Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Phosphoinositide kinases in cancer: from molecular mechanisms to therapeutic opportunities

Abstract

Phosphoinositide kinases, extending beyond the well-known phosphoinositide 3-kinase (PI3K), are key players in the dynamic and site-specific phosphorylation of lipid phosphoinositides. Unlike PI3Ks, phosphatidylinositol 4-kinases (PI4Ks) and phosphatidylinositol phosphate kinases (PIPKs) do not usually exhibit mutational alterations, but mostly show altered expression in tumours, orchestrating a broad spectrum of signalling, metabolic and immune processes, all of which are crucial in the pathogenesis of cancer. Dysregulation of PI4Ks and PIPKs has been associated with various malignancies, which has sparked considerable interest towards their therapeutic targeting. In this Review we summarize the current understanding of the lesser-studied phosphoinositide kinase families, PI4K and PIPK, focusing on their functions and relevance in cancer. In addition, we provide an overview of ongoing efforts driving the preclinical and clinical development of phosphoinositide kinase-targeting molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Phosphoinositide network regulation by the PI4K and PIPK families.
Fig. 2: Frequency of PI4Ks and PIPKs genomic alterations and differential gene expression across various cancer types.
Fig. 3: Impact of PI4Ks and PIPKs expression in cancer cells on patient survival.
Fig. 4: Functional implications of PI4Ks in cancer.
Fig. 5: Functional implications of PIPKs in cancer.

Similar content being viewed by others

Data availability

The data supporting the findings displayed in Figs. 2 and 3 and Box 1 are available in Supplementary Tables 25.

References

  1. Morrow, A. A. et al. The lipid kinase PI4KIIIβ is highly expressed in breast tumors and activates Akt in cooperation with Rab11a. Mol. Cancer Res. 12, 1492–1508 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Kamalesh, K. et al. Phosphatidylinositol 5-phosphate 4-kinase regulates early endosomal dynamics during clathrin-mediated endocytosis. J. Cell Sci. 130, 2119–2133 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sharma, S., Mathre, S., Ramya, V., Shinde, D. & Raghu, P. Phosphatidylinositol 5 phosphate 4-kinase regulates plasma-membrane PIP(3) turnover and insulin signaling. Cell Rep. 27, 1979–1990.e1977 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shin, Y. J. et al. PIP4K2A as a negative regulator of PI3K in PTEN-deficient glioblastoma. J. Exp. Med. 216, 1120–1134 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Behari, J. et al. Conserved RNA binding activity of phosphatidyl inositol 5-phosphate 4-kinase (PIP4K2A). Front. Mol. Biosci. 8, 631281 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Li, C., Yoon, B., Stefani, G. & Slack, F. J. Lipid kinase PIP5K1A regulates let-7 microRNA biogenesis through interacting with nuclear export protein XPO5. Nucleic Acids Res. 51, 9849–9862 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chao, W.-T., Daquinag, A. C., Ashcroft, F. & Kunz, J. Type I PIPK-α regulates directed cell migration by modulating Rac1 plasma membrane targeting and activation. J. Cell Biol. 190, 247–262 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lacalle, R. A. et al. Type I phosphatidylinositol 4-phosphate 5-kinase controls neutrophil polarity and directional movement. J. Cell Biol. 179, 1539–1553 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang, D. G. et al. PIP4Ks suppress insulin signaling through a catalytic-independent mechanism. Cell Rep. 27, 1991–2001.e1995 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vanhaesebroeck, B., Perry, M. W. D., Brown, J. R., André, F. & Okkenhaug, K. PI3K inhibitors are finally coming of age. Nat. Rev. Drug Discov. 20, 741–769 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hoxhaj, G. & Manning, B. D. The PI3K–AKT network at the interface of oncogenic signalling and cancer metabolism. Nat. Rev. Cancer 20, 74–88 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Fruman, D. A. & Rommel, C. PI3K and cancer: lessons, challenges and opportunities. Nat. Rev. Drug Discov. 13, 140–156 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Janku, F., Yap, T. A. & Meric-Bernstam, F. Targeting the PI3K pathway in cancer: are we making headway? Nat. Rev. Clin. Oncol. 15, 273–291 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Vasan, N. & Cantley, L. C. At a crossroads: how to translate the roles of PI3K in oncogenic and metabolic signalling into improvements in cancer therapy. Nat. Rev. Clin. Oncol. 19, 471–485 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Engelman, J. A. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat. Rev. Cancer 9, 550–562 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Boura, E. & Nencka, R. Phosphatidylinositol 4-kinases: function, structure, and inhibition. Exp. Cell Res. 337, 136–145 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Dornan, G. L., McPhail, J. A. & Burke, J. E. Type III phosphatidylinositol 4 kinases: structure, function, regulation, signalling and involvement in disease. Biochem. Soc. Trans. 44, 260–266 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Whitman, M., Downes, C. P., Keeler, M., Keller, T. & Cantley, L. Type I phosphatidylinositol kinase makes a novel inositol phospholipid, phosphatidylinositol-3-phosphate. Nature 332, 644–646 (1988).

    Article  CAS  PubMed  Google Scholar 

  19. Hutter, C. & Zenklusen, J. C. The Cancer Genome Atlas: creating lasting value beyond its data. Cell 173, 283–285 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Huang, X., Cao, Y., Bao, P., Zhu, B. & Cheng, Z. High expression of PI4K2A predicted poor prognosis of colon adenocarcinoma (COAD) and correlated with immunity. Cancer Med. 12, 837–851 (2023).

    Article  CAS  PubMed  Google Scholar 

  21. Waugh, M. G. Amplification of chromosome 1q genes encoding the phosphoinositide signalling enzymes PI4KB, AKT3, PIP5K1A and PI3KC2B in breast cancer. J. Cancer 5, 790–796 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Pataer, A. et al. Therapeutic targeting of the PI4K2A/PKR lysosome network is critical for misfolded protein clearance and survival in cancer cells. Oncogene 39, 801–813 (2020).

    Article  CAS  PubMed  Google Scholar 

  23. Ilboudo, A. et al. Overexpression of phosphatidylinositol 4-kinase type IIIα is associated with undifferentiated status and poor prognosis of human hepatocellular carcinoma. BMC Cancer 14, 7 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Jiang, X. et al. Targeting PI4KA sensitizes refractory leukemia to chemotherapy by modulating the ERK/AMPK/OXPHOS axis. Theranostics 12, 6972–6988 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Semenas, J. et al. The role of PI3K/AKT-related PIP5K1α and the discovery of its selective inhibitor for treatment of advanced prostate cancer. Proc. Natl Acad. Sci. USA 111, E3689–E3698 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jiang, L. et al. Rupatadine inhibits colorectal cancer cell proliferation through the PIP5K1A/Akt/CDK2 pathway. Biomed. Pharmacother. 176, 116826 (2024).

    Article  CAS  PubMed  Google Scholar 

  27. Sun, Y. et al. Type I gamma phosphatidylinositol phosphate kinase modulates invasion and proliferation and its expression correlates with poor prognosis in breast cancer. Breast Cancer Res. 12, R6 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sarwar, M. et al. The role of PIP5K1α/pAKT and targeted inhibition of growth of subtypes of breast cancer using PIP5K1α inhibitor. Oncogene 38, 375–389 (2019).

    Article  CAS  PubMed  Google Scholar 

  29. Peng, W. et al. Type Iγ phosphatidylinositol phosphate kinase promotes tumor growth by facilitating Warburg effect in colorectal cancer. eBioMedicine 44, 375–386 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li, H. et al. Smurf1 regulates lung cancer cell growth and migration through interaction with and ubiquitination of PIPKIγ. Oncogene 36, 5668–5680 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Lima, K. et al. PIP4K2A and PIP4K2C transcript levels are associated with cytogenetic risk and survival outcomes in acute myeloid leukemia. Cancer Genet. 233-234, 56–66 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Zhang, S. et al. Regulatory network and prognostic effect investigation of PIP4K2A in leukemia and solid cancers. Front. Genet. https://doi.org/10.3389/fgene.2018.00721 (2019).

  33. Wang, J. et al. Hsa_circ_0007099 and PIP4K2A coexpressed in diffuse large B-cell lymphoma with clinical significance. Genes Dis. 11, 101056 (2024).

    Article  CAS  PubMed  Google Scholar 

  34. Walsh, K. M. et al. Novel childhood ALL susceptibility locus BMI1–PIP4K2A is specifically associated with the hyperdiploid subtype. Blood 121, 4808–4809 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xu, H. et al. Novel susceptibility variants at 10p12.31–12.2 for childhood acute lymphoblastic leukemia in ethnically diverse populations. J. Natl Cancer Inst. 105, 733–742 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liao, F. et al. Association between PIP4K2A polymorphisms and acute lymphoblastic leukemia susceptibility. Medicine 95, e3542 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Migliorini, G. et al. Variation at 10p12.2 and 10p14 influences risk of childhood B-cell acute lymphoblastic leukemia and phenotype. Blood 122, 3298–3307 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Keune, W. J. et al. Low PIP4K2B expression in human breast tumors correlates with reduced patient survival: a role for PIP4K2B in the regulation of E-cadherin expression. Cancer Res. 73, 6913–6925 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li, J. et al. PI4KIIα is a novel regulator of tumor growth by its action on angiogenesis and HIF-1α regulation. Oncogene 29, 2550–2559 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Bura, A., Čabrijan, S., Đurić, I., Bruketa, T. & Jurak Begonja, A. A plethora of functions condensed into tiny phospholipids: the story of PI4P and PI(4,5)P(2). Cells https://doi.org/10.3390/cells1210141 (2023).

  41. Li, G. et al. Research progress on phosphatidylinositol 4-kinase inhibitors. Biochem. Pharmacol. 220, 115993 (2024).

    Article  CAS  PubMed  Google Scholar 

  42. Balla, A. & Balla, T. Phosphatidylinositol 4-kinases: old enzymes with emerging functions. Trends Cell Biol. 16, 351–361 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Mandal, K. Review of PIP2 in cellular signaling, functions and diseases. Int. J. Mol. Sci. https://doi.org/10.3390/ijms21218342 (2020).

  44. Mayer, I. A. & Arteaga, C. L. The PI3K/AKT pathway as a target for cancer treatment. Annu. Rev. Med. 67, 11–28 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Burke, J. E. Structural basis for regulation of phosphoinositide kinases and their involvement in human disease. Mol. Cell 71, 653–673 (2018).

    Article  CAS  PubMed  Google Scholar 

  46. Tan, J. & Brill, J. A. Cinderella story: PI4P goes from precursor to key signaling molecule. Crit. Rev. Biochem. Mol. Biol. 49, 33–58 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. de Rubio, R. G. et al. Phosphatidylinositol 4-phosphate is a major source of GPCR-stimulated phosphoinositide production. Sci. Signal. https://doi.org/10.1126/scisignal.aan1210 (2018).

  48. Delage, E., Puyaubert, J., Zachowski, A. & Ruelland, E. Signal transduction pathways involving phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate: convergences and divergences among eukaryotic kingdoms. Prog. Lipid Res. 52, 1–14 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Waugh, M. G. The Great Escape: how phosphatidylinositol 4-kinases and PI4P promote vesicle exit from the Golgi (and drive cancer). Biochem. J. 476, 2321–2346 (2019).

    Article  CAS  PubMed  Google Scholar 

  50. Clayton, E. L., Minogue, S. & Waugh, M. G. Mammalian phosphatidylinositol 4-kinases as modulators of membrane trafficking and lipid signaling networks. Prog. Lipid Res. 52, 294–304 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kuna, R. S. & Field, S. J. GOLPH3: a Golgi phosphatidylinositol(4)phosphate effector that directs vesicle trafficking and drives cancer. J. Lipid Res. 60, 269–275 (2019).

    Article  CAS  PubMed  Google Scholar 

  52. Barlow-Busch, I., Shaw, A. L. & Burke, J. E. PI4KA and PIKfyve: essential phosphoinositide signaling enzymes involved in myriad human diseases. Curr. Opin. Cell Biol. 83, 102207 (2023).

    Article  CAS  PubMed  Google Scholar 

  53. Mesmin, B. et al. A four-step cycle driven by PI(4)P hydrolysis directs sterol/PI(4)P exchange by the ER–Golgi tether OSBP. Cell 155, 830–843 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Hanada, K. et al. Molecular machinery for non-vesicular trafficking of ceramide. Nature 426, 803–809 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Posor, Y., Jang, W. & Haucke, V. Phosphoinositides as membrane organizers. Nat. Rev. Mol. Cell Biol. 23, 797–816 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Barylko, B. et al. A novel family of phosphatidylinositol 4-kinases conserved from yeast to humans. J. Biol. Chem. 276, 7705–7708 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Jung, G. et al. Stabilization of phosphatidylinositol 4-kinase type IIβ by interaction with Hsp90. J. Biol. Chem. 286, 12775–12784 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Banerji, S. et al. Oxysterol binding protein-dependent activation of sphingomyelin synthesis in the golgi apparatus requires phosphatidylinositol 4-kinase IIα. Mol. Biol. Cell 21, 4141–4150 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang, H. et al. GABARAPs regulate PI4P-dependent autophagosome:lysosome fusion. Proc. Natl Acad. Sci. USA 112, 7015–7020 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Alli-Balogun, G. O. et al. Phosphatidylinositol 4-kinase IIβ negatively regulates invadopodia formation and suppresses an invasive cellular phenotype. Mol. Biol. Cell 27, 4033–4042 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Li, J. et al. Dual inhibition of EGFR at protein and activity level via combinatorial blocking of PI4KIIα as anti-tumor strategy. Protein Cell 5, 457–468 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Minogue, S. et al. Phosphatidylinositol 4-kinase is required for endosomal trafficking and degradation of the EGF receptor. J. Cell Sci. 119, 571–581 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Isaji, T. et al. A complex between phosphatidylinositol 4-kinase IIα and integrin α3β1 is required for N-glycan sialylation in cancer cells. J. Biol. Chem. 294, 4425–4436 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tan, J. X. & Finkel, T. A phosphoinositide signalling pathway mediates rapid lysosomal repair. Nature 609, 815–821 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hämälistö, S. & Jäättelä, M. Lysosomes in cancer-living on the edge (of the cell). Curr. Opin. Cell Biol. 39, 69–76 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Ebner, M. et al. Nutrient-regulated control of lysosome function by signaling lipid conversion. Cell 186, 5328–5346.e5326 (2023).

    Article  CAS  PubMed  Google Scholar 

  67. Chen, Y., Barylko, B., Eichorst, J. P., Mueller, J. D. & Albanesi, J. P. Identification of the GABARAP binding determinant in PI4K2A. Biosci. Rep. https://doi.org/10.1042/bsr20240200 (2024).

  68. Albanesi, J., Wang, H., Sun, H. Q., Levine, B. & Yin, H. GABARAP-mediated targeting of PI4K2A/PI4KIIα to autophagosomes regulates PtdIns4P-dependent autophagosome–lysosome fusion. Autophagy 11, 2127–2129 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Baba, T., Toth, D. J., Sengupta, N., Kim, Y. J. & Balla, T. Phosphatidylinositol 4,5-bisphosphate controls Rab7 and PLEKHM1 membrane cycling during autophagosome–lysosome fusion. EMBO J. 38, e100312 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Liu, H. et al. PtdIns4P exchange at endoplasmic reticulum–autolysosome contacts is essential for autophagy and neuronal homeostasis. Autophagy 19, 2682–2701 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Craige, B., Salazar, G. & Faundez, V. Phosphatidylinositol-4-kinase type II alpha contains an AP-3-sorting motif and a kinase domain that are both required for endosome traffic. Mol. Biol. Cell 19, 1415–1426 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Goul, C. S. & Zoncu, R. PITTching in for lysosome repair. Dev. Cell 57, 2347–2349 (2022).

    Article  CAS  PubMed  Google Scholar 

  73. Chauhan, N. & Patro, B. S. Emerging roles of lysosome homeostasis (repair, lysophagy and biogenesis) in cancer progression and therapy. Cancer Lett. 584, 216599 (2024).

    Article  CAS  PubMed  Google Scholar 

  74. Tan, X. et al. EMT-activated secretory and endocytic vesicular trafficking programs underlie a vulnerability to PI4K2A antagonism in lung cancer. J. Clin. Invest. https://doi.org/10.1172/jci165863 (2023).

  75. Mazzocca, A., Liotta, F. & Carloni, V. Tetraspanin CD81-regulated cell motility plays a critical role in intrahepatic metastasis of hepatocellular carcinoma. Gastroenterology 135, 244–256.e241 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Ketel, K. et al. A phosphoinositide conversion mechanism for exit from endosomes. Nature 529, 408–412 (2016).

    Article  CAS  PubMed  Google Scholar 

  77. Liu, D. A. et al. A phosphoinositide switch mediates exocyst recruitment to multivesicular endosomes for exosome secretion. Nat. Commun. 14, 6883 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bojjireddy, N. et al. Pharmacological and genetic targeting of the PI4KA enzyme reveals its important role in maintaining plasma membrane phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate levels. J. Biol. Chem. 289, 6120–6132 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hammond, G. R. et al. PI4P and PI(4,5)P2 are essential but independent lipid determinants of membrane identity. Science 337, 727–730 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. D’Angelo, G., Vicinanza, M., Di Campli, A. & De Matteis, M. A. The multiple roles of PtdIns(4)P — not just the precursor of PtdIns(4,5)P2. J. Cell Sci. 121, 1955–1963 (2008).

    Article  PubMed  Google Scholar 

  81. Rahajeng, J. et al. Efficient Golgi forward trafficking requires GOLPH3-driven, PI4P-dependent membrane curvature. Dev. Cell 50, 573–585.e575 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tan, X. et al. PI4KIIIβ is a therapeutic target in chromosome 1q-amplified lung adenocarcinoma. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aax3772 (2020).

  83. Shi, L. et al. Addiction to Golgi-resident PI4P synthesis in chromosome 1q21.3-amplified lung adenocarcinoma cells. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2023537118 (2021).

  84. Berger, K. L., Kelly, S. M., Jordan, T. X., Tartell, M. A. & Randall, G. Hepatitis C virus stimulates the phosphatidylinositol 4-kinase IIIα-dependent phosphatidylinositol 4-phosphate production that is essential for its replication. J. Virol. 85, 8870–8883 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kwon, J. et al. Targeting phosphatidylinositol 4-kinase IIIα for radiosensitization: a potential model of drug repositioning using an anti-hepatitis C viral agent. Int. J. Radiat. Oncol. Biol. Phys. 96, 867–876 (2016).

    Article  CAS  PubMed  Google Scholar 

  86. Park, Y., Park, J. M., Kim, D. H., Kwon, J. & Kim, I. A. Inhibition of PI4K IIIα radiosensitizes in human tumor xenograft and immune-competent syngeneic murine tumor model. Oncotarget 8, 110392–110405 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Kattan, W. E. et al. Components of the phosphatidylserine endoplasmic reticulum to plasma membrane transport mechanism as targets for KRAS inhibition in pancreatic cancer. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2114126118 (2021).

  88. Chung, J. et al. PI4P/phosphatidylserine countertransport at ORP5- and ORP8-mediated ER-plasma membrane contacts. Science 349, 428–432 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Adhikari, H. et al. Oncogenic KRAS is dependent upon an EFR3A–PI4KA signaling axis for potent tumorigenic activity. Nat. Commun. 12, 5248 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Gajardo, T. et al. Actin dynamics regulation by TTC7A/PI4KIIIα limits DNA damage and cell death under confinement. J. Allergy Clin. Immunol. 152, 949–960 (2023).

    Article  CAS  PubMed  Google Scholar 

  91. Kakar, R., Ghosh, C. & Sun, Y. Phosphoinositide signaling in immune cell migration. Biomolecules https://doi.org/10.3390/biom13121705 (2023).

  92. Ren, C. et al. Leukocyte cytoskeleton polarization is initiated by plasma membrane curvature from cell attachment. Dev. Cell 49, 206–219.e207 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Govindarajan, B. et al. Adaptor proteins mediate CXCR4 and PI4KA crosstalk in prostate cancer cells and the significance of PI4KA in bone tumor growth. Sci. Rep. 13, 20634 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sbrissa, D. et al. A novel cross-talk between CXCR4 and PI4KIIIα in prostate cancer cells. Oncogene 38, 332–344 (2019).

    Article  CAS  PubMed  Google Scholar 

  95. Curtis, C. et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486, 346–352 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Mesquita, B. et al. Frequent copy number gains at 1q21 and 1q32 are associated with overexpression of the ETS transcription factors ETV3 and ELF3 in breast cancer irrespective of molecular subtypes. Breast Cancer Res. Treat. 138, 37–45 (2013).

    Article  CAS  PubMed  Google Scholar 

  97. de Graaf, P. et al. Phosphatidylinositol 4-kinaseβ is critical for functional association of rab11 with the Golgi complex. Mol. Biol. Cell 15, 2038–2047 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Tokuda, E. et al. Phosphatidylinositol 4-phosphate in the Golgi apparatus regulates cell–cell adhesion and invasive cell migration in human breast cancer. Cancer Res. 74, 3054–3066 (2014).

    Article  CAS  PubMed  Google Scholar 

  99. Sechi, S., Frappaolo, A., Karimpour-Ghahnavieh, A., Piergentili, R. & Giansanti, M. G. Oncogenic roles of GOLPH3 in the physiopathology of cancer. Int. J. Mol. Sci. https://doi.org/10.3390/ijms21030933 (2020).

  100. Rong, Y. et al. Clathrin and phosphatidylinositol-4,5-bisphosphate regulate autophagic lysosome reformation. Nat. Cell Biol. 14, 924–934 (2012).

    Article  CAS  PubMed  Google Scholar 

  101. Sridhar, S. et al. The lipid kinase PI4KIIIβ preserves lysosomal identity. EMBO J. 32, 324–339 (2013).

    Article  CAS  PubMed  Google Scholar 

  102. Judith, D. et al. ATG9A shapes the forming autophagosome through Arfaptin 2 and phosphatidylinositol 4-kinase IIIβ. J. Cell Biol. 218, 1634–1652 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Luteijn, R. D. et al. The activation of the adaptor protein STING depends on its interactions with the phospholipid PI4P. Sci. Signal. 17, eade3643 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wang, R., Hussain, A., Guo, Q. & Ma, M. cGAS–STING at the crossroads in cancer therapy. Crit. Rev. Oncol. Hematol. 193, 104194 (2024).

    Article  PubMed  Google Scholar 

  105. Llorente, A., Arora, G. K., Grenier, S. F. & Emerling, B. M. PIP kinases: a versatile family that demands further therapeutic attention. Adv. Biol. Regul. 87, 100939 (2023).

    Article  CAS  PubMed  Google Scholar 

  106. Rameh, L. E., Tolias, K. F., Duckworth, B. C. & Cantley, L. C. A new pathway for synthesis of phosphatidylinositol-4,5-bisphosphate. Nature 390, 192–196 (1997).

    Article  CAS  PubMed  Google Scholar 

  107. van den Bout, I. & Divecha, N. PIP5K-driven PtdIns(4,5)P2 synthesis: regulation and cellular functions. J. Cell Sci. 122, 3837–3850 (2009).

    Article  PubMed  Google Scholar 

  108. Rameh, L. E. & Blind, R. D. 25 Years of PI5P. Front. Cell Dev. Biol. 11, 1272911 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Bulley, S. J., Clarke, J. H., Droubi, A., Giudici, M.-L. & Irvine, R. F. Exploring phosphatidylinositol 5-phosphate 4-kinase function. Adv. Biol. Regul. 57, 193–202 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zhang, X. et al. Phosphatidylinositol-4-phosphate 5-kinase isozymes catalyze the synthesis of 3-phosphate-containing phosphatidylinositol signaling molecules. J. Biol. Chem. 272, 17756–17761 (1997).

    Article  CAS  PubMed  Google Scholar 

  111. Halstead, J. R. et al. A novel pathway of cellular phosphatidylinositol(3,4,5)-trisphosphate synthesis is regulated by oxidative stress. Curr. Biol. 11, 386–395 (2001).

    Article  CAS  PubMed  Google Scholar 

  112. Sbrissa, D., Ikonomov, O. C., Deeb, R. & Shisheva, A. Phosphatidylinositol 5-phosphate biosynthesis is linked to PIKfyve and is involved in osmotic response pathway in mammalian cells. J. Biol. Chem. 277, 47276–47284 (2002).

    Article  CAS  PubMed  Google Scholar 

  113. Kunz, J. et al. The activation loop of phosphatidylinositol phosphate kinases determines signaling specificity. Mol. Cell 5, 1–11 (2000).

    Article  CAS  PubMed  Google Scholar 

  114. Kunz, J., Fuelling, A., Kolbe, L. & Anderson, R. A. Stereo-specific substrate recognition by phosphatidylinositol phosphate kinases is swapped by changing a single amino acid residue. J. Biol. Chem. 277, 5611–5619 (2002).

    Article  CAS  PubMed  Google Scholar 

  115. Liu, A., Sui, D., Wu, D. & Hu, J. The activation loop of PIP5K functions as a membrane sensor essential for lipid substrate processing. Sci. Adv. 2, e1600925 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Wills, R. C. & Hammond, G. R. V. PI(4,5)P2: signaling the plasma membrane. Biochem. J. 479, 2311–2325 (2022).

    Article  CAS  PubMed  Google Scholar 

  117. Hansen, S. B. Lipid agonism: the PIP2 paradigm of ligand-gated ion channels. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1851, 620–628 (2015).

    Article  CAS  Google Scholar 

  118. Kwiatkowska, K. One lipid, multiple functions: how various pools of PI(4,5)P2 are created in the plasma membrane. Cell. Mol. Life Sci. 67, 3927–3946 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Thapa, N., Choi, S., Tan, X., Wise, T. & Anderson, R. A. Phosphatidylinositol phosphate 5-kinase Iγ and phosphoinositide 3-kinase/Akt signaling couple to promote oncogenic growth. J. Biol. Chem. 290, 18843–18854 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Cao, S. et al. Silencing of type Iγ phosphatidylinositol phosphate kinase suppresses ovarian cancer cell proliferation, migration and invasion. Oncol. Rep. 38, 253–262 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Tran, M. H. et al. NEDD4-induced degradative ubiquitination of phosphatidylinositol 4-phosphate 5-kinase α and its implication in breast cancer cell proliferation. J. Cell. Mol. Med. 22, 4117–4129 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Choi, S. et al. Agonist-stimulated phosphatidylinositol-3,4,5-trisphosphate generation by scaffolded phosphoinositide kinases. Nat. Cell Biol. 18, 1324–1335 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Zhang, H. et al. LRRC8A as a central mediator promotes colon cancer metastasis by regulating PIP5K1B/PIP2 pathway. Biochim. Biophys. Acta Mol. Basis Dis. 1870, 167066 (2024).

    Article  CAS  PubMed  Google Scholar 

  124. Larsson, P. et al. The functional interlink between AR and MMP9/VEGF signaling axis is mediated through PIP5K1α/pAKT in prostate cancer. Int. J. Cancer 146, 1686–1699 (2020).

    Article  CAS  PubMed  Google Scholar 

  125. Larsson, P. F. et al. FcγRIIIa receptor interacts with androgen receptor and PIP5K1α to promote growth and metastasis of prostate cancer. Mol. Oncol. 16, 2496–2517 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Wang, T. et al. PIP5K1α is required for promoting tumor progression in castration-resistant prostate cancer. Front. Cell Dev. Biol. 10, 798590 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Semenas, J. et al. Targeted inhibition of ERα signaling and PIP5K1α/Akt pathways in castration-resistant prostate cancer. Mol. Oncol. 15, 968–986 (2021).

    Article  CAS  PubMed  Google Scholar 

  128. Adhikari, H. & Counter, C. M. Interrogating the protein interactomes of RAS isoforms identifies PIP5K1A as a KRAS-specific vulnerability. Nat. Commun. 9, 3646 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Choi, S., Chen, M., Cryns, V. L. & Anderson, R. A. A nuclear phosphoinositide kinase complex regulates p53. Nat. Cell Biol. 21, 462–475 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Chen, M. et al. A p53–phosphoinositide signalosome regulates nuclear AKT activation. Nat. Cell Biol. 24, 1099–1113 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Balla, A., Tuymetova, G., Barshishat, M., Geiszt, M. & Balla, T. Characterization of type II phosphatidylinositol 4-kinase isoforms reveals association of the enzymes with endosomal vesicular compartments. J. Biol. Chem. 277, 20041–20050 (2002).

    Article  CAS  PubMed  Google Scholar 

  132. Bairstow, S. F. et al. Type Iγ661 phosphatidylinositol phosphate kinase directly interacts with AP2 and regulates endocytosis. J. Biol. Chem. 281, 20632–20642 (2006).

    Article  CAS  PubMed  Google Scholar 

  133. Coppolino, M. G. et al. Inhibition of phosphatidylinositol-4-phosphate 5-kinase Iα impairs localized actin remodeling and suppresses phagocytosis. J. Biol. Chem. 277, 43849–43857 (2002).

    Article  CAS  PubMed  Google Scholar 

  134. Mao, Y. S. et al. Essential and unique roles of PIP5K-γ and -α in Fcγ receptor-mediated phagocytosis. J. Cell Biol. 184, 281–296 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Szymańska, E., Korzeniowski, M., Raynal, P., Sobota, A. & Kwiatkowska, K. Contribution of PIP-5 kinase Iα to raft-based FcγRIIA signaling. Exp. Cell Res. 315, 981–995 (2009).

    Article  PubMed  Google Scholar 

  136. Xu, Q. et al. Phosphatidylinositol phosphate kinase PIPKIγ and phosphatase INPP5E coordinate initiation of ciliogenesis. Nat. Commun. 7, 10777 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Li, L. et al. Cdk5-mediated phosphorylation regulates phosphatidylinositol 4-phosphate 5-kinase type I γ 90 activity and cell invasion. FASEB J. 33, 631–642 (2019).

    Article  CAS  PubMed  Google Scholar 

  138. Jafari, N. et al. p70S6K1 (S6K1)-mediated phosphorylation regulates phosphatidylinositol 4-phosphate 5-kinase type I γ degradation and cell invasion. J. Biol. Chem. 291, 25729–25741 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Peng, J. M., Lin, S. H., Yu, M. C. & Hsieh, S. Y. CLIC1 recruits PIP5K1A/C to induce cell-matrix adhesions for tumor metastasis. J. Clin. Invest. https://doi.org/10.1172/jci133525 (2021).

  140. Sun, Y., Ling, K., Wagoner, M. P. & Anderson, R. A. Type Iγ phosphatidylinositol phosphate kinase is required for EGF-stimulated directional cell migration. J. Cell Biol. 178, 297–308 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Ni, W. et al. SUMOylation is required for PIPK1γ-driven keratinocyte migration and growth. FEBS J. 286, 4709–4720 (2019).

    Article  CAS  PubMed  Google Scholar 

  142. Durand, N. et al. Protein kinase D1 regulates focal adhesion dynamics and cell adhesion through phosphatidylinositol-4-phosphate 5-kinase type-l γ. Sci. Rep. 6, 35963 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Li, X. et al. Ubiquitylation of phosphatidylinositol 4-phosphate 5-kinase type I γ by HECTD1 regulates focal adhesion dynamics and cell migration. J. Cell Sci. 126, 2617–2628 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Wu, Z. et al. PIPKIγ regulates focal adhesion dynamics and colon cancer cell invasion. PLoS ONE 6, e24775 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Thapa, N., Tan, X., Choi, S., Wise, T. & Anderson, R. A. PIPKIγ and talin couple phosphoinositide and adhesion signaling to control the epithelial to mesenchymal transition. Oncogene 36, 899–911 (2017).

    Article  CAS  PubMed  Google Scholar 

  146. Thapa, N. et al. Phosphoinositide signaling regulates the exocyst complex and polarized integrin trafficking in directionally migrating cells. Dev. Cell 22, 116–130 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Ling, K. et al. Type Iγ phosphatidylinositol phosphate kinase modulates adherens junction and E-cadherin trafficking via a direct interaction with mu 1B adaptin. J. Cell Biol. 176, 343–353 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Sun, Y., Hedman, A. C., Tan, X., Schill, N. J. & Anderson, R. A. Endosomal type Iγ PIP 5-kinase controls EGF receptor lysosomal sorting. Dev. Cell 25, 144–155 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Chen, C. et al. EGFR-induced phosphorylation of type Iγ phosphatidylinositol phosphate kinase promotes pancreatic cancer progression. Oncotarget 8, 42621–42637 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Chen, C. et al. Targeting type Iγ phosphatidylinositol phosphate kinase inhibits breast cancer metastasis. Oncogene 34, 4635–4646 (2015).

    Article  CAS  PubMed  Google Scholar 

  151. Sarwar, M. et al. Targeted suppression of AR-V7 using PIP5K1α inhibitor overcomes enzalutamide resistance in prostate cancer cells. Oncotarget 7, 63065–63081 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Kawase, A. et al. Decrease in multidrug resistance-associated protein 2 activities by knockdown of phosphatidylinositol 4-phosphate 5-kinase in hepatocytes and cancer cells. J. Pharm. Pharm. Sci. 22, 576–584 (2019).

    Article  CAS  PubMed  Google Scholar 

  153. Iorns, E., Lord, C. J. & Ashworth, A. Parallel RNAi and compound screens identify the PDK1 pathway as a target for tamoxifen sensitization. Biochem. J. 417, 361–370 (2009).

    Article  CAS  PubMed  Google Scholar 

  154. Sun, Y. et al. CircPIP5K1A serves as a competitive endogenous RNA contributing to ovarian cancer progression via regulation of miR-661/IGFBP5 signaling. J. Cell Biochem. 120, 19406–19414 (2019).

    Article  CAS  PubMed  Google Scholar 

  155. Feng, N. et al. Circ_PIP5K1A regulates cisplatin resistance and malignant progression in non-small cell lung cancer cells and xenograft murine model via depending on miR-493-5p/ROCK1 axis. Respir. Res. 22, 248 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Zheng, K. et al. CircRNA PIP5K1A promotes the progression of glioma through upregulation of the TCF12/PI3K/AKT pathway by sponging miR-515-5p. Cancer Cell Int. 21, 27 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Zhang, Q. et al. Circular RNA PIP5K1A promotes colon cancer development through inhibiting miR-1273a. World J. Gastroenterol. 25, 5300–5309 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Binmadi, N. O., Proia, P., Zhou, H., Yang, Y.-H. & Basile, J. R. Rho-mediated activation of PI(4)P5K and lipid second messengers is necessary for promotion of angiogenesis by semaphorin 4D. Angiogenesis 14, 309–319 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Xue, J. et al. PIPKIγ regulates CCL2 expression in colorectal cancer by activating AKT–STAT3 signaling. J. Immunol. Res. 2019, 3690561 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Gawden-Bone, C. M. et al. PIP5 kinases regulate membrane phosphoinositide and actin composition for targeted granule secretion by cytotoxic lymphocytes. Immunity 49, 427–437.e424 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Xue, J. et al. Type Iγ phosphatidylinositol phosphate kinase regulates PD-L1 expression by activating NF-κB. Oncotarget 8, 42414–42427 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Ghosh, C. et al. Type I gamma phosphatidylinositol phosphate 5-kinase i5 controls cell sensitivity to interferon. Dev. Cell 59, 1028–1042.e1025 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Lokuta, M. A. et al. Type Iγ PIP kinase is a novel uropod component that regulates rear retraction during neutrophil chemotaxis. Mol. Biol. Cell 18, 5069–5080 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Bultsma, Y., Keune, W.-J. & Divecha, N. PIP4Kβ interacts with and modulates nuclear localization of the high-activity PtdIns5P-4-kinase isoform PIP4Kα. Biochem. J. 430, 223–235 (2010).

    Article  CAS  PubMed  Google Scholar 

  165. Clarke, J. H. & Irvine, R. F. Evolutionarily conserved structural changes in phosphatidylinositol 5-phosphate 4-kinase (PI5P4K) isoforms are responsible for differences in enzyme activity and localization. Biochem. J. 454, 49–57 (2013).

    Article  CAS  PubMed  Google Scholar 

  166. Sumita, K. et al. The lipid kinase PI5P4Kβ is an intracellular GTP sensor for metabolism and tumorigenesis. Mol. Cell 61, 187–198 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Takeuchi, K. et al. The GTP responsiveness of PI5P4Kβ evolved from a compromised trade-off between activity and specificity. Structure 30, 886–899.e884 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Wills, R. C. et al. A novel homeostatic mechanism tunes PI(4,5)P2-dependent signaling at the plasma membrane. J. Cell Sci. https://doi.org/10.1242/jcs.261494 (2023).

  169. Llorente, A., Loughran, R. M. & Emerling, B. M. Targeting phosphoinositide signaling in cancer: relevant techniques to study lipids and novel avenues for therapeutic intervention. Front. Cell Dev. Biol. 11, 1297355 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Bulley, S. J. et al. In B cells, phosphatidylinositol 5-phosphate 4-kinase–α synthesizes PI(4,5)P2 to impact mTORC2 and Akt signaling. Proc. Natl Acad. Sci. USA 113, 10571–10576 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Gupta, A. et al. Phosphatidylinositol 5-phosphate 4-kinase (PIP4K) regulates TOR signaling and cell growth during Drosophila development. Proc. Natl Acad. Sci. USA 110, 5963–5968 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Lamia, K. A. et al. Increased insulin sensitivity and reduced adiposity in phosphatidylinositol 5-phosphate 4-kinase β−/− mice. Mol. Cell Biol. 24, 5080–5087 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Carricaburu, V. et al. The phosphatidylinositol (PI)-5-phosphate 4-kinase type II enzyme controls insulin signaling by regulating PI-3,4,5-trisphosphate degradation. Proc. Natl Acad. Sci. USA 100, 9867–9872 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Lundquist, M. R. et al. Phosphatidylinositol-5-phosphate 4-kinases regulate cellular lipid metabolism by facilitating autophagy. Mol. Cell 70, 531–544.e539 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Mackey, A. M., Sarkes, D. A., Bettencourt, I., Asara, J. M. & Rameh, L. E. PIP4kγ is a substrate for mTORC1 that maintains basal mTORC1 signaling during starvation. Sci. Signal. 7, ra104 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Jude, J. G. et al. A targeted knockdown screen of genes coding for phosphoinositide modulators identifies PIP4K2A as required for acute myeloid leukemia cell proliferation and survival. Oncogene 34, 1253–1262 (2015).

    Article  CAS  PubMed  Google Scholar 

  177. Lima, K. et al. The PIP4K2 inhibitor THZ-P1-2 exhibits antileukemia activity by disruption of mitochondrial homeostasis and autophagy. Blood Cancer J. 12, 151 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Lima, K. et al. Potency and efficacy of pharmacological PIP4K2 inhibitors in acute lymphoblastic leukemia. Eur. J. Pharmacol. 977, 176723 (2024).

    Article  CAS  PubMed  Google Scholar 

  179. Lima, K. et al. Pharmacological inhibition of PIP4K2 potentiates venetoclax-induced apoptosis in acute myeloid leukemia. Int. J. Mol. Sci. 24, 16899 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Triscott, J. et al. PI5P4Kα supports prostate cancer metabolism and exposes a survival vulnerability during androgen receptor inhibition. Sci. Adv. 9, eade8641 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Triscott, J. et al. Loss of PI5P4Kα Slows the Progression of a Pten Mutant Basal Cell Model of Prostate Cancer. Mol. Cancer Res. 23, 33–45 (2025).

    Article  CAS  PubMed  Google Scholar 

  182. Rogava, M. et al. Loss of Pip4k2c confers liver-metastatic organotropism through insulin-dependent PI3K-AKT pathway activation. Nat. Cancer https://doi.org/10.1038/s43018-023-00704-x (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Nie, D. et al. Metabolic enzyme SLC27A5 regulates PIP4K2A pre-mRNA splicing as a noncanonical mechanism to suppress hepatocellular carcinoma metastasis. Adv. Sci. 11, e2305374 (2024).

    Article  Google Scholar 

  184. Jones, D. R. et al. Nuclear PtdIns5P as a transducer of stress signaling: an in vivo role for PIP4Kβ. Mol. Cell 23, 685–695 (2006).

    Article  CAS  PubMed  Google Scholar 

  185. Jones, D. R., Foulger, R., Keune, W. J., Bultsma, Y. & Divecha, N. PtdIns5P is an oxidative stress-induced second messenger that regulates PKB activation. FASEB J. 27, 1644–1656 (2013).

    Article  CAS  PubMed  Google Scholar 

  186. Bua, D. J., Martin, G. M., Binda, O. & Gozani, O. Nuclear phosphatidylinositol-5-phosphate regulates ING2 stability at discrete chromatin targets in response to DNA damage. Sci. Rep. 3, 2137 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Keune, W. J. et al. Regulation of phosphatidylinositol-5-phosphate signaling by Pin1 determines sensitivity to oxidative stress. Sci. Signal. 5, ra86 (2012).

    Article  PubMed  Google Scholar 

  188. Gelato, K. A. et al. Accessibility of different histone H3-binding domains of UHRF1 is allosterically regulated by phosphatidylinositol 5-phosphate. Mol. Cell 54, 905–919 (2014).

    Article  CAS  PubMed  Google Scholar 

  189. Stijf-Bultsma, Y. et al. The basal transcription complex component TAF3 transduces changes in nuclear phosphoinositides into transcriptional output. Mol. Cell 58, 453–467 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Emerling, B. M. et al. Depletion of a putatively druggable class of phosphatidylinositol kinases inhibits growth of p53-null tumors. Cell 155, 844–857 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Palamiuc, L. et al. Hippo and PI5P4K signaling intersect to control the transcriptional activation of YAP. Sci. Signal. 17, eado6266 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Luoh, S. W., Venkatesan, N. & Tripathi, R. Overexpression of the amplified Pip4k2β gene from 17q11–12 in breast cancer cells confers proliferation advantage. Oncogene 23, 1354–1363 (2004).

    Article  CAS  PubMed  Google Scholar 

  193. Terkelsen, T. et al. High-throughput proteomics of breast cancer interstitial fluid: identification of tumor subtype-specific serologically relevant biomarkers. Mol. Oncol. 15, 429–461 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Hu, A. et al. PIP4K2A regulates intracellular cholesterol transport through modulating PI(4,5)P2 homeostasis. J. Lipid Res. 59, 507–514 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Loughran, R. M. et al. Noncanonical PI(4,5)P2 coordinates lysosome positioning through cholesterol trafficking. Preprint at bioRxiv https://doi.org/10.1101/2025.01.02.629779 (2025).

  196. Ravi, A. et al. PI5P4Ks drive metabolic homeostasis through peroxisome-mitochondria interplay. Dev. Cell 56, 1661–1676 e1610 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Zheng, L. & Conner, S. D. PI5P4Kγ functions in DTX1-mediated Notch signaling. Proc. Natl Acad. Sci. USA 115, E1983–e1990 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Shi, Q. et al. Notch signaling pathway in cancer: from mechanistic insights to targeted therapies. Signal. Transduct. Target. Ther. 9, 128 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Shim, H. et al. Deletion of the gene Pip4k2c, a novel phosphatidylinositol kinase, results in hyperactivation of the immune system. Proc. Natl Acad. Sci. USA 113, 7596–7601 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Poli, A. et al. PIP4Ks impact on PI3K, FOXP3, and UHRF1 signaling and modulate human regulatory T cell proliferation and immunosuppressive activity. Proc. Natl Acad. Sci. USA 118, e2010053118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Lees, J. A., Li, P., Kumar, N., Weisman, L. S. & Reinisch, K. M. Insights into lysosomal PI(3,5)P(2) homeostasis from a structural-biochemical analysis of the PIKfyve lipid kinase complex. Mol. Cell 80, 736–743.e734 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Shisheva, A. PIKfyve: partners, significance, debates and paradoxes. Cell Biol. Int. 32, 591–604 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Hayakawa, A. et al. Structural basis for endosomal targeting by FYVE domains. J. Biol. Chem. 279, 5958–5966 (2004).

    Article  CAS  PubMed  Google Scholar 

  204. Sbrissa, D., Ikonomov, O. C. & Shisheva, A. PIKfyve lipid kinase is a protein kinase: downregulation of 5′-phosphoinositide product formation by autophosphorylation. Biochemistry 39, 15980–15989 (2000).

    Article  CAS  PubMed  Google Scholar 

  205. Rivero-Ríos, P. & Weisman, L. S. Roles of PIKfyve in multiple cellular pathways. Curr. Opin. Cell Biol. 76, 102086 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Ikonomov, O. C. et al. The phosphoinositide kinase PIKfyve is vital in early embryonic development: preimplantation lethality of PIKfyve−/− embryos but normality of PIKfyve+/− mice*. J. Biol. Chem. 286, 13404–13413 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Takasuga, S. et al. Critical roles of type III phosphatidylinositol phosphate kinase in murine embryonic visceral endoderm and adult intestine. Proc. Natl Acad. Sci. USA 110, 1726–1731 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Zolov, S. N. et al. In vivo, Pikfyve generates PI(3,5)P2, which serves as both a signaling lipid and the major precursor for PI5P. Proc. Natl Acad. Sci. USA 109, 17472–17477 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Ikonomov, O. C., Sbrissa, D. & Shisheva, A. Mammalian cell morphology and endocytic membrane homeostasis require enzymatically active phosphoinositide 5-kinase PIKfyve. J. Biol. Chem. 276, 26141–26147 (2001).

    Article  CAS  PubMed  Google Scholar 

  210. Bissig, C., Hurbain, I., Raposo, G. & van Niel, G. PIKfyve activity regulates reformation of terminal storage lysosomes from endolysosomes. Traffic 18, 747–757 (2017).

    Article  CAS  PubMed  Google Scholar 

  211. Choy, C. H. et al. Lysosome enlargement during inhibition of the lipid kinase PIKfyve proceeds through lysosome coalescence. J. Cell Sci. https://doi.org/10.1242/jcs.213587 (2018).

  212. Yordanov, T. E. et al. Biogenesis of lysosome-related organelles complex-1 (BORC) regulates late endosomal/lysosomal size through PIKfyve-dependent phosphatidylinositol-3,5-bisphosphate. Traffic 20, 674–696 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Ikonomov, O. C., Sbrissa, D. & Shisheva, A. Localized PtdIns 3,5-P2 synthesis to regulate early endosome dynamics and fusion. Am. J. Physiol. Cell Physiol. 291, C393–C404 (2006).

    Article  CAS  PubMed  Google Scholar 

  214. Sbrissa, D. et al. Core protein machinery for mammalian phosphatidylinositol 3,5-bisphosphate synthesis and turnover that regulates the progression of endosomal transport. Novel Sac phosphatase joins the ArPIKfyve–PIKfyve complex. J. Biol. Chem. 282, 23878–23891 (2007).

    Article  CAS  PubMed  Google Scholar 

  215. Krishna, S. et al. PIKfyve regulates vacuole maturation and nutrient recovery following engulfment. Dev. Cell 38, 536–547 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Jefferies, H. B. J. et al. A selective PIKfyve inhibitor blocks PtdIns(3,5)P2 production and disrupts endomembrane transport and retroviral budding. EMBO Rep. 9, 164–170-170 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. de Lartigue, J. et al. PIKfyve regulation of endosome-linked pathways. Traffic 10, 883–893 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Kerr, M. C. et al. Inhibition of the PtdIns(5) kinase PIKfyve disrupts intracellular replication of Salmonella. EMBO J. 29, 1331–1347 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Klein, A. D., Petruzzi, K. L., Lee, C. & Overholtzer, M. Stress-induced microautophagy is coordinated with lysosome biogenesis and regulated by PIKfyve. Mol. Biol. Cell 35, ar70 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Ikonomov, O. C., Sbrissa, D. & Shisheva, A. Small molecule PIKfyve inhibitors as cancer therapeutics: translational promises and limitations. Toxicol. Appl. Pharmacol. 383, 114771 (2019).

    Article  CAS  PubMed  Google Scholar 

  221. Gayle, S. et al. Identification of apilimod as a first-in-class PIKfyve kinase inhibitor for treatment of B-cell non-Hodgkin lymphoma. Blood 129, 1768–1778 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/show/NCT02594384 (2015).

  223. Hou, J. Z. et al. Inhibition of PIKfyve using YM201636 suppresses the growth of liver cancer via the induction of autophagy. Oncol. Rep. 41, 1971–1979 (2019).

    CAS  PubMed  Google Scholar 

  224. Sharma, G. et al. A family of PIKFYVE inhibitors with therapeutic potential against autophagy-dependent cancer cells disrupt multiple events in lysosome homeostasis. Autophagy 15, 1694–1718 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Ikonomov, O. C. et al. Kinesin adapter JLP links PIKfyve to microtubule-based endosome-to-trans-Golgi network traffic of furin. J. Biol. Chem. 284, 3750–3761 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Rutherford, A. C. et al. The mammalian phosphatidylinositol 3-phosphate 5-kinase (PIKfyve) regulates endosome-to-TGN retrograde transport. J. Cell Sci. 119, 3944–3957 (2006).

    Article  CAS  PubMed  Google Scholar 

  227. Giridharan, S. S. P. et al. Lipid kinases VPS34 and PIKfyve coordinate a phosphoinositide cascade to regulate retriever-mediated recycling on endosomes. eLife 11, e69709 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Stallaert, W. et al. Contact inhibitory Eph signaling suppresses EGF-promoted cell migration by decoupling EGFR activity from vesicular recycling. Sci. Signal. https://doi.org/10.1126/scisignal.aat0114 (2018).

  229. McCartney, A. J. et al. Activity-dependent PI(3,5)P2 synthesis controls AMPA receptor trafficking during synaptic depression. Proc. Natl Acad. Sci. USA 111, E4896–E4905 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Kim, J. et al. The phosphoinositide kinase PIKfyve mediates epidermal growth factor receptor trafficking to the nucleus. Cancer Res. 67, 9229–9237 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Er, E. E., Mendoza, M. C., Mackey, A. M., Rameh, L. E. & Blenis, J. AKT facilitates EGFR trafficking and degradation by phosphorylating and activating PIKfyve. Sci. Signal. 6, ra45 (2013).

    Article  PubMed  Google Scholar 

  232. Ferrarone, J. R. et al. Genome-wide CRISPR screens in spheroid culture reveal that the tumor suppressor LKB1 inhibits growth via the PIKFYVE lipid kinase. Proc. Natl Acad. Sci. USA 121, e2403685121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Tsuruta, F., Green, E. M., Rousset, M. & Dolmetsch, R. E. PIKfyve regulates CaV1.2 degradation and prevents excitotoxic cell death. J. Cell Biol. 187, 279–294 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. She, J. et al. Structural insights into the voltage and phospholipid activation of the mammalian TPC1 channel. Nature 556, 130–134 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. She, J. et al. Structural mechanisms of phospholipid activation of the human TPC2 channel. eLife 8, e45222 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  236. Dong, X. P. et al. PI(3,5)P(2) controls membrane trafficking by direct activation of mucolipin Ca2+ release channels in the endolysosome. Nat. Commun. 1, 38 (2010).

    Article  PubMed  Google Scholar 

  237. Sopjani, M. et al. Regulation of the Ca2+ channel TRPV6 by the kinases SGK1, PKB/Akt, and PIKfyve. J. Membr. Biol. 233, 35–41 (2010).

    Article  CAS  PubMed  Google Scholar 

  238. Shen, J. et al. Deficiency of MIP/MTMR14 phosphatase induces a muscle disorder by disrupting Ca2+ homeostasis. Nat. Cell Biol. 11, 769–776 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Touchberry, C. D. et al. Phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) potentiates cardiac contractility via activation of the ryanodine receptor. J. Biol. Chem. 285, 40312–40321 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Seebohm, G. et al. Regulation of endocytic recycling of KCNQ1/KCNE1 potassium channels. Circ. Res. 100, 686–692 (2007).

    Article  CAS  PubMed  Google Scholar 

  241. Gehring, E. M. et al. PIKfyve upregulates CFTR activity. Biochem. Biophys. Res. Commun. 390, 952–957 (2009).

    Article  CAS  PubMed  Google Scholar 

  242. Klaus, F. et al. PIKfyve-dependent regulation of the Cl- channel ClC-2. Biochem. Biophys. Res. Commun. 381, 407–411 (2009).

    Article  CAS  PubMed  Google Scholar 

  243. Saffi, G. T. et al. INPP4B promotes PDAC aggressiveness via PIKfyve and TRPML-1-mediated lysosomal exocytosis. J. Cell Biol. https://doi.org/10.1083/jcb.202401012 (2024).

  244. Oppelt, A. et al. PIKfyve, MTMR3 and their product PtdIns5P regulate cancer cell migration and invasion through activation of Rac1. Biochem. J. 461, 383–390 (2014).

    Article  CAS  PubMed  Google Scholar 

  245. Dupuis-Coronas, S. et al. The nucleophosmin-anaplastic lymphoma kinase oncogene interacts, activates, and uses the kinase PIKfyve to increase invasiveness*. J. Biol. Chem. 286, 32105–32114 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Ikonomov, O. C., Sbrissa, D., Mlak, K. & Shisheva, A. Requirement for PIKfyve enzymatic activity in acute and long-term insulin cellular effects. Endocrinology 143, 4742–4754 (2002).

    Article  CAS  PubMed  Google Scholar 

  247. Shisheva, A., Rusin, B., Ikonomov, O. C., DeMarco, C. & Sbrissa, D. Localization and insulin-regulated relocation of phosphoinositide 5-kinase PIKfyve in 3T3-L1 adipocytes*. J. Biol. Chem. 276, 11859–11869 (2001).

    Article  CAS  PubMed  Google Scholar 

  248. Ikonomov, O. C., Sbrissa, D., Delvecchio, K., A. Rillema, J. & Shisheva, A. Unexpected severe consequences of Pikfyve deletion by aP2- or Aq-promoter-driven Cre expression for glucose homeostasis and mammary gland development. Physiol. Rep. 4, e12812 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  249. Bao, Y. et al. Targeting the lipid kinase PIKfyve upregulates surface expression of MHC class I to augment cancer immunotherapy. Proc. Natl Acad. Sci. USA 120, e2314416120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Qiao, Y. et al. Autophagy inhibition by targeting PIKfyve potentiates response to immune checkpoint blockade in prostate cancer. Nat. Cancer 2, 978–993 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Jiang, J. et al. TRIM68, PIKFYVE, and DYNLL2: the possible novel autophagy- and immunity-associated gene biomarkers for osteosarcoma prognosis. Front. Oncol. 11, 643104 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Min, S. H. et al. Loss of PIKfyve in platelets causes a lysosomal disease leading to inflammation and thrombosis in mice. Nat. Commun. 5, 4691 (2014).

    Article  CAS  PubMed  Google Scholar 

  253. Cai, X. et al. PIKfyve, a class III PI kinase, is the target of the small molecular IL-12/IL-23 inhibitor apilimod and a player in Toll-like receptor signaling. Chem. Biol. 20, 912–921 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Cai, X., Xu, Y., Kim, Y.-M., Loureiro, J. & Huang, Q. PIKfyve, a class III lipid kinase, is required for TLR-induced type I IFN production via modulation of ATF3. J. Immunol. 192, 3383–3389 (2014).

    Article  CAS  PubMed  Google Scholar 

  255. Choi, J. E. et al. PIKfyve, expressed by CD11c-positive cells, controls tumor immunity. Nat. Commun. 15, 5487 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Dayam, R. M. et al. The lipid kinase PIKfyve coordinates the neutrophil immune response through the activation of the Rac GTPase. J. Immunol. 199, 2096–2105 (2017).

    Article  CAS  PubMed  Google Scholar 

  257. Kim, G. H. E., Dayam, R. M., Prashar, A., Terebiznik, M. & Botelho, R. J. PIKfyve inhibition interferes with phagosome and endosome maturation in macrophages. Traffic 15, 1143–1163 (2014).

    Article  CAS  PubMed  Google Scholar 

  258. Baranov, M. V. et al. The phosphoinositide kinase PIKfyve promotes cathepsin-S-mediated major histocompatibility complex class II antigen presentation. iScience 11, 160–177 (2019).

    Article  CAS  PubMed  Google Scholar 

  259. Li, J. et al. PI-273, a substrate-competitive, specific small-molecule inhibitor of PI4KIIα, inhibits the growth of breast cancer cells. Cancer Res. 77, 6253–6266 (2017).

    Article  CAS  PubMed  Google Scholar 

  260. Sinha, R. K., Patel, R. Y., Bojjireddy, N., Datta, A. & Subrahmanyam, G. Epigallocatechin gallate (EGCG) inhibits type II phosphatidylinositol 4-kinases: a key component in pathways of phosphoinositide turnover. Arch. Biochem. Biophys. 516, 45–51 (2011).

    Article  CAS  PubMed  Google Scholar 

  261. Srivastava, R. et al. Resveratrol inhibits type II phosphatidylinositol 4-kinase: a key component in pathways of phosphoinositide turn over. Biochem. Pharmacol. 70, 1048–1055 (2005).

    Article  CAS  PubMed  Google Scholar 

  262. Bojjireddy, N., Sinha, R. K. & Subrahmanyam, G. Piperine inhibits type II phosphatidylinositol 4-kinases: a key component in phosphoinositides turnover. Mol. Cell Biochem. 393, 9–15 (2014).

    Article  CAS  PubMed  Google Scholar 

  263. Bojjireddy, N., Sinha, R. K., Panda, D. & Subrahmanyam, G. Sanguinarine suppresses IgE induced inflammatory responses through inhibition of type II PtdIns 4-kinase(s). Arch. Biochem. Biophys. 537, 192–197 (2013).

    Article  CAS  PubMed  Google Scholar 

  264. Simons, J. P. et al. Loss of phosphatidylinositol 4-kinase 2α activity causes late onset degeneration of spinal cord axons. Proc. Natl Acad. Sci. USA 106, 11535–11539 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Lamarche, M. J. et al. Anti-hepatitis C virus activity and toxicity of type III phosphatidylinositol-4-kinase beta inhibitors. Antimicrob. Agents Chemother. 56, 5149–5156 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. van der Schaar, H. M. et al. A novel, broad-spectrum inhibitor of enterovirus replication that targets host cell factor phosphatidylinositol 4-kinase IIIβ. Antimicrob. Agents Chemother. 57, 4971–4981 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  267. Spickler, C. et al. Phosphatidylinositol 4-kinase III beta is essential for replication of human rhinovirus and its inhibition causes a lethal phenotype in vivo. Antimicrob. Agents Chemother. 57, 3358–3368 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Burke, J. E., Triscott, J., Emerling, B. M. & Hammond, G. R. V. Beyond PI3Ks: targeting phosphoinositide kinases in disease. Nat. Rev. Drug Discov. 22, 357–386 (2023).

    Article  CAS  PubMed  Google Scholar 

  269. Neumann-Mufweba, A., Kimani, S., Khan, S. F., Chibale, K. & Prince, S. The diaryl-imidazopyridazine anti-plasmodial compound, MMV652103, exhibits anti-breast cancer activity. EXCLI J. 21, 656–679 (2022).

    PubMed  PubMed Central  Google Scholar 

  270. Andrews, D. M. et al. Identification and optimization of a novel series of selective PIP5K inhibitors. Bioorg. Med. Chem. 54, 116557 (2022).

    Article  CAS  PubMed  Google Scholar 

  271. Arora, G. K., Palamiuc, L. & Emerling, B. M. Expanding role of PI5P4Ks in cancer: a promising druggable target. FEBS Lett. 596, 3–16 (2022).

    Article  CAS  PubMed  Google Scholar 

  272. Teng, M. et al. Targeting the dark lipid kinase PIP4K2C with a potent and selective binder and degrader. Angew. Chem. Int. Ed. 62, e202302364 (2023).

    Article  CAS  Google Scholar 

  273. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT03456804 (2018).

  274. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04159896 (2019).

  275. Li, C. et al. Discovery of a first-in-class degrader for the lipid kinase PIKfyve. J. Med. Chem. 66, 12432–12445 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Ji, W. et al. Development of potent and selective degraders of PI5P4Kγ. Eur. J. Med. Chem. 247, 115027 (2023).

    Article  CAS  PubMed  Google Scholar 

  277. Corse, E. et al. Abstract 5574: degradation of PIP4K2C by novel bivalent functional degrader LRK-A induces tumor regression in CRC. Cancer Res. 84, 5574–5574 (2024).

    Article  Google Scholar 

  278. Ijuin, T. Phosphoinositide phosphatases in cancer cell dynamics — beyond PI3K and PTEN. Semin. Cancer Biol. 59, 50–65 (2019).

    Article  CAS  PubMed  Google Scholar 

  279. Mössinger, J. et al. Phosphatidylinositol 4-kinase IIα function at endosomes is regulated by the ubiquitin ligase Itch. EMBO Rep. 13, 1087–1094 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  280. Wieffer, M. et al. PI4K2β/AP-1-based TGN-endosomal sorting regulates Wnt signaling. Curr. Biol. 23, 2185–2190 (2013).

    Article  CAS  PubMed  Google Scholar 

  281. Wang, Y. J. et al. Phosphatidylinositol 4 phosphate regulates targeting of clathrin adaptor AP-1 complexes to the Golgi. Cell 114, 299–310 (2003).

    Article  CAS  PubMed  Google Scholar 

  282. Nakatsu, F. et al. PtdIns4P synthesis by PI4KIIIα at the plasma membrane and its impact on plasma membrane identity. J. Cell Biol. 199, 1003–1016 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Baskin, J. M. et al. The leukodystrophy protein FAM126A (hyccin) regulates PtdIns(4)P synthesis at the plasma membrane. Nat. Cell Biol. 18, 132–138 (2016).

    Article  CAS  PubMed  Google Scholar 

  284. Wu, X. et al. Structural insights into assembly and regulation of the plasma membrane phosphatidylinositol 4-kinase complex. Dev. Cell 28, 19–29 (2014).

    Article  CAS  PubMed  Google Scholar 

  285. Burke, J. E. et al. Structures of PI4KIIIβ complexes show simultaneous recruitment of Rab11 and its effectors. Science 344, 1035–1038 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Klima, M. et al. Structural insights and in vitro reconstitution of membrane targeting and activation of human PI4KB by the ACBD3 protein. Sci. Rep. 6, 23641 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. McPhail, J. A., Ottosen, E. H., Jenkins, M. L. & Burke, J. E. The molecular basis of Aichi Virus 3A protein activation of phosphatidylinositol 4 kinase IIIβ, PI4KB, through ACBD3. Structure 25, 121–131 (2017).

    Article  CAS  PubMed  Google Scholar 

  288. Hausser, A. et al. Protein kinase D regulates vesicular transport by phosphorylating and activating phosphatidylinositol-4 kinase IIIβ at the Golgi complex. Nat. Cell Biol. 7, 880–886 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Chalupska, D. et al. Structural analysis of phosphatidylinositol 4-kinase IIIβ (PI4KB)–14-3-3 protein complex reveals internal flexibility and explains 14-3-3 mediated protection from degradation in vitro. J. Struct. Biol. 200, 36–44 (2017).

    Article  CAS  PubMed  Google Scholar 

  290. Valente, C. et al. A 14-3-3γ dimer-based scaffold bridges CtBP1-S/BARS to PI(4)KIIIβ to regulate post-Golgi carrier formation. Nat. Cell Biol. 14, 343–354 (2012).

    Article  CAS  PubMed  Google Scholar 

  291. Weernink, P. A. et al. Activation of type I phosphatidylinositol 4-phosphate 5-kinase isoforms by the Rho GTPases, RhoA, Rac1, and Cdc42. J. Biol. Chem. 279, 7840–7849 (2004).

    Article  CAS  PubMed  Google Scholar 

  292. Honda, A. et al. Phosphatidylinositol 4-phosphate 5-kinase α is a downstream effector of the small G protein ARF6 in membrane ruffle formation. Cell 99, 521–532 (1999).

    Article  CAS  PubMed  Google Scholar 

  293. Divecha, N. et al. Type I PIPkinases interact with and are regulated by the retinoblastoma susceptibility gene product-pRB. Curr. Biol. 12, 582–587 (2002).

    Article  CAS  PubMed  Google Scholar 

  294. Pan, W. et al. Wnt3a-mediated formation of phosphatidylinositol 4,5-bisphosphate regulates LRP6 phosphorylation. Science 321, 1350–1353 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Krauss, M., Kukhtina, V., Pechstein, A. & Haucke, V. Stimulation of phosphatidylinositol kinase type I-mediated phosphatidylinositol (4,5)-bisphosphate synthesis by AP-2μ–cargo complexes. Proc. Natl Acad. Sci. USA 103, 11934–11939 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Luo, B., Prescott, S. M. & Topham, M. K. Diacylglycerol kinase ζ regulates phosphatidylinositol 4-phosphate 5-kinase Iα by a novel mechanism. Cell Signal. 16, 891–897 (2004).

    Article  CAS  PubMed  Google Scholar 

  297. Divecha, N. et al. Interaction of the type Iα PIPkinase with phospholipase D: a role for the local generation of phosphatidylinositol 4, 5-bisphosphate in the regulation of PLD2 activity. EMBO J. 19, 5440–5449 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Halstead, J. R. et al. Rac controls PIP5K localisation and PtdIns(4,5)P2 synthesis, which modulates vinculin localisation and neurite dynamics. J. Cell Sci. 123, 3535–3546 (2010).

    Article  CAS  PubMed  Google Scholar 

  299. Saito, K. et al. BTK regulates PtdIns-4,5-P2 synthesis: importance for calcium signaling and PI3K activity. Immunity 19, 669–678 (2003).

    Article  CAS  PubMed  Google Scholar 

  300. Ling, K., Doughman, R. L., Firestone, A. J., Bunce, M. W. & Anderson, R. A. Type Iγ phosphatidylinositol phosphate kinase targets and regulates focal adhesions. Nature 420, 89–93 (2002).

    Article  CAS  PubMed  Google Scholar 

  301. Sun, M., Cai, J., Anderson, R. A. & Sun, Y. Type Iγ phosphatidylinositol phosphate 5-kinase i5 controls the ubiquitination and degradation of the tumor suppressor mitogen-inducible gene 6. J. Biol. Chem. 291, 21461–21473 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Rossin, A. et al. The Btk-dependent PIP5K1γ lipid kinase activation by Fas counteracts FasL-induced cell death. Apoptosis 22, 1344–1352 (2017).

    Article  CAS  PubMed  Google Scholar 

  303. Nakano-Kobayashi, A. et al. Role of activation of PIP5Kγ661 by AP-2 complex in synaptic vesicle endocytosis. EMBO J. 26, 1105–1116 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  304. Kahlfeldt, N. et al. Molecular basis for association of PIPKIγ-p90 with clathrin adaptor AP-2*. J. Biol. Chem. 285, 2734–2749 (2010).

    Article  CAS  PubMed  Google Scholar 

  305. Di Paolo, G. et al. Recruitment and regulation of phosphatidylinositol phosphate kinase type 1γ by the FERM domain of talin. Nature 420, 85–89 (2002).

    Article  PubMed  Google Scholar 

  306. Hinchliffe, K. A., Ciruela, A., Letcher, A. J., Divecha, N. & Irvine, R. F. Regulation of type IIα phosphatidylinositol phosphate kinase localisation by the protein kinase CK2. Curr. Biol. 9, 983–986 (1999).

    Article  CAS  PubMed  Google Scholar 

  307. Ling, K. Tyrosine phosphorylation of type Iγ phosphatidylinositol phosphate kinase by Src regulates an integrin–talin switch. J. Cell Biol. 163, 1339–1349 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Hinchliffe, K. A. & Irvine, R. F. Regulation of type II PIP kinase by PKD phosphorylation. Cell Signal. 18, 1906–1913 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. Zhang, L., Zhang, H., Agborbesong, E., Zhou, J. X. & Li, X. Phosphorylation of MIF by PIP4K2a is necessary for cilia biogenesis. Cell Death Dis. 14, 795 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Bunce, M. W., Boronenkov, I. V. & Anderson, R. A. Coordinated activation of the nuclear ubiquitin ligase Cul3-SPOP by the generation of phosphatidylinositol 5-phosphate. J. Biol. Chem. 283, 8678–8686 (2008).

    Article  CAS  PubMed  Google Scholar 

  311. Yang, S. et al. MANF regulates hypothalamic control of food intake and body weight. Nat. Commun. 8, 579 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  312. Ikonomov, O. C. et al. Active PIKfyve associates with and promotes the membrane attachment of the late endosome-to-trans-Golgi network transport factor Rab9 effector p40. J. Biol. Chem. 278, 50863–50871 (2003).

    Article  CAS  PubMed  Google Scholar 

  313. Berwick, D. C. et al. Protein kinase B phosphorylation of PIKfyve regulates the trafficking of GLUT4 vesicles. J. Cell Sci. 117, 5985–5993 (2004).

    Article  CAS  PubMed  Google Scholar 

  314. Karabiyik, C., Vicinanza, M., Son, S. M. & Rubinsztein, D. C. Glucose starvation induces autophagy via ULK1-mediated activation of PIKfyve in an AMPK-dependent manner. Dev. Cell 56, 1961–1975.e1965 (2021).

    Article  CAS  PubMed  Google Scholar 

  315. Liu, Y. et al. Phosphatidylinositol 3-phosphate 5-kinase (PIKfyve) is an AMPK target participating in contraction-stimulated glucose uptake in skeletal muscle. Biochem. J. 455, 195–206 (2013).

    Article  CAS  PubMed  Google Scholar 

  316. Vaidya, A. & Perry, C. M. Simeprevir: first global approval. Drugs 73, 2093–2106 (2013).

    Article  CAS  PubMed  Google Scholar 

  317. Graham, T. R. & Burd, C. G. Coordination of Golgi functions by phosphatidylinositol 4-kinases. Trends Cell Biol. 21, 113–121 (2011).

    Article  CAS  PubMed  Google Scholar 

  318. McPhail, J. A. & Burke, J. E. Molecular mechanisms of PI4K regulation and their involvement in viral replication. Traffic 24, 131–145 (2023).

    Article  CAS  PubMed  Google Scholar 

  319. Anitei, M. et al. Spatiotemporal control of lipid conversion, actin-based mechanical forces, and curvature sensors during clathrin/AP-1-coated vesicle biogenesis. Cell Rep. 20, 2087–2099 (2017).

    Article  CAS  PubMed  Google Scholar 

  320. Mellman, D. L. et al. A PtdIns4,5P2-regulated nuclear poly(A) polymerase controls expression of select mRNAs. Nature 451, 1013–1017 (2008).

    Article  CAS  PubMed  Google Scholar 

  321. Doughman, R. L., Firestone, A. J., Wojtasiak, M. L., Bunce, M. W. & Anderson, R. A. Membrane ruffling requires coordination between type Iα phosphatidylinositol phosphate kinase and Rac signaling. J. Biol. Chem. 278, 23036–23045 (2003).

    Article  CAS  PubMed  Google Scholar 

  322. Ciruela, A., Hinchliffe, K. A., Divecha, N. & Irvine, R. F. Nuclear targeting of the β isoform of type II phosphatidylinositol phosphate kinase (phosphatidylinositol 5-phosphate 4-kinase) by its α-helix 7. Biochem. J. 346, 587–591 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  323. Vicinanza, M. et al. PI(5)P regulates autophagosome biogenesis. Mol. Cell 57, 219–234 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  324. Clarke, J. H., Emson, P. C. & Irvine, R. F. Localization of phosphatidylinositol phosphate kinase IIγ in kidney to a membrane trafficking compartment within specialized cells of the nephron. Am. J. Physiol. Renal Physiol. 295, F1422–F1430 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  325. Cabezas, A., Pattni, K. & Stenmark, H. Cloning and subcellular localization of a human phosphatidylinositol 3-phosphate 5-kinase, PIKfyve/Fab1. Gene 371, 34–41 (2006).

    Article  CAS  PubMed  Google Scholar 

  326. Hoadley, K. A. et al. Cell-of-origin patterns dominate the molecular classification of 10,000 tumors from 33 types of cancer. Cell 173, 291–304.e296 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  327. Cerami, E. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404 (2012).

    Article  PubMed  Google Scholar 

  328. Tyner, J. W. et al. Functional genomic landscape of acute myeloid leukaemia. Nature 562, 526–531 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  329. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  330. Cao, L. et al. Proteogenomic characterization of pancreatic ductal adenocarcinoma. Cell 184, 5031–5052.e5026 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  331. Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  332. Fang, R., Jiang, Q., Jia, X. & Jiang, Z. ARMH3-mediated recruitment of PI4KB directs Golgi-to-endosome trafficking and activation of the antiviral effector STING. Immunity 56, 500–515.e506 (2023).

    Article  CAS  PubMed  Google Scholar 

  333. Wu, S. Z. et al. A single-cell and spatially resolved atlas of human breast cancers. Nat. Genet. 53, 1334–1347 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  334. Mantovani, A., Allavena, P., Marchesi, F. & Garlanda, C. Macrophages as tools and targets in cancer therapy. Nat. Rev. Drug Discov. 21, 799–820 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  335. Pan, Y., Yu, Y., Wang, X. & Zhang, T. Tumor-associated macrophages in tumor immunity. Front. Immunol. 11, 583084 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  336. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e3529 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We extend our gratitude to the Bioinformatics core at SBPMDI (NCI P30 CA 030199) for the data analysis of Figs. 2 and 3 and Box 1. B.M.E. is supported by the NCI (R01 CA237536), NIGMS (R01 GM143583) and ACS (RSG-20-064-01-TBE). A.L. is supported by the ACS postdoctoral fellowship (PF-24-1318560-01-CDP). The authors are also grateful to the Emerling lab for valuable discussions and suggestions for the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

A.L., G.K.A. and B.M.E. wrote, researched data for the article and contributed substantially to discussion of the content. R.M. conducted the bioinformatics analysis for the figures. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Brooke M. Emerling.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cancer thanks Richard Anderson, Nullin Divecha, Volker Haucke and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Broad Single Cell portal: https://singlecell.broadinstitute.org/single_cell/study/SCP1039/a-single-cell-and-spatially-resolved-atlas-of-human-breast-cancers#study-download

cBioPortal: https://www.cbioportal.org

LinkedOmics: https://www.linkedomics.org/data_download/CPTAC-PDAC/

The Cancer Genome Atlas Program (TCGA): https://www.cancer.gov/ccg/research/genome-sequencing/tcga

Supplementary information

Glossary

Autophagic flux

A measure of the rate of autophagic degradation, from autophagosome formation and maturation to fusion with lysosomes and the subsequent degradation of their contents.

Ciliogenesis

A process by which cilia, microtubule-based organelles involved in cell motility and signalling, are assembled and extended from the basal body on the surface of eukaryotic cells.

Circular RNAs

Single-stranded RNA molecules that form a covalently closed loop that lacks free 5′ and 3′ ends, which act as transcriptional modulators, microRNA and protein sponges, protein decoys and stabilizers, scaffolds for protein complexes and, in some cases, as protein templates.

Cytosolic DNA-sensing pathway

A cellular defence mechanism that detects foreign DNA derived from invading viruses and bacteria or mislocalized self-DNA in the cytoplasm and mediates a protective immune response through signalling pathways such as cGAS–STING.

Degrader

A bifunctional small molecule that binds a target protein and recruits an E3 ubiquitin ligase, facilitating polyubiquitination and subsequent proteasomal degradation of the target protein.

Endosomal sorting

A process by which cargo is trafficked from endosomes to other organelles, such as lysosomes for degradation, the trans-Golgi network for redistribution to other subcellular locations, or the plasma membrane for recycling.

Immune checkpoint protein

A regulatory protein expressed by immune cells that modulates immune responses to prevent excessive inflammatory reactions that could damage healthy cells. Some cancer cells exploit immune checkpoint proteins to evade immune recognition and killing by suppressing antitumour immune responses.

Immune synapse

A specialized contact area between a lymphocyte (T cell, B cell or natural killer cell) and a target cell or antigen-presenting cell that allows efficient signalling, cell–cell communication and directed protein secretion.

Invadopodia

Specialized actin-rich cellular protrusions that drive the proteolytic degradation of the extracellular matrix, allowing cancer cells to invade surrounding tissues.

Lamellipodia

Specialized actin-rich cellular protrusions at the leading edge of motile cells that drive movement through actin filament polymerization.

Luminal A breast cancer subtype

A molecular subtype of breast cancer that is oestrogen and progesterone receptor positive, human epidermal growth factor receptor 2 negative, and is characterized by a low proliferative index and favourable prognosis and lower risk of recurrence compared with other subtypes.

Macropinocytosis

A unique form of endocytosis characterized by the non-selective uptake of extracellular fluid, solute molecules and membrane in large vesicles known as macropinosomes.

Multivesicular endosomes

Intracellular organelles characterized by the presence of intraluminal vesicles formed by invagination of the limiting endosomal membrane that function as an intermediate compartment in the endosome–lysosome pathway.

Palmitoylation

A post-translational modification in which palmitic acid, a 16-carbon saturated fatty acid, is covalently attached to specific residues of proteins, influencing their localization, stability and function.

Phosphoinositides

Membrane-associated lipid signalling molecules derived from the phosphorylation of phosphatidylinositol that serve as docking sites for proteins involved in essential cellular processes such as signal transduction, vesicular trafficking and cytoskeletal organization.

Secretory pathway

A cellular process involving a coordinated molecular machinery within the endoplasmic reticulum and Golgi apparatus responsible for the synthesis, folding, post-translational modification, trafficking and delivery of functional secretory proteins to the cell surface and extracellular space.

Senescence

A stable state of cell cycle arrest in response to cellular stress or damage, characterized by cellular remodelling and hypersecretion, in which cells are unable to proliferate despite optimal growth conditions.

Spastic paraplegia

A neurological disorder characterized by progressive muscle tightness and weakness in the lower limbs.

Trans-Golgi network

Major sorting compartment formed by a tubulovesicular network at the trans face of the Golgi apparatus that directs newly synthesized proteins to their appropriate subcellular destinations.

Warburg effect

A metabolic adaptation in which cancer cells preferentially use aerobic glycolysis over oxidative phosphorylation, leading to increased glucose uptake and lactate production even in the presence of oxygen and functioning mitochondria, to support the nutritional requirements of uncontrolled proliferation.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Llorente, A., Arora, G.K., Murad, R. et al. Phosphoinositide kinases in cancer: from molecular mechanisms to therapeutic opportunities. Nat Rev Cancer 25, 463–487 (2025). https://doi.org/10.1038/s41568-025-00810-1

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41568-025-00810-1

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer