Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Chromothripsis in cancer

Abstract

Chromothripsis is a mutational phenomenon in which a single catastrophic event generates extensive rearrangements of one or a few chromosomes. This extreme form of genome instability has been detected in 30–50% of cancers. Studies conducted in the past few years have uncovered insights into how chromothripsis arises and deciphered some of the cellular and molecular consequences of chromosome shattering. This Review discusses the defining features of chromothripsis and describes its prevalence across different cancer types as indicated by the manifestations of chromothripsis detected in human cancer samples. The different mechanistic models of chromothripsis, derived from in vitro systems that enable causal inference through experimental manipulation, are discussed in detail. The contribution of chromothripsis to cancer development, the selective advantages that cancer cells might gain from chromothripsis, the evolutionary trajectories of chromothriptic tumours, and the potential vulnerabilities and therapeutic opportunities presented by chromothriptic cells are also highlighted.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chromothripsis involves chromosomal shattering and reassembly.
Fig. 2: Prevalence of chromothripsis across adult and paediatric cancer types.
Fig. 3: Mechanistic models of chromothripsis due to DNA damage.
Fig. 4: The links between extrachromosomal DNA and chromothripsis in cancer.
Fig. 5: Timing of chromothripsis in cancer evolutionary trajectories.

Similar content being viewed by others

References

  1. Drews, R. M. et al. A pan-cancer compendium of chromosomal instability. Nature 606, 976–983 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bakhoum, S. F. & Cantley, L. C. The multifaceted role of chromosomal instability in cancer and its microenvironment. Cell 174, 1347–1360 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Taylor, A. M. R. et al. Chromosome instability syndromes. Nat. Rev. Dis. Primers 5, 64 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Baker, T. M., Waise, S., Tarabichi, M. & Van Loo, P. Aneuploidy and complex genomic rearrangements in cancer evolution. Nat. Cancer 5, 228–239 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Steele, C. D. et al. Signatures of copy number alterations in human cancer. Nature 606, 984–991 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Stephens, P. J. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144, 27–40 (2011). This study describes the existence of chromothripsis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rausch, T. Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell 148, 59–71 (2012). This study highlights the link between chromothripsis and impaired function of p53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Voronina, N. The landscape of chromothripsis across adult cancer types. Nat. Commun. 11, 2320 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Molenaar, J. J. Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes. Nature 483, 589–593 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Lee, J. J.-K. et al. Tracing oncogene rearrangements in the mutational history of lung adenocarcinoma. Cell 177, 1842–1857.e21 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Lin, Y.-F. et al. Mitotic clustering of pulverized chromosomes from micronuclei. Nature 618, 1041–1048 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cortes-Ciriano, I. et al. Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing. Nat. Genet. 52, 331–341 (2020). Together with Voronina (2020), this pan-cancer study reveals the high prevalence of chromothripsis across multiple adult cancer types.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shoshani, O. Chromothripsis drives the evolution of gene amplification in cancer. Nature 591, 137–141 (2021). This work shows that chromothripsis is a major driver of circular ecDNA amplification.

    Article  CAS  PubMed  Google Scholar 

  14. Kloosterman, W. P. et al. Chromothripsis is a common mechanism driving genomic rearrangements in primary and metastatic colorectal cancer. Genome Biol. 12, R103 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bolkestein, M. Chromothripsis in human breast cancer. Cancer Res. 80, 4918–4931 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole genomes. Nature 578, 82–93 (2020).

    Article  CAS  Google Scholar 

  17. Li, Y. et al. Patterns of somatic structural variation in human cancer genomes. Nature 578, 112–121 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Korbel, J. O. & Campbell, P. J. Criteria for inference of chromothripsis in cancer genomes. Cell 152, 1226–1236 (2013). This work describes rigorous criteria to define and detect chromothripsis from genome sequencing.

    Article  CAS  PubMed  Google Scholar 

  19. Kloosterman, W. P. & Cuppen, E. Chromothripsis in congenital disorders and cancer: similarities and differences. Curr. Opin. Cell Biol. 25, 341–348 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Fukami, M. et al. Catastrophic cellular events leading to complex chromosomal rearrangements in the germline. Clin. Genet. 91, 653–660 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Zhang, C. Z., Leibowitz, M. L. & Pellman, D. Chromothripsis and beyond: rapid genome evolution from complex chromosomal rearrangements. Genes Dev. 27, 2513–2530 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gröbner, S. N. et al. The landscape of genomic alterations across childhood cancers. Nature 555, 321–327 (2018).

    Article  PubMed  Google Scholar 

  23. Waszak, S. M. Spectrum and prevalence of genetic predisposition in medulloblastoma: a retrospective genetic study and prospective validation in a clinical trial cohort. Lancet Oncol. 19, 785–798 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Crasta, K. DNA breaks and chromosome pulverization from errors in mitosis. Nature 482, 53–58 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Thompson, S. L. & Compton, D. A. Chromosome missegregation in human cells arises through specific types of kinetochore–microtubule attachment errors. Proc. Natl Acad. Sci. USA 108, 17974–17978 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang, C.-Z. Chromothripsis from DNA damage in micronuclei. Nature 522, 179–184 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ly, P. Selective Y centromere inactivation triggers chromosome shattering in micronuclei and repair by non-homologous end joining. Obstet. Gynecol. Surv. 72, 282–283 (2017).

    Article  Google Scholar 

  28. Ly, P. et al. Chromosome segregation errors generate a diverse spectrum of simple and complex genomic rearrangements. Nat. Genet. 51, 705–715 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Maciejowski, J., Li, Y., Bosco, N., Campbell, P. J. & Lange, T. Chromothripsis and kataegis induced by telomere crisis. Cell 163, 1641–1654 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Maciejowski, J. et al. APOBEC3-dependent kataegis and TREX1-driven chromothripsis during telomere crisis. Nat. Genet. 52, 884–890 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Umbreit, N. T. Mechanisms generating cancer genome complexity from a single cell division error. Science 368, eaba0712 (2020). This study shows the role of chromosome bridges and micronuclei in chromothripsis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. van Steensel, B., Smogorzewska, A. & de Lange, T. TRF2 protects human telomeres from end-to-end fusions. Cell 92, 401–413 (1998).

    Article  PubMed  Google Scholar 

  33. McClintock, B. The stability of broken ends of chromosomes in Zea mays. Genetics 26, 234–282 (1941).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mardin, B. R. A cell-based model system links chromothripsis with hyperploidy. Mol. Syst. Biol. 11, 828 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Li, Y. et al. Constitutional and somatic rearrangement of chromosome 21 in acute lymphoblastic leukaemia. Nature 508, 98–102 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dewhurst, S. M. et al. Structural variant evolution after telomere crisis. Nat. Commun. 12, 2093 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tubio, J. M. C. & Estivill, X. When catastrophe strikes a cell. Nature 470, 476–477 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Tang, H. L. et al. Cell survival, DNA damage, and oncogenic transformation after a transient and reversible apoptotic response. Mol. Biol. Cell 23, 2240–2252 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nassour, J. et al. Autophagic cell death restricts chromosomal instability during replicative crisis. Nature 565, 659–663 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rello-Varona, S. et al. Autophagic removal of micronuclei. Cell Cycle 11, 170–176 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Zhao, M. et al. CGAS is a micronucleophagy receptor for the clearance of micronuclei. Autophagy 17, 3976–3991 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schutze, D. M. et al. Immortalization capacity of HPV types is inversely related to chromosomal instability. Oncotarget 7, 37608–37621 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Dacus, D. et al. Beta human papillomavirus 8e6 induces micronucleus formation and promotes chromothripsis. J. Virol. 96, e0101522 (2022).

    Article  PubMed  Google Scholar 

  44. Li, J. S. Z. et al. Chromosomal fragile site breakage by EBV-encoded EBNA1 at clustered repeats. Nature 616, 504–509 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Morishita, M. et al. Chromothripsis-like chromosomal rearrangements induced by ionizing radiation using proton microbeam irradiation system. Oncotarget 7, 10182–10192 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kolb, T. et al. A versatile system to introduce clusters of genomic double-strand breaks in large cell populations. Genes Chromosomes Cancer 60, 303–313 (2021).

    Article  CAS  PubMed  Google Scholar 

  47. Hatch, E. M., Fischer, A. H., Deerinck, T. J. & Hetzer, M. W. Catastrophic nuclear envelope collapse in cancer cell micronuclei. Cell 154, 47–60 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu, S. et al. Nuclear envelope assembly defects link mitotic errors to chromothripsis. Nature 561, 551–555 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kato, H. & Sandberg, A. A. Chromosome pulverization in human cells with micronuclei. J. Natl Cancer Inst. 40, 165–179 (1968).

    CAS  PubMed  Google Scholar 

  50. Tang, S., Stokasimov, E., Cui, Y. & Pellman, D. Breakage of cytoplasmic chromosomes by pathological DNA base excision repair. Nature 606, 930–936 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mohr, L. et al. ER-directed TREX1 limits cGAS activation at micronuclei. Mol. Cell 81, 724–738.e9 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bochtler, T. et al. Micronucleus formation in human cancer cells is biased by chromosome size. Genes Chromosomes Cancer 58, 392–395 (2019).

    Article  CAS  PubMed  Google Scholar 

  53. Klaasen, S. J. et al. Nuclear chromosome locations dictate segregation error frequencies. Nature 607, 604–609 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mammel, A. E., Huang, H. Z., Gunn, A. L., Choo, E. & Hatch, E. M. Chromosome length and gene density contribute to micronuclear membrane stability. Life Sci. Alliance 5, e202101210 (2022).

    Article  CAS  PubMed  Google Scholar 

  55. Trivedi, P., Steele, C. D., Au, F. K. C., Alexandrov, L. B. & Cleveland, D. W. Mitotic tethering enables inheritance of shattered micronuclear chromosomes. Nature 618, 1049–1056 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mazzagatti, A., Engel, J. L. & Ly, P. Boveri and beyond: chromothripsis and genomic instability from mitotic errors. Mol. Cell 84, 55–69 (2024).

    Article  CAS  PubMed  Google Scholar 

  57. Krupina, K., Goginashvili, A. & Cleveland, D. W. Scrambling the genome in cancer: causes and consequences of complex chromosome rearrangements. Nat. Rev. Genet. 25, 196–210 (2024).

    Article  CAS  PubMed  Google Scholar 

  58. Ejaz, U. et al. Chromothripsis: an emerging crossroad from aberrant mitosis to therapeutic opportunities. J. Mol. Cell Biol. 16, mjae016 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ly, P. & Cleveland, D. W. Rebuilding chromosomes after catastrophe: emerging mechanisms of chromothripsis. Trends Cell Biol. 27, 917–930 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Luijten, M. N. H., Lee, J. X. T. & Crasta, K. C. Mutational game changer: chromothripsis and its emerging relevance to cancer. Mutat. Res. 777, 29–51 (2018).

    Article  CAS  Google Scholar 

  61. Yi, E., González, R. C., Henssen, A. G. & Verhaak, R. G. W. Extrachromosomal DNA amplifications in cancer. Nat. Rev. Genet. 23, 760–771 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kim, H. et al. Extrachromosomal DNA is associated with oncogene amplification and poor outcome across multiple cancers. Nat. Genet. 52, 891–897 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Turner, K. M. et al. Extrachromosomal oncogene amplification drives tumour evolution and genetic heterogeneity. Nature 543, 122–125 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Deshpande, V. Exploring the landscape of focal amplifications in cancer using AmpliconArchitect. Nat. Commun. 10, 392 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Xu, K. et al. Structure and evolution of double minutes in diagnosis and relapse brain tumors. Acta Neuropathol. 137, 123–137 (2019).

    Article  PubMed  Google Scholar 

  66. Koche, R. P. et al. Extrachromosomal circular DNA drives oncogenic genome remodeling in neuroblastoma. Nat. Genet. 52, 29–34 (2020).

    Article  CAS  PubMed  Google Scholar 

  67. Lange, J. T. et al. The evolutionary dynamics of extrachromosomal DNA in human cancers. Nat. Genet. 54, 1527–1533 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hung, K. L. et al. ecDNA hubs drive cooperative intermolecular oncogene expression. Nature 600, 731–736 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kaufman, R. J., Brown, P. C. & Schimke, R. T. Amplified dihydrofolate reductase genes in unstably methotrexate-resistant cells are associated with double minute chromosomes. Proc. Natl Acad. Sci. USA 76, 5669–5673 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Nathanson, D. A. et al. Targeted therapy resistance mediated by dynamic regulation of extrachromosomal mutant EGFR DNA. Science 343, 72–76 (2014).

    Article  CAS  PubMed  Google Scholar 

  71. Yi, E. et al. Live-cell imaging shows uneven segregation of extrachromosomal DNA elements and transcriptionally active extrachromosomal DNA hubs in cancer. Cancer Discov. 12, 468–483 (2022).

    Article  CAS  PubMed  Google Scholar 

  72. deCarvalho, A. C. et al. Discordant inheritance of chromosomal and extrachromosomal DNA elements contributes to dynamic disease evolution in glioblastoma. Nat. Genet. 50, 708–717 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hung, K. L. et al. Targeted profiling of human extrachromosomal DNA by CRISPR-CATCH. Nat. Genet. 54, 1746–1754 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhu, Y. et al. Oncogenic extrachromosomal DNA functions as mobile enhancers to globally amplify chromosomal transcription. Cancer Cell 39, 694–707.e7 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wu, S. et al. Circular ecDNA promotes accessible chromatin and high oncogene expression. Nature 575, 699–703 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chamorro González, R. et al. Parallel sequencing of extrachromosomal circular DNAs and transcriptomes in single cancer cells. Nat. Genet. 55, 880–890 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Kumar, P. et al. ATAC-seq identifies thousands of extrachromosomal circular DNA in cancer and cell lines. Sci. Adv. 6, eaba2489 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Møller, H. D. et al. Genome-wide purification of extrachromosomal circular DNA from eukaryotic cells. J. Vis. Exp. 4, e54239 (2016).

    Google Scholar 

  79. Li, G. et al. Chromatin interaction analysis with paired-end tag (ChIA-PET) sequencing technology and application. BMC Genomics 15, S11 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Chang, L. et al. Single-cell third-generation sequencing-based multi-omics uncovers gene expression changes governed by ecDNA and structural variants in cancer cells. Clin. Transl. Med. 13, e1351 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Li, F. et al. FLED: a full-length eccDNA detector for long-reads sequencing data. Brief. Bioinform. 24, bbad388 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Giurgiu, M. et al. Reconstructing extrachromosomal DNA structural heterogeneity from long-read sequencing data using Decoil. Genome Res. 34, 1355–1364 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Levan, A. & Levan, G. Have double minutes functioning centromeres? Hereditas 88, 81–92 (1978).

    Article  CAS  PubMed  Google Scholar 

  84. Sahajpal, N. S., Barseghyan, H., Kolhe, R., Hastie, A. & Chaubey, A. Optical genome mapping as a next-generation cytogenomic tool for detection of structural and copy number variations for prenatal genomic analyses. Genes 12, 398 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Rajkumar, U. et al. EcSeg: semantic segmentation of metaphase images containing extrachromosomal DNA. iScience 21, 428–435 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Cohen, S. & Lavi, S. Induction of circles of heterogeneous sizes in carcinogen-treated cells: two-dimensional gel analysis of circular DNA molecules. Mol. Cell. Biol. 16, 2002–2014 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Møller, H. D. et al. CRISPR-C: circularization of genes and chromosome by CRISPR in human cells. Nucleic Acids Res. 46, e131 (2018).

    PubMed  PubMed Central  Google Scholar 

  88. Pradella, D. et al. Immortalization and transformation of primary cells mediated by engineered ecDNAs. Preprint at bioRxiv https://doi.org/10.1101/2023.06.25.546239 (2023).

  89. Mitchell, T. J. et al. Timing the landmark events in the evolution of clear cell renal cell cancer: TRACERx Renal. Cell 173, 611–623.e17 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Killcoyne, S., Yusuf, A. & Fitzgerald, R. C. Genomic instability signals offer diagnostic possibility in early cancer detection. Trends Genet. 37, 966–972 (2021).

    Article  CAS  PubMed  Google Scholar 

  91. Martincorena, I. et al. Tumor evolution. High burden and pervasive positive selection of somatic mutations in normal human skin. Science 348, 880–886 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Rausch, T. et al. Long-read sequencing of diagnosis and post-therapy medulloblastoma reveals complex rearrangement patterns and epigenetic signatures. Cell Genomics 3, 100281 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Davis, A., Gao, R. & Navin, N. Tumor evolution: linear, branching, neutral or punctuated? Biochim. Biophys. Acta Rev. Cancer 1867, 151–161 (2017).

    Article  CAS  PubMed  Google Scholar 

  94. Ratnaparkhe, M. Defective DNA damage repair leads to frequent catastrophic genomic events in murine and human tumors. Nat. Commun. 9, 4760 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Simovic, M. et al. Carbon ion radiotherapy eradicates medulloblastomas with chromothripsis in an orthotopic Li–Fraumeni patient-derived mouse model. Neuro Oncol. 23, 2028–2041 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Helleday, T., Petermann, E., Lundin, C., Hodgson, B. & Sharma, R. A. DNA repair pathways as targets for cancer therapy. Nat. Rev. Cancer 8, 193–204 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Plummer, R. Perspective on the pipeline of drugs being developed with modulation of DNA damage as a target. Clin. Cancer Res. 16, 4527–4531 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. Helleday, T. Putting poly (ADP-ribose) polymerase and other DNA repair inhibitors into clinical practice. Curr. Opin. Oncol. 25, 609–614 (2013).

    Article  CAS  PubMed  Google Scholar 

  99. Farmer, H. et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434, 917–921 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Bryant, H. E. et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434, 913–917 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. Kaufman, B. et al. Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. J. Clin. Oncol. 33, 244–250 (2015).

    Article  CAS  PubMed  Google Scholar 

  102. Kats, I. et al. Spatial and temporal transcriptomics of SHH-medulloblastoma with chromothripsis identifies multiple genetic clones that resist to treatment and lead to relapse. Preprint at bioRxiv https://doi.org/10.1101/2023.03.03.530989 (2023).

  103. Khalid, U. et al. A synergistic interaction between HDAC- and PARP inhibitors in childhood tumors with chromothripsis. Int. J. Cancer 151, 590–606 (2022).

    Article  CAS  PubMed  Google Scholar 

  104. Galluzzi, L. et al. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ. 19, 107–120 (2012).

    Article  CAS  PubMed  Google Scholar 

  105. Vitale, I., Galluzzi, L., Castedo, M. & Kroemer, G. Mitotic catastrophe: a mechanism for avoiding genomic instability. Nat. Rev. Mol. Cell Biol. 12, 385–392 (2011).

    Article  CAS  PubMed  Google Scholar 

  106. Vakifahmetoglu, H., Olsson, M. & Zhivotovsky, B. Death through a tragedy: mitotic catastrophe. Cell Death Differ. 15, 1153–1162 (2008).

    Article  CAS  PubMed  Google Scholar 

  107. McGee, M. M. Targeting the mitotic catastrophe signaling pathway in cancer. Mediators Inflamm. 2015, e146282 (2015).

    Article  Google Scholar 

  108. Siri, S. O., Martino, J. & Gottifredi, V. Structural chromosome instability: types, origins, consequences, and therapeutic opportunities. Cancers 13, 3056 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Chen, X., Agustinus, A. S., Li, J., DiBona, M. & Bakhoum, S. F. Chromosomal instability as a driver of cancer progression. Nat. Rev. Genet. https://doi.org/10.1038/s41576-024-00761-7 (2024).

  110. Beernaert, B. & Parkes, E. E. cGAS–STING signalling in cancer: striking a balance with chromosomal instability. Biochem. Soc. Trans. 51, 539–555 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Harding, S. M. et al. Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature 548, 466–470 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Mackenzie, K. J. et al. cGAS surveillance of micronuclei links genome instability to innate immunity. Nature 548, 461–465 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Flynn, P. J., Koch, P. D. & Mitchison, T. J. Chromatin bridges, not micronuclei, activate cGAS after drug-induced mitotic errors in human cells. Proc. Natl Acad. Sci. USA 118, e2103585118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Takaki, T., Millar, R., Hiley, C. T. & Boulton, S. J. Micronuclei induced by radiation, replication stress, or chromosome segregation errors do not activate cGAS–STING. Mol. Cell 84, 2203–2213.e5 (2024).

    Article  CAS  PubMed  Google Scholar 

  115. Sato, Y. & Hayashi, M. T. Micronucleus is not a potent inducer of the cGAS/STING pathway. Life Sci. Alliance 7, e202302424 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. MacDonald, K. M. et al. Antecedent chromatin organization determines cGAS recruitment to ruptured micronuclei. Nat. Commun. 14, 556 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Tani, T. et al. TREX1 inactivation unleashes cancer cell STING–interferon signaling and promotes antitumor immunity. Cancer Discov. 14, 752–765 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Toufektchan, E. et al. Intratumoral TREX1 induction promotes immune evasion by limiting type I IFN. Cancer Immunol. Res. 12, 673–686 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Lim, J. et al. The exonuclease TREX1 constitutes an innate immune checkpoint limiting cGAS/STING-mediated antitumor immunity. Cancer Immunol. Res. 12, 663–672 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Jiang, M. et al. cGAS–STING, an important pathway in cancer immunotherapy. J. Hematol. Oncol. 13, 81 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ramanjulu, J. M. et al. Design of amidobenzimidazole STING receptor agonists with systemic activity. Nature 564, 439–443 (2018).

    Article  CAS  PubMed  Google Scholar 

  122. McKeage, M. J. et al. Phase II study of ASA404 (vadimezan, 5,6-dimethylxanthenone-4-acetic acid/DMXAA) 1800 mg/m2 combined with carboplatin and paclitaxel in previously untreated advanced non-small cell lung cancer. Lung Cancer 65, 192–197 (2009).

    Article  PubMed  Google Scholar 

  123. Gan, Y. et al. The cGAS/STING pathway: a novel target for cancer therapy. Front. Immunol. 12, 795401 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Bakhoum, S. F. et al. Chromosomal instability drives metastasis through a cytosolic DNA response. Nature 553, 467–472 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Hong, C. et al. cGAS–STING drives the IL-6-dependent survival of chromosomally instable cancers. Nature 607, 366–373 (2022).

    Article  CAS  PubMed  Google Scholar 

  126. Chowdhry, S. et al. Tumors driven by oncogene amplified extrachromosomal DNA (ecDNA) demonstrate enhanced sensitivity to cell cycle checkpoint kinase 1 (CHK1) inhibition [abstract 1626]. Cancer Res. 83, 1626 (2023).

    Article  Google Scholar 

  127. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05827614 (2024).

  128. Von Hoff, D. D. et al. Hydroxyurea accelerates loss of extrachromosomally amplified genes from tumor cells. Cancer Res. 51, 6273–6279 (1991).

    Google Scholar 

  129. Raymond, E. et al. Effects of hydroxyurea on extrachromosomal DNA in patients with advanced ovarian carcinomas. Clin. Cancer Res. 7, 1171–1180 (2001).

    CAS  PubMed  Google Scholar 

  130. Wu, T. et al. Extrachromosomal DNA formation enables tumor immune escape potentially through regulating antigen presentation gene expression. Sci. Rep. 12, 3590 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Horak, P. et al. Comprehensive genomic and transcriptomic analysis for guiding therapeutic decisions in patients with rare cancers. Cancer Discov. 11, 2780–2795 (2021).

    Article  CAS  PubMed  Google Scholar 

  132. Parra, R. G. et al. Single cell multi-omics analysis of chromothriptic medulloblastoma highlights genomic and transcriptomic consequences of genome instability. Preprint at bioRxiv https://doi.org/10.1101/2021.06.25.449944 (2021).

Download references

Acknowledgements

The authors thank M. Chan for sharing the circos plot for illustration purposes, and S. Fröhling and the team of the MASTER/DKTK/NCT trial for sharing the data shown in Fig. 1.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Aurélie Ernst.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cancer thanks John Maciejowski and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Chromosome bridges

Abnormal nuclear structure that arises from end-to-end chromosome fusions after DNA breakage or telomere crisis, incomplete DNA replication, or failed resolution of chromosome catenation.

dN/dS ratio

The rate of synonymous substitutions, assumed to be neutral, compared with the rate of non-synonymous substitutions, which result in amino acid changes and can be acted on by selection pressure.

Kataegis

A hypermutation phenomenon that has been identified in multiple cancer genomes and characterized by localized clusters of single base pair substitutions.

Kinetochore

During eukaryotic cell division, the attachment of spindle fibres to this disc-shaped protein structure enables the sister chromatids to be pulled apart.

Micronuclei

Aberrant nuclear structures that form around lagging mitotic chromosomes or chromosomal fragments that lack centromeres.

Robertsonian translocation

A constitutional centric-fusion chromosomal translocation in which the two long arms of acrocentric chromosomes (13, 14, 15, 21 or 22) fuse at or close to their centromeres to form a single chromosome (which can segregate normally at cell division if one of the two centromeres is inactivated).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simovic-Lorenz, M., Ernst, A. Chromothripsis in cancer. Nat Rev Cancer 25, 79–92 (2025). https://doi.org/10.1038/s41568-024-00769-5

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41568-024-00769-5

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer