2132 (2013).

    Article  ADS  Google Scholar 

  7. Engelsen, N. J., Beccari, A. & Kippenberg, T. J. Ultrahigh-quality-factor micro- and nanomechanical resonators using dissipation dilution. Nat. Nanotechnol. 19, 725–737 (2024).

    Article  ADS  Google Scholar 

  8. MacCabe, G. S. et al. Nano-acoustic resonator with ultralong phonon lifetime. Science 370, 840–843 (2020).

    Article  ADS  Google Scholar 

  9. Samanta, C. et al. Nonlinear nanomechanical resonators approaching the quantum ground state. Nat. Phys. 19, 1340–1344 (2023).

    Article  Google Scholar 

  10. Chamberland, C. et al. Building a fault-tolerant quantum computer using concatenated cat codes. PRX Quantum 3, 010329 (2022).

    Article  ADS  Google Scholar 

  11. Hann, C. T. et al. Hardware-efficient quantum random access memory with hybrid quantum acoustic systems. Phys. Rev. Lett. 123, 250501 (2019).

    Article  ADS  Google Scholar 

  12. Pechal, M., Arrangoiz-Arriola, P. & Safavi-Naeini, A. H. Superconducting circuit quantum computing with nanomechanical resonators as storage. Quantum Sci. Technol. 4, 015006 (2018).

    Article  ADS  Google Scholar 

  13. Chu, Y. & Gröblacher, S. A perspective on hybrid quantum opto- and electromechanical systems. Appl. Phys. Lett. 117, 150503 (2020).

    Article  ADS  Google Scholar 

  14. Pirkkalainen, J.-M. et al. Hybrid circuit cavity quantum electrodynamics with a micromechanical resonator. Nature 494, 211–215 (2013).

    Article  ADS  Google Scholar 

  15. Ma, X., Viennot, J. J., Kotler, S., Teufel, J. D. & Lehnert, K. W. Non-classical energy squeezing of a macroscopic mechanical oscillator. Nat. Phys. 17, 322–326 (2021).

    Article  Google Scholar 

  16. LaHaye, M. D., Suh, J., Echternach, P. M., Schwab, K. C. & Roukes, M. L. Nanomechanical measurements of a superconducting qubit. Nature 459, 960–964 (2009).

    Article  ADS  Google Scholar 

  17. Rouxinol, F. et al. Measurements of nanoresonator-qubit interactions in a hybrid quantum electromechanical system. Nanotechnology 27, 364003 (2016).

    Article  Google Scholar 

  18. O’Connell, A. D. et al. Quantum ground state and single-phonon control of a mechanical resonator. Nature 464, 697–703 (2010).

    Article  ADS  Google Scholar 

  19. Chu, Y. et al. Quantum acoustics with superconducting qubits. Science 358, 199–202 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  20. Wollack, E. A. et al. Quantum state preparation and tomography of entangled mechanical resonators. Nature 604, 463–467 (2022).

    Article  ADS  Google Scholar 

  21. Bild, M. et al. Schrödinger cat states of a 16-microgram mechanical oscillator. Science 380, 274–278 (2023).

    Article  ADS  Google Scholar 

  22. Qiao, H. et al. Splitting phonons: building a platform for linear mechanical quantum computing. Science 380, 1030–1033 (2023).

    Article  ADS  MathSciNet  Google Scholar 

  23. Ganjam, S. et al. Surpassing millisecond coherence in on chip superconducting quantum memories by optimizing materials and circuit design. Nat. Commun. 15, 3687 (2024).

    Article  ADS  Google Scholar 

  24. Crowley, K. D. et al. Disentangling losses in tantalum superconducting circuits. Phys. Rev. X 13, 041005 (2023).

    Google Scholar 

  25. Tuokkola, M. et al. Methods to achieve near-millisecond energy relaxation and dephasing times for a superconducting transmon qubit. Preprint at https://arxiv.org/abs/2407.18778 (2024).

  26. McGuigan, D. F. et al. Measurements of the mechanical Q of single-crystal silicon at low temperatures. J. Low Temp. Phys. 30, 621–629 (1978).

    Article  ADS  Google Scholar 

  27. Beccari, A. et al. Strained crystalline nanomechanical resonators with quality factors above 10 billion. Nat. Phys. 18, 436–441 (2022).

    Article  Google Scholar 

  28. Tao, Y., Boss, J. M., Moores, B. A. & Degen, C. L. Single-crystal diamond nanomechanical resonators with quality factors exceeding one million. Nat. Commun. 5, 3638 (2014).

    Article  ADS  Google Scholar 

  29. Liu, Y. et al. Degeneracy-breaking and long-lived microwave electromechanical systems enabled by cubic silicon-carbide membrane crystals. Nat. Commun. 16, 1207 (2025).

    Article  ADS  Google Scholar 

  30. Behunin, R. O., Intravaia, F. & Rakich, P. T. Dimensional transformation of defect-induced noise, dissipation, and nonlinearity. Phys. Rev. B 93, 224110 (2016).

    Article  ADS  Google Scholar 

  31. Mason, D., Chen, J., Rossi, M., Tsaturyan, Y. & Schliesser, A. Continuous force and displacement measurement below the standard quantum limit. Nat. Phys. 15, 745–749 (2019).

    Article  Google Scholar 

  32. McCormick, K. C. et al. Quantum-enhanced sensing of a single-ion mechanical oscillator. Nature 572, 86–90 (2019).

    Article  ADS  Google Scholar 

  33. Barzanjeh, S. et al. Optomechanics for quantum technologies. Nat. Phys. 18, 15–24 (2022).

    Article  Google Scholar 

  34. Bozkurt, A. et al. A quantum electromechanical interface for long-lived phonons. Nat. Phys. 19, 1326–1332 (2023).

    Article  Google Scholar 

  35. Wollack, E. A. et al. Loss channels affecting lithium niobate phononic crystal resonators at cryogenic temperature. Appl. Phys. Lett. 118, 123501 (2021).

    Article  ADS  Google Scholar 

  36. Mason, W. P. & McSkimin, H. J. Attenuation and scattering of high frequency sound waves in metals and glasses. J. Acoust. Soc. Am. 19, 464–473 (1947).

    Article  ADS  Google Scholar 

  37. Catto, G. et al. Microwave response of a metallic superconductor subject to a high-voltage gate electrode. Sci. Rep. 12, 6822 (2022).

    Article  ADS  Google Scholar 

  38. Geerlings, K. et al. Demonstrating a driven reset protocol for a superconducting qubit. Phys. Rev. Lett. 110, 120501 (2013).

    Article  ADS  Google Scholar 

  39. Satzinger, K. J. et al. Quantum control of surface acoustic-wave phonons. Nature 563, 661–665 (2018).

    Article  ADS  Google Scholar 

  40. Chu, Y. et al. Creation and control of multi-phonon Fock states in a bulk acoustic-wave resonator. Nature 563, 666–670 (2018).

    Article  ADS  Google Scholar 

  41. Yang, Y. et al. A mechanical qubit. Science 386, 783–788 (2024).

    Article  ADS  MathSciNet  Google Scholar 

  42. Bienfait, A. et al. Phonon-mediated quantum state transfer and remote qubit entanglement. Science 364, 368–371 (2019).

    Article  ADS  Google Scholar 

  43. Cleland, A. Y., Wollack, E. A. & Safavi-Naeini, A. H. Studying phonon coherence with a quantum sensor. Nat. Commun. 15, 4979 (2024).

    Article  ADS  Google Scholar 

  44. Emser, A. L., Metzger, C., Rose, B. C. & Lehnert, K. W. Thin-film quartz for high-coherence piezoelectric phononic crystal resonators. Phys. Rev. Appl. 22, 064032 (2024).

    Article  ADS  Google Scholar 

  45. Kleiman, R. N., Agnolet, G. & Bishop, D. J. Two-level systems observed in the mechanical properties of single-crystal silicon at low temperatures. Phys. Rev. Lett. 59, 2079–2082 (1987).

    Article  ADS  Google Scholar 

  46. von Lüpke, U. et al. Parity measurement in the strong dispersive regime of circuit quantum acoustodynamics. Nat. Phys. 18, 794–799 (2022).

    Article  Google Scholar 

  47. Wallucks, A., Marinković, I., Hensen, B., Stockill, R. & Gröblacher, S. A quantum memory at telecom wavelengths. Nat. Phys. 16, 772–777 (2020).

    Article  Google Scholar 

  48. Lisenfeld, J. et al. Electric field spectroscopy of material defects in transmon qubits. npj Quantum Inf 5, 105 (2019).

    Article  ADS  Google Scholar 

  49. Sarabi, B., Ramanayaka, A. N., Burin, A. L., Wellstood, F. C. & Osborn, K. D. Projected dipole moments of individual two-level defects extracted using circuit quantum electrodynamics. Phys. Rev. Lett. 116, 167002 (2016).

    Article  ADS  Google Scholar 

  50. Phillips, W. A. Two-level states in glasses. Rep. Prog. Phys. 50, 1657–1708 (1987).

    Article  ADS  Google Scholar 

  51. Carr, H. Y. & Purcell, E. M. Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys. Rev. 94, 630 (1954).

    Article  ADS  Google Scholar 

  52. Arenz, C., Burgarth, D. & Hillier, R. Dynamical decoupling and homogenization of continuous variable systems. J. Phys. A 50, 135303 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  53. Ithier, G. et al. Decoherence in a superconducting quantum bit circuit. Phys. Rev. B 72, 134519 (2005).

    Article  ADS  Google Scholar 

  54. Bylander, J. et al. Noise spectroscopy through dynamical decoupling with a superconducting flux qubit. Nat. Phys. 7, 565–570 (2011).

    Article  Google Scholar 

  55. Chakram, S. et al. Multimode photon blockade. Nat. Phys. 18, 879–884 (2022).

    Article  Google Scholar 

  56. Jones, W. M., Lukin, D. & Scherer, A. Practical nanoscale field emission devices for integrated circuits. Appl. Phys. Lett. 110, 263101 (2017).

    Article  ADS  Google Scholar 

  57. Najera-Santos, B.-L. et al. High-sensitivity ac-charge detection with a MHz-frequency fluxonium qubit. Phys. Rev. X 14, 011007 (2024).

    Google Scholar 

  58. Lee, N. R. et al. Strong dispersive coupling between a mechanical resonator and a fluxonium superconducting qubit. PRX Quantum 4, 040342 (2023).

    Article  ADS  Google Scholar 

  59. Rosenberg, D. et al. 3D integrated superconducting qubits. npj Quantum Inf 3, 42 (2017).

    Article  ADS  Google Scholar 

  60. Conner, C. R. et al. Superconducting qubits in a flip-chip architecture. Appl. Phys. Lett. 118, 232602 (2021).

    Article  ADS  Google Scholar 

  61. Guillaud, J. & Mirrahimi, M. Repetition cat qubits for fault-tolerant quantum computation. Phys. Rev. X 9, 041053 (2019).

    Google Scholar 

  62. Tuckett, D. K., Bartlett, S. D. & Flammia, S. T. Ultrahigh error threshold for surface codes with biased noise. Phys. Rev. Lett. 120, 050505 (2018).

    Article  ADS  Google Scholar 

  63. Jeffrey, E. et al. Fast accurate state measurement with superconducting qubits. Phys. Rev. Lett. 112, 190504 (2014).

    Article  ADS  Google Scholar 

  64. Sank, D. et al. System characterization of dispersive readout in superconducting qubits. Phys. Rev. Appl. 23, 024055 (2025).

    Article  ADS  Google Scholar 

  65. Zhang, Y. et al. Engineering bilinear mode coupling in circuit QED: theory and experiment. Phys. Rev. A 99, 012314 (2019).

    Article  ADS  Google Scholar 

  66. Keller, A. J. et al. Al transmon qubits on silicon-on-insulator for quantum device integration. Appl. Phys. Lett. 111, 042603 (2017).

    Article  ADS  Google Scholar 

  67. Card, H. Aluminum–silicon Schottky barriers and ohmic contacts in integrated circuits. IEEE Trans. Electron Devices 23, 538–544 (1976).

    Article  ADS  Google Scholar 

  68. Bozkurt, A. B., Golami, O., Yu, Y., Tian, H. & Mirhosseini, M. Data for the article entitled: ‘A mechanical quantum memory for microwave photons’. Zenodo https://doi.org/10.5281/zenodo.15069397 (2025).

Download references

Acknowledgements

We acknowledge O. Painter, M. Kalaee, H. Zhao, C. Joshi, F. Yang, P. Shah and W. Chen for helpful discussions. This work was supported by the AFOSR (Award No. FA9550-23-1-0062) and the NSF (Award Nos. 2137776 and 2238058). A.B.B. gratefully acknowledges support from the Eddleman Graduate Fellowship. H.T. gratefully acknowledges support from an IQIM Postdoctoral Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

M.M., A.B.B. and O.G. conceived and designed the experiment. Y.Y. performed the numerical optimization of the devices. A.B.B., O.G. and H.T. fabricated the devices. A.B.B., O.G. and M.M. conducted the measurements and analysed the data. A.B.B., O.G. and M.M. wrote the paper with input from all authors. M.M. supervised the project.

Corresponding author

Correspondence to Mohammad Mirhosseini.

Ethics declarations

Competing interests

M.M., A.B.B. and O.G. acknowledge a provisional patent application that draws on the work described in this manuscript. The other authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Gary Steele, Marius Villiers and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Table 1 Summary of device parameters

Supplementary information

Supplementary Information

Supplementary Sections A–K, Figs. 1–16 and Table 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bozkurt, A.B., Golami, O., Yu, Y. et al. A mechanical quantum memory for microwave photons. Nat. Phys. 21, 1469–1474 (2025). https://doi.org/10.1038/s41567-025-02975-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41567-025-02975-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing