Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Evolutionary paths towards metastasis

Abstract

The evolution of metastasis in humans is considerably less well understood than the biology of early carcinogenesis. For over a century, clinicians and scientists have been debating whether metastatic potential is the intrinsic property of a cancer, pre-determined by the molecular characteristics of the tumour founder cell, or whether metastatic capacity evolves in a stepwise fashion as the tumour grows, akin to the multistage accumulation of oncogenic alterations that give rise to the first cancer cell. In this Perspective, I examine how genetic analyses of primary tumours and matched metastases can distinguish between these two competing metastasis evolution models, with particular emphasis on the utility of metastatic randomness — a quantitative measure that reflects whether metastases arise from a random selection of primary tumour subclones or whether they are enriched for descendants of privileged lineages that have acquired pro-metastatic traits. Probable metastasis evolution trajectories in tumours with high and low baseline metastatic capacity are discussed, along with the role of seeding rates and selection at different metastatic host sites. Finally, I argue that trailblazing insights into human metastasis biology are immediately possible if we make a concerted effort to apply existing experimental and theoretical tools to the right patient cohorts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Two models of metastasis evolution.
Fig. 2: Quantifying metastatic randomness.
Fig. 3: Metastasis evolution in cancers with high and low baseline metastatic potential.
Fig. 4: Genetic divergence between primary tumours and metastases.
Fig. 5: Evolution at the metastatic host site.
Fig. 6: Evolution of late-stage metastatic disease.

Similar content being viewed by others

Data availability

Figure 2a shows the replotting of data previously published by Gundem et al.36. Subclone fractions across different lesions are taken directly from Supplementary Table 3. Figure 2b has been redrawn from Figure S14 from Reiter et al.12. Figure 5c,d,e have been redrawn from Fig. 2a,e,h, respectively from Reiter et al.38.

References

  1. Armitage, P. & Doll, R. The age distribution of cancer and a multi-stage theory of carcinogenesis. Br. J. Cancer 8, 1–12 (1954).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Armitage, P. & Doll, R. A two-stage theory of carcinogenesis in relation to the age distribution of human cancer. Br. J. Cancer 11, 161–169 (1957).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Klein, G. Foulds’ dangerous idea revisited: the multistep development of tumors 40 years later. Adv. Cancer Res. 72, 1–23 (1998).

    CAS  PubMed  Google Scholar 

  4. Fearon, E. R. & Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 61, 759–767 (1990).

    Article  CAS  PubMed  Google Scholar 

  5. Kandoth, C. et al. Mutational landscape and significance across 12 major cancer types. Nature 502, 333–339 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cairns, J. Mutation selection and the natural history of cancer. Nature 255, 197–200 (1975).

    Article  CAS  PubMed  Google Scholar 

  7. Kakiuchi, N. & Ogawa, S. Clonal expansion in non-cancer tissues. Nat. Rev. Cancer 21, 239–256 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Nowell, P. C. The clonal evolution of tumor cell populations: acquired genetic lability permits stepwise selection of variant sublines and underlies tumor progression. Science 194, 23–28 (1976).

    Article  CAS  PubMed  Google Scholar 

  9. Priestley, P. et al. Pan-cancer whole-genome analyses of metastatic solid tumours. Nature 575, 210–216 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mlecnik, B. et al. The tumor microenvironment and Immunoscore are critical determinants of dissemination to distant metastasis. Sci. Transl. Med. 8, 327ra26 (2016).

    Article  PubMed  Google Scholar 

  11. Nguyen, B. et al. Genomic characterization of metastatic patterns from prospective clinical sequencing of 25,000 patients. Cell 185, 563–575.e11 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Reiter, J. G. et al. Minimal functional driver gene heterogeneity among untreated metastases. Science 361, 1033–1037 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Makohon-Moore, A. P. et al. Limited heterogeneity of known driver gene mutations among the metastases of individual patients with pancreatic cancer. Nat. Genet. 49, 358–366 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Reiter, J. G. et al. An analysis of genetic heterogeneity in untreated cancers. Nat. Rev. Cancer 19, 639–650 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fisher, B. Laboratory and clinical research in breast cancer — a personal adventure: the David A. Karnofsky memorial lecture. Cancer Res. 40, 3863–3874 (1980).

    CAS  PubMed  Google Scholar 

  16. Fisher, B. et al. Twenty-five-year follow-up of a randomized trial comparing radical mastectomy, total mastectomy, and total mastectomy followed by irradiation. N. Engl. J. Med. 347, 567–575 (2002).

    Article  PubMed  Google Scholar 

  17. Klein, C. A. Parallel progression of primary tumours and metastases. Nat. Rev. Cancer 9, 302–312 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Hüsemann, Y. et al. Systemic spread is an early step in breast cancer. Cancer Cell 13, 58–68 (2008).

    Article  PubMed  Google Scholar 

  19. Hosseini, H. et al. Early dissemination seeds metastasis in breast cancer. Nature 540, 552–558 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Weinberg, R. A. Mechanisms of malignant progression. Carcinogenesis 29, 1092–1095 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fidler, I. J. & Kripke, M. L. Metastasis results from preexisting variant cells within a malignant tumor. Science 197, 893–895 (1977).

    Article  CAS  PubMed  Google Scholar 

  22. Minn, A. J. et al. Genes that mediate breast cancer metastasis to lung. Nature 436, 518–524 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kang, Y. et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3, 537–549 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Reticker-Flynn, N. E. et al. Lymph node colonization induces tumor-immune tolerance to promote distant metastasis. Cell 185, 1924–1942.e23 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sottoriva, A. et al. A Big Bang model of human colorectal tumor growth. Nat. Genet. 47, 209–216 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Watkins, T. B. K. et al. Pervasive chromosomal instability and karyotype order in tumour evolution. Nature 587, 126–132 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Heide, T. et al. The co-evolution of the genome and epigenome in colorectal cancer. Nature 611, 733–743 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Moorman, A. et al. Progressive plasticity during colorectal cancer metastasis. Nature 637, 947–954 (2025).

    Article  CAS  PubMed  Google Scholar 

  29. Halsted, W. S. I. The results of operations for the cure of cancer of the breast performed at the Johns Hopkins hospital from June, 1889, to January, 1894. Ann. Surg. 20, 497–555 (1894).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hellman, S. Karnofsky memorial lecture. Natural history of small breast cancers. J. Clin. Oncol. 12, 2229–2234 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. Jamal-Hanjani, M. et al. Tracking the evolution of non-small-cell lung cancer. N. Engl. J. Med. 376, 2109–2121 (2017).

    Article  CAS  PubMed  Google Scholar 

  32. Zhao, Y. et al. Selection of metastasis competent subclones in the tumour interior. Nat. Ecol. Evol. 5, 1033–1045 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mathur, R. et al. Glioblastoma evolution and heterogeneity from a 3D whole-tumor perspective. Cell 187, 446–463.e16 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cross, W. et al. The evolutionary landscape of colorectal tumorigenesis. Nat. Ecol. Evol. 2, 1661–1672 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ryser, M. D., Min, B.-H., Siegmund, K. D. & Shibata, D. Spatial mutation patterns as markers of early colorectal tumor cell mobility. Proc. Natl Acad. Sci. USA 115, 5774–5779 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gundem, G. et al. The evolutionary history of lethal metastatic prostate cancer. Nature 520, 353–357 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Reiter, J. G. et al. Lymph node metastases develop through a wider evolutionary bottleneck than distant metastases. Nat. Genet. 52, 692–700 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hu, Z., Li, Z., Ma, Z. & Curtis, C. Multi-cancer analysis of clonality and the timing of systemic spread in paired primary tumors and metastases. Nat. Genet. 52, 701–708 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cheung, K. J. & Ewald, A. J. A collective route to metastasis: seeding by tumor cell clusters. Science 352, 167–169 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Heyde, A., Reiter, J. G., Naxerova, K. & Nowak, M. A. Consecutive seeding and transfer of genetic diversity in metastasis. Proc. Natl Acad. Sci. USA 116, 14129–14137 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Aceto, N. et al. Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell 158, 1110–1122 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Abbosh, C. et al. Tracking early lung cancer metastatic dissemination in TRACERx using ctDNA. Nature 616, 553–562 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Aldea, M. et al. Overcoming resistance to tumor-targeted and immune-targeted therapies. Cancer Discov. 11, 874–899 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. Wassenaar, E. C. E. et al. A unique interplay of access and selection shapes peritoneal metastasis evolution in colorectal cancer. Preprint at bioRxiv https://doi.org/10.1101/2024.09.25.614736 (2024).

  46. Tarabichi, M. et al. A practical guide to cancer subclonal reconstruction from DNA sequencing. Nat. Methods 18, 144–155 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bozic, I. et al. Accumulation of driver and passenger mutations during tumor progression. Proc. Natl Acad. Sci. USA 107, 18545–18550 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yates, L. R. et al. Genomic evolution of breast cancer metastasis and relapse. Cancer Cell 32, 169–184.e7 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gibson, W. J. et al. The genomic landscape and evolution of endometrial carcinoma progression and abdominopelvic metastasis. Nat. Genet. 48, 848–855 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hu, Z. et al. Quantitative evidence for early metastatic seeding in colorectal cancer. Nat. Genet. 51, 1113–1122 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Al Bakir, M. et al. The evolution of non-small cell lung cancer metastases in TRACERx. Nature 616, 534–542 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Brastianos, P. K. et al. Genomic characterization of brain metastases reveals branched evolution and potential therapeutic targets. Cancer Discov. 5, 1164–1177 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Naxerova, K. et al. Hypermutable DNA chronicles the evolution of human colon cancer. Proc. Natl Acad. Sci. USA 111, E1889–E1898 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Naxerova, K. et al. Origins of lymphatic and distant metastases in human colorectal cancer. Science 357, 55–60 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Blohmer, M. et al. Quantifying cell divisions along evolutionary lineages in cancer. Nat. Genet. 57, 706–717 (2025).

    Article  CAS  PubMed  Google Scholar 

  56. Haffner, M. C. et al. Tracking the clonal origin of lethal prostate cancer. J. Clin. Invest. 123, 4918–4922 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Liu, W. et al. Copy number analysis indicates monoclonal origin of lethal metastatic prostate cancer. Nat. Med. 15, 559–565 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. American Cancer Society. Survival rates for pancreatic cancer. https://www.cancer.org/cancer/types/pancreatic-cancer/detection-diagnosis-staging/survival-rates.html (2025).

  59. American Cancer Society. Thyroid cancer survival rates, by type and stage. https://www.cancer.org/cancer/types/thyroid-cancer/detection-diagnosis-staging/survival-rates.html (2024).

  60. LiVolsi, V. A. Papillary thyroid carcinoma: an update. Mod. Pathol. 24, S1–S9 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Li, Y., Tang, C.-G., Zhao, Y., Cao, W.-Y. & Qu, G.-F. Outcomes and prognostic factors of patients with stage IB and IIA pancreatic cancer according to the 8th edition American Joint Committee on Cancer criteria. World J. Gastroenterol. 23, 2757–2762 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Baggiolini, A. et al. Developmental chromatin programs determine oncogenic competence in melanoma. Science 373, eabc1048 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dongre, A. & Weinberg, R. A. New insights into the mechanisms of epithelial–mesenchymal transition and implications for cancer. Nat. Rev. Mol. Cell Biol. 20, 69–84 (2019).

    Article  CAS  PubMed  Google Scholar 

  64. Yachida, S. et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 467, 1114–1117 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Jones, S. et al. Comparative lesion sequencing provides insights into tumor evolution. Proc. Natl Acad. Sci. USA 105, 4283–4288 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Williams, N. et al. Life histories of myeloproliferative neoplasms inferred from phylogenies. Nature 602, 162–168 (2022).

    Article  CAS  PubMed  Google Scholar 

  67. Sun, Y. et al. Integrated multi-omics profiling to dissect the spatiotemporal evolution of metastatic hepatocellular carcinoma. Cancer Cell 42, 135–156.e17 (2024).

    Article  CAS  PubMed  Google Scholar 

  68. Williams, M. J., Werner, B., Barnes, C. P., Graham, T. A. & Sottoriva, A. Identification of neutral tumor evolution across cancer types. Nat. Genet. 48, 238–244 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Frankell, A. M. et al. The evolution of lung cancer and impact of subclonal selection in TRACERx. Nature 616, 525–533 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Martínez-Jiménez, F. et al. Pan-cancer whole-genome comparison of primary and metastatic solid tumours. Nature 618, 333–341 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Blackford, A. L., Canto, M. I., Klein, A. P., Hruban, R. H. & Goggins, M. Recent trends in the incidence and survival of stage 1A pancreatic cancer: a surveillance, epidemiology, and end results analysis. J. Natl Cancer Inst. 112, 1162–1169 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Yavuz, A., Meyer, J. J. & Marks, L. B. Association between the rates of synchronous and metachronous metastases: analysis of SEER data. Cancer Network https://www.cancernetwork.com/view/association-between-rates-synchronous-and-metachronous-metastases-analysis-seer-data (2007).

  73. Hong, J. et al. Convergence for inactivation of TGFβ signaling is a common feature of advanced pancreatic cancer. Preprint at medRxiv https://doi.org/10.1101/2024.01.30.24301554 (2024).

  74. Siegel, D. A., O’Neil, M. E., Richards, T. B., Dowling, N. F. & Weir, H. K. Prostate cancer incidence and survival, by stage and race/ethnicity — United States, 2001–2017. MMWR Morb. Mortal. Wkly. Rep. 69, 1473–1480 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  75. American Cancer Society. Prostate cancer stages. https://www.cancer.org/cancer/types/prostate-cancer/detection-diagnosis-staging/staging.html (2023).

  76. Riihimäki, M., Hemminki, A., Sundquist, J. & Hemminki, K. Patterns of metastasis in colon and rectal cancer. Sci. Rep. 6, 29765 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Chen, M.-T. et al. Comparison of patterns and prognosis among distant metastatic breast cancer patients by age groups: a SEER population-based analysis. Sci. Rep. 7, 9254 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Paget, S. The distribution of secondary growths in cancer of the breast. Lancet 133, 571–573 (1889).

    Article  Google Scholar 

  79. Ewing, J. in Neoplastic Diseases (W. B. Saunders, Philadelphia, 1928).

  80. Ildiz, E. S., Gvozdenovic, A., Kovacs, W. J. & Aceto, N. Travelling under pressure — hypoxia and shear stress in the metastatic journey. Clin. Exp. Metastasis 40, 375–394 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Riihimäki, M., Thomsen, H., Sundquist, K., Sundquist, J. & Hemminki, K. Clinical landscape of cancer metastases. Cancer Med. 7, 5534 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Shih, D. J. H. et al. Genomic characterization of human brain metastases identifies drivers of metastatic lung adenocarcinoma. Nat. Genet. 52, 371–377 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ulintz, P. J., Greenson, J. K., Wu, R., Fearon, E. R. & Hardiman, K. M. Lymph node metastases in colon cancer are polyclonal. Clin. Cancer Res. 24, 2214–2224 (2018).

    Article  CAS  PubMed  Google Scholar 

  84. Sleeman, J. P., Cady, B. & Pantel, K. The connectivity of lymphogenous and hematogenous tumor cell dissemination: biological insights and clinical implications. Clin. Exp. Metastasis 29, 737–746 (2012).

    Article  PubMed  Google Scholar 

  85. Sleeman, J. P. in Recent Results in Cancer Research Vol. 157 (eds Schlag, P.M. & Veronesi, U.) 55–81 (Springer Berlin Heidelberg, 2000).

  86. Ubellacker, J. M. et al. Lymph protects metastasizing melanoma cells from ferroptosis. Nature 585, 113–118 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Sleeman, J., Schmid, A. & Thiele, W. Tumor lymphatics. Semin. Cancer Biol. 19, 285–297 (2009).

    Article  CAS  PubMed  Google Scholar 

  88. Väyrynen, V. et al. Incidence and management of patients with colorectal cancer and synchronous and metachronous colorectal metastases: a population-based study. BJS Open. 4, 685–692 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Küçükköse, E. et al. Lymphatic invasion of plakoglobin-dependent tumor cell clusters drives formation of polyclonal lung metastases in colon cancer. Gastroenterology 165, 429–444.e15 (2023).

    Article  PubMed  Google Scholar 

  90. American Cancer Society. Colorectal cancer survival rates. https://www.cancer.org/cancer/types/colon-rectal-cancer/detection-diagnosis-staging/survival-rates.html (2025).

  91. Franko, J. et al. Prognosis of patients with peritoneal metastatic colorectal cancer given systemic therapy: an analysis of individual patient data from prospective randomised trials from the Analysis and Research in Cancers of the Digestive System (ARCAD) database. Lancet Oncol. 17, 1709–1719 (2016).

    Article  PubMed  Google Scholar 

  92. Weichselbaum, R. R. & Hellman, S. Oligometastases revisited. Nat. Rev. Clin. Oncol. 8, 378–382 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. Gallinger, S. et al. Liver resection for colorectal cancer metastases. Curr. Oncol. 20, e255–e265 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Chen, H.-N. et al. Genomic evolution and diverse models of systemic metastases in colorectal cancer. Gut 71, 322–332 (2022).

    Article  CAS  PubMed  Google Scholar 

  95. Agudo, J. et al. Targeting cancer cell dormancy. Nat. Rev. Cancer 24, 97–104 (2024).

    Article  CAS  PubMed  Google Scholar 

  96. Phan, T. G. & Croucher, P. I. The dormant cancer cell life cycle. Nat. Rev. Cancer 20, 398–411 (2020).

    Article  CAS  PubMed  Google Scholar 

  97. Dai, J. et al. Astrocytic laminin-211 drives disseminated breast tumor cell dormancy in brain. Nat. Cancer 3, 25–42 (2022).

    Article  CAS  PubMed  Google Scholar 

  98. Zhang, C. et al. Mapping the spreading routes of lymphatic metastases in human colorectal cancer. Nat. Commun. 11, 1–11 (2020).

    Google Scholar 

  99. Venet, D. et al. Phylogenetic reconstruction of breast cancer reveals two routes of metastatic dissemination associated with distinct clinical outcome. eBioMedicine 56, 102793 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Orrantia-Borunda, E., Anchondo-Nuñez, P., Acuña-Aguilar, L. E., Gómez-Valles, F. O. & Ramírez-Valdespino, C. A. in Breast Cancer (ed. Mayrovitz, H. N.) 31–42 (Exon Publications, 2022).

  101. Hebert, J. D., Neal, J. W. & Winslow, M. M. Dissecting metastasis using preclinical models and methods. Nat. Rev. Cancer 23, 391–407 (2023).

    Article  CAS  PubMed  Google Scholar 

  102. Lawrence, M. S. et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499, 214–218 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zack, T. I. et al. Pan-cancer patterns of somatic copy number alteration. Nat. Genet. 45, 1134–1140 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Turajlic, S. et al. Tracking cancer evolution reveals constrained routes to metastases: TRACERx renal. Cell 173, 581–594.e12 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. American Cancer Society. Survival rates for prostate cancer. https://www.cancer.org/cancer/types/prostate-cancer/detection-diagnosis-staging/survival-rates.html (2025).

  106. Boire, A. et al. Why do patients with cancer die? Nat. Rev. Cancer 24, 578–589 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I thank members of the Naxerova lab, M. Nicholson and X. Brunet-Guasch for helpful discussions and for critical reading of the manuscript. This work was supported by the National Cancer Institute of the US National Institutes of Health (R37CA225655, R01CA279054, R01CA26928) and by an Emerging Leader Award from the Mark Foundation for Cancer Research.

Author information

Authors and Affiliations

Authors

Contributions

The author contributed equally to all aspects of the article.

Corresponding author

Correspondence to Kamila Naxerova.

Ethics declarations

Competing interests

The author declares no competing interests.

Peer review

Peer review information

Nature Reviews Cancer thanks Alvin Makohon-Moore, Nathan Reticker-Flynn who co-reviewed with Marcos Labrado and the other, anonymous, reviewer for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Epithelial-to-mesenchymal transition

The process by which cells lose epithelial characteristics (e.g. apicobasal polarity, cell–cell adhesions) and acquire mesenchymal properties (increased motility and invasiveness).

Ferroptosis

Iron-dependent form of cell death.

Genetic drift

The change of allele frequencies in a population over time due to chance alone.

Metachronously

Referring to metastases that are discovered more than 3–6 months after the primary tumour diagnosis.

Microsatellite

DNA sequences composed of short repeats. Microsatellites mutate at higher rates than most other genomic regions.

Peritoneum

The lining of the abdominal cavity which holds in place and protects most abdominal organs, including the intestines.

Synchronously

Referring to metastases that are diagnosed at the same time as the primary tumour.

Variant allele frequencies

Fractions of variant (non-germline) alleles in a tissue sample. The variant allele frequency reflects the proportion of mutant cells in a population.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naxerova, K. Evolutionary paths towards metastasis. Nat Rev Cancer 25, 545–560 (2025). https://doi.org/10.1038/s41568-025-00814-x

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41568-025-00814-x

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer