Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Targeting the roots of myeloid malignancies with T cell receptors

Abstract

Myeloid malignancies are clonal diseases of haematopoietic stem cell or haematopoietic progenitor cell origin, for which allogeneic haematopoietic stem cell transplantation remains the only curative treatment for most patients. However, the severe side effects and high relapse rates underscore the need for novel therapies. The success of adoptive transfer of chimeric antigen receptor (CAR) T cells targeting B cell-specific cell surface molecules in B cell cancers has not been replicated in myeloid malignancies. T cells engineered to express cancer-directed T cell receptors (TCRs) could provide an alternative, enabling targeting also of the intracellular proteome. In this Perspective, we have collated and reviewed available data from clinical trials exploiting TCR-engineered T cells for the treatment of haematological malignancies and discuss specific characteristics that make myeloid malignancies attractive candidates for TCR-based therapies. We also highlight the need to efficiently target the rare and notoriously therapy-resistant leukaemic stem cells, which represent the roots of myeloid malignancies, to achieve cures. This will require identification of novel targets and TCRs, and we discuss different target categories and strategies that can be applied towards this goal. We also highlight the importance of standardized preclinical testing and publicly available data to enable rapid identification and clinical advancement of promising TCRs towards clinical application.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Target recognition in standard immunotherapies in haematological malignancies.
Fig. 2: Technologies to assess normal and malignant human haematopoiesis.
Fig. 3: Clinical trials employing T cell receptor-engineered T cells.
Fig. 4: Clonal evolution and assessment of leukaemic stem cells.
Fig. 5: In vivo safety and efficacy testing of T cell receptor-engineered T cells.

Similar content being viewed by others

Data availability

The data used for the generation of Table 1, Fig. 3 and Supplementary Table 1 are available in Supplementary Table 2. Information on the TCR T cell clinical trials in malignant diseases was collected using a manually curated database of cellular therapies under development with commercial intent (Beacon Cell Therapy, Hanson Wade Group). These data were reviewed by the authors as described in Supplementary Methods.

References

  1. Arber, D. A. et al. International consensus classification of myeloid neoplasms and acute leukemias: integrating morphologic, clinical, and genomic data. Blood 140, 1200–1228 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Takahashi, K. & Tanaka, T. Clonal evolution and hierarchy in myeloid malignancies. Trends Cancer 9, 707–715 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dohner, H. et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood 140, 1345–1377 (2022).

    Article  PubMed  Google Scholar 

  4. Rausch, C. et al. Validation and refinement of the 2022 European LeukemiaNet genetic risk stratification of acute myeloid leukemia. Leukemia 37, 1234–1244 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Thomas, E. D., Lochte, H. L., Lu, W. C. & Ferrebee, J. W. Intravenous infusion of bone marrow in patients receiving radiation and chemotherapy. N. Engl. J. Med. 257, 491–496 (1957).

    Article  CAS  PubMed  Google Scholar 

  6. Platzbecker, U. Treatment of MDS. Blood 133, 1096–1107 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Braun, L. M. & Zeiser, R. Immunotherapy in myeloproliferative diseases. Cells 9, 1559 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Onida, F. et al. Management of adult patients with CMML undergoing allo-HCT: recommendations from the EBMT PH&G Committee. Blood 143, 2227–2244 (2024).

    Article  CAS  PubMed  Google Scholar 

  9. Leak, S., Horne, G. A. & Copland, M. Targeting BCR–ABL1-positive leukaemias: a review article. Camb. Prism. Precis. Med. 1, e21 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sweeney, C. & Vyas, P. The graft-versus-leukemia effect in AML. Front. Oncol. 9, 1217 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Malard, F., Holler, E., Sandmaier, B. M., Huang, H. & Mohty, M. Acute graft-versus-host disease. Nat. Rev. Dis. Prim. 9, 27 (2023).

    Article  PubMed  Google Scholar 

  12. Bonini, C. et al. HSV-TK gene transfer into donor lymphocytes for control of allogeneic graft-versus-leukemia. Science 276, 1719–1724 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Di Stasi, A. et al. Inducible apoptosis as a safety switch for adoptive cell therapy. N. Engl. J. Med. 365, 1673–1683 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Weiden, P. L. et al. Antileukemic effect of graft-versus-host disease in human recipients of allogeneic-marrow grafts. N. Engl. J. Med. 300, 1068–1073 (1979).

    Article  CAS  PubMed  Google Scholar 

  15. Horowitz, M. M. et al. Graft-versus-leukemia reactions after bone marrow transplantation. Blood 75, 555–562 (1990).

    Article  CAS  PubMed  Google Scholar 

  16. Gale, R. P. et al. Identical-twin bone marrow transplants for leukemia. Ann. Intern. Med. 120, 646–652 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Valcarcel, D. et al. Sustained remissions of high-risk acute myeloid leukemia and myelodysplastic syndrome after reduced-intensity conditioning allogeneic hematopoietic transplantation: chronic graft-versus-host disease is the strongest factor improving survival. J. Clin. Oncol. 26, 577–584 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Baron, F. et al. Impact of graft-versus-host disease after reduced-intensity conditioning allogeneic stem cell transplantation for acute myeloid leukemia: a report from the Acute Leukemia Working Party of the European group for blood and marrow transplantation. Leukemia 26, 2462–2468 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Marmont, A. M. et al. T-cell depletion of HLA-identical transplants in leukemia. Blood 78, 2120–2130 (1991).

    Article  CAS  PubMed  Google Scholar 

  20. Kolb, H. J. et al. Donor leukocyte transfusions for treatment of recurrent chronic myelogenous leukemia in marrow transplant patients. Blood 76, 2462–2465 (1990).

    Article  CAS  PubMed  Google Scholar 

  21. Shah, N. A. Donor lymphocyte infusion in acute myeloid leukemia. Best. Pract. Res. Clin. Haematol. 36, 101484 (2023).

    Article  CAS  PubMed  Google Scholar 

  22. Zeiser, R. & Vago, L. Mechanisms of immune escape after allogeneic hematopoietic cell transplantation. Blood 133, 1290–1297 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Vago, L. et al. Loss of mismatched HLA in leukemia after stem-cell transplantation. N. Engl. J. Med. 361, 478–488 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Christopher, M. J. et al. Immune escape of relapsed AML cells after allogeneic transplantation. N. Engl. J. Med. 379, 2330–2341 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Toffalori, C. et al. Immune signature drives leukemia escape and relapse after hematopoietic cell transplantation. Nat. Med. 25, 603–611 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Kohler, N., Ruess, D. A., Kesselring, R. & Zeiser, R. The role of immune checkpoint molecules for relapse after allogeneic hematopoietic cell transplantation. Front. Immunol. 12, 634435 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Blazar, B. R., Hill, G. R. & Murphy, W. J. Dissecting the biology of allogeneic HSCT to enhance the GvT effect whilst minimizing GvHD. Nat. Rev. Clin. Oncol. 17, 475–492 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  28. June, C. H. & Sadelain, M. Chimeric antigen receptor therapy. N. Engl. J. Med. 379, 64–73 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cappell, K. M. & Kochenderfer, J. N. Long-term outcomes following CAR T cell therapy: what we know so far. Nat. Rev. Clin. Oncol. 20, 359–371 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Uhlen, M. et al. Proteomics. Tissue-based map of the human proteome. Science 347, 1260419 (2015).

    Article  PubMed  Google Scholar 

  31. Harris, D. T. et al. Comparison of T cell activities mediated by human TCRs and CARs that use the same recognition domains. J. Immunol. 200, 1088–1100 (2018).

    Article  CAS  PubMed  Google Scholar 

  32. Gudipati, V. et al. Inefficient CAR-proximal signaling blunts antigen sensitivity. Nat. Immunol. 21, 848–856 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Burton, J. et al. Inefficient exploitation of accessory receptors reduces the sensitivity of chimeric antigen receptors. Proc. Natl Acad. Sci. USA 120, e2216352120 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zhao, X. et al. Tuning T cell receptor sensitivity through catch bond engineering. Science 376, eabl5282 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. D’Angelo, S. P. et al. Afamitresgene autoleucel for advanced synovial sarcoma and myxoid round cell liposarcoma (SPEARHEAD-1): an international, open-label, phase 2 trial. Lancet 403, 1460–1471 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hunder, N. N. et al. Treatment of metastatic melanoma with autologous CD4+ T cells against NY-ESO-1. N. Engl. J. Med. 358, 2698–2703 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tran, E. et al. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science 344, 641–645 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lu, Y. C. et al. Treatment of patients with metastatic cancer using a major histocompatibility complex class II-restricted T-cell receptor targeting the cancer germline antigen MAGE-A3. J. Clin. Oncol. 35, 3322–3329 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Snowden, J. A. et al. Indications for haematopoietic cell transplantation for haematological diseases, solid tumours and immune disorders: current practice in Europe, 2022. Bone Marrow Transpl. 57, 1217–1239 (2022).

    Article  Google Scholar 

  40. Doulatov, S., Notta, F., Laurenti, E. & Dick, J. E. Hematopoiesis: a human perspective. Cell Stem Cell 10, 120–136 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Laurenti, E. & Gottgens, B. From haematopoietic stem cells to complex differentiation landscapes. Nature 553, 418–426 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jassinskaja, M., Gonka, M. & Kent, D. G. Resolving the hematopoietic stem cell state by linking functional and molecular assays. Blood 142, 543–552 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kreso, A. & Dick, J. E. Evolution of the cancer stem cell model. Cell Stem Cell 14, 275–291 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Lapidot, T. et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367, 645–648 (1994).

    Article  CAS  PubMed  Google Scholar 

  45. Bonnet, D. & Dick, J. E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med. 3, 730–737 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Woll, P. S. et al. Myelodysplastic syndromes are propagated by rare and distinct human cancer stem cells in vivo. Cancer Cell 25, 794–808 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Corces, M. R. et al. Lineage-specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution. Nat. Genet. 48, 1193–1203 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Giustacchini, A. et al. Single-cell transcriptomics uncovers distinct molecular signatures of stem cells in chronic myeloid leukemia. Nat. Med. 23, 692–702 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. Rodriguez-Meira, A. et al. Unravelling intratumoral heterogeneity through high-sensitivity single-cell mutational analysis and parallel RNA sequencing. Mol. Cell 73, 1292–1305.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Müller, M. et al. Machine learning methods and harmonized datasets improve immunogenic neoantigen prediction. Immunity 56, 2650–2663.e6 (2023).

    Article  PubMed  Google Scholar 

  51. Sarkizova, S. et al. A large peptidome dataset improves HLA class I epitope prediction across most of the human population. Nat. Biotechnol. 38, 199–209 (2020).

    Article  CAS  PubMed  Google Scholar 

  52. Joglekar, A. V. & Li, G. T cell antigen discovery. Nat. Methods 18, 873–880 (2021).

    Article  CAS  PubMed  Google Scholar 

  53. Finton, K. A. K. et al. ARTEMIS: a novel mass-spec platform for HLA-restricted self and disease-associated peptide discovery. Front. Immunol. 12, 658372 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kraemer, A. I. et al. The immunopeptidome landscape associated with T cell infiltration, inflammation and immune editing in lung cancer. Nat. Cancer 4, 608–628 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Huber, F. et al. A comprehensive proteogenomic pipeline for neoantigen discovery to advance personalized cancer immunotherapy. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02420-y (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Meyer, S. et al. Prevalent and immunodominant CD8 T cell epitopes are conserved in SARS-CoV-2 variants. Cell Rep. 42, 111995 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Birnbaum, M. E. et al. Deconstructing the peptide–MHC specificity of T cell recognition. Cell 157, 1073–1087 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gaglione, S. A. et al. Scalable TCR synthesis and screening enables antigen reactivity mapping in vitiligo. Preprint at bioRxiv https://doi.org/10.1101/2025.04.24.649726 (2025).

  59. Kula, T. et al. T-Scan: a genome-wide method for the systematic discovery of T cell epitopes. Cell 178, 1016–1028.e13 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Dezfulian, M. H. et al. TScan-II: a genome-scale platform for the de novo identification of CD4+ T cell epitopes. Cell 186, 5569–5586.e21 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Moravec, Z. et al. Discovery of tumor-reactive T cell receptors by massively parallel library synthesis and screening. Nat. Biotechnol. 43, 214–222 (2024).

    Article  PubMed  Google Scholar 

  62. Strønen, E. et al. Targeting of cancer neoantigens with donor-derived T cell receptor repertoires. Science 352, 1337–1341 (2016).

    Article  PubMed  Google Scholar 

  63. Ali, M. et al. Induction of neoantigen-reactive T cells from healthy donors. Nat. Protoc. 14, 1926–1943 (2019).

    Article  CAS  PubMed  Google Scholar 

  64. Rosenberg, S. A. et al. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. N. Engl. J. Med. 319, 1676–1680 (1988).

    Article  CAS  PubMed  Google Scholar 

  65. Hodi, F. S. et al. Biologic activity of cytotoxic T lymphocyte-associated antigen 4 antibody blockade in previously vaccinated metastatic melanoma and ovarian carcinoma patients. Proc. Natl Acad. Sci. USA 100, 4712–4717 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Porter, D. L., Levine, B. L., Kalos, M., Bagg, A. & June, C. H. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N. Engl. J. Med. 365, 725–733 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gomez-Llobell, M., Peleteiro Raindo, A., Climent Medina, J., Gomez Centurion, I. & Mosquera Orgueira, A. Immune checkpoint inhibitors in acute myeloid leukemia: a meta-analysis. Front. Oncol. 12, 882531 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Handlos Grauslund, J. et al. Therapeutic cancer vaccination with a peptide derived from the calreticulin exon 9 mutations induces strong cellular immune responses in patients with CALR-mutant chronic myeloproliferative neoplasms. Front. Oncol. 11, 637420 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Di Stasi, A., Jimenez, A. M., Minagawa, K., Al-Obaidi, M. & Rezvani, K. Review of the results of WT1 peptide vaccination strategies for myelodysplastic syndromes and acute myeloid leukemia from nine different studies. Front. Immunol. 6, 36 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Morgan, R. A. et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314, 126–129 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nathan, P. et al. Overall survival benefit with tebentafusp in metastatic uveal melanoma. N. Engl. J. Med. 385, 1196–1206 (2021).

    Article  CAS  PubMed  Google Scholar 

  72. Gerber, H. P. & Presta, L. G. TCR mimic compounds for pHLA targeting with high potency modalities in oncology. Front. Oncol. 12, 1027548 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Klebanoff, C. A., Chandran, S. S., Baker, B. M., Quezada, S. A. & Ribas, A. T cell receptor therapeutics: immunological targeting of the intracellular cancer proteome. Nat. Rev. Drug. Discov. 22, 996–1017 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Yewdell, J. W., Antón, L. C. & Bennink, J. R. Defective ribosomal products (DRiPs): a major source of antigenic peptides for MHC class I molecules? J. Immunol. 157, 1823–1826 (1996).

    Article  CAS  PubMed  Google Scholar 

  75. Yewdell, J. W. MHC class I immunopeptidome: past, present, and future. Mol. Cell Proteom. 21, 100230 (2022).

    Article  CAS  Google Scholar 

  76. Bassani-Sternberg, M., Pletscher-Frankild, S., Jensen, L. J. & Mann, M. Mass spectrometry of human leukocyte antigen class I peptidomes reveals strong effects of protein abundance and turnover on antigen presentation. Mol. Cell Proteom. 14, 658–673 (2015).

    Article  CAS  Google Scholar 

  77. Sette, A. et al. The relationship between class I binding affinity and immunogenicity of potential cytotoxic T cell epitopes. J. Immunol. 153, 5586–5592 (1994).

    Article  CAS  PubMed  Google Scholar 

  78. van der Burg, S. H., Visseren, M. J., Brandt, R. M., Kast, W. M. & Melief, C. J. Immunogenicity of peptides bound to MHC class I molecules depends on the MHC–peptide complex stability. J. Immunol. 156, 3308–3314 (1996).

    Article  PubMed  Google Scholar 

  79. Harndahl, M. et al. Peptide–MHC class I stability is a better predictor than peptide affinity of CTL immunogenicity. Eur. J. Immunol. 42, 1405–1416 (2012).

    Article  CAS  PubMed  Google Scholar 

  80. Sugiyama, H. Cancer immunotherapy targeting WT1 protein. Biotherapy 14, 789–795 (2000).

    Google Scholar 

  81. Ogawa, H. et al. The usefulness of monitoring WT1 gene transcripts for the prediction and management of relapse following allogeneic stem cell transplantation in acute type leukemia. Blood 101, 1698–1704 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Chiusolo, P. et al. Day +60 WT1 assessment on CD34 selected bone marrow better predicts relapse and mortality after allogeneic stem cell transplantation in acute myeloid leukemia patients. Front. Oncol. 12, 994366 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lange, T. et al. Monitoring of WT1 expression in PB and CD34+ donor chimerism of BM predicts early relapse in AML and MDS patients after hematopoietic cell transplantation with reduced-intensity conditioning. Leukemia 25, 498–505 (2011).

    Article  CAS  PubMed  Google Scholar 

  84. Tawara, I. et al. Safety and persistence of WT1-specific T-cell receptor gene-transduced lymphocytes in patients with AML and MDS. Blood 130, 1985–1994 (2017).

    Article  CAS  PubMed  Google Scholar 

  85. Chapuis, A. G. et al. T cell receptor gene therapy targeting WT1 prevents acute myeloid leukemia relapse post-transplant. Nat. Med. 25, 1064–1072 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Morris, E. C. et al. A phase I study evaluating the safety and persistence of allorestricted WT1-TCR gene modified autologous T cells in patients with high-risk myeloid malignancies unsuitable for allogeneic stem cell transplantation. Blood 134, 1367 (2019).

    Article  Google Scholar 

  87. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT02770820 (2021).

  88. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05066165 (2023).

  89. Jaigirdar, A., Rosenberg, S. A. & Parkhurst, M. A high-avidity WT1-reactive T-cell receptor mediates recognition of peptide and processed antigen but not naturally occurring WT1-positive tumor cells. J. Immunother. 39, 105–116 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Tubio-Santamaria, N. et al. Immunoproteasome function maintains oncogenic gene expression in KMT2A-complex driven leukemia. Mol. Cancer 22, 196 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lahman, M. C. et al. Targeting an alternate Wilms’ tumor antigen 1 peptide bypasses immunoproteasome dependency. Sci. Transl. Med. 14, eabg8070 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ruggiero, E. et al. CRISPR-based gene disruption and integration of high-avidity, WT1-specific T cell receptors improve antitumor T cell function. Sci. Transl. Med. 14, eabg8027 (2022).

    Article  CAS  PubMed  Google Scholar 

  93. Ochsenreither, S. et al. Cyclin-A1 represents a new immunogenic targetable antigen expressed in acute myeloid leukemia stem cells with characteristics of a cancer-testis antigen. Blood 119, 5492–5501 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Robbins, P. F. et al. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J. Clin. Oncol. 29, 917–924 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Morgan, R. A. et al. Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. J. Immunother. 36, 133–151 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Robbins, P. F. et al. A pilot trial using lymphocytes genetically engineered with an NY-ESO-1-reactive T-cell receptor: long-term follow-up and correlates with response. Clin. Cancer Res. 21, 1019–1027 (2015).

    Article  CAS  PubMed  Google Scholar 

  97. Wermke, M. et al. 959 safety and anti-tumor activity of TCR-engineered autologous, PRAME-directed T cells across multiple advanced solid cancers at low doses — clinical update on the ACTengine® IMA203 trial. J. Immunother. Cancer 9, 2 (2021).

    Google Scholar 

  98. Hong, D. S. et al. Autologous T cell therapy for MAGE-A4+ solid cancers in HLA-A*02+ patients: a phase 1 trial. Nat. Med. 29, 104–114 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wong, K. K., Hassan, R. & Yaacob, N. S. Hypomethylating agents and immunotherapy: therapeutic synergism in acute myeloid leukemia and myelodysplastic syndromes. Front. Oncol. 11, 624742 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Thomas, S. et al. First-in-human study of MDG1011, a TCR-T cell therapy directed against HLA-A*02:01-restricted PRAME, for high-risk myeloid and lymphoid neoplasms. Bone Marrow Transplant. 58, 234–234 (2023).

    Google Scholar 

  101. Sigalotti, L. et al. Intratumor heterogeneity of cancer/testis antigens expression in human cutaneous melanoma is methylation-regulated and functionally reverted by 5-aza-2′-deoxycytidine. Cancer Res. 64, 9167–9171 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Woloszynska-Read, A., Mhawech-Fauceglia, P., Yu, J., Odunsi, K. & Karpf, A. R. Intertumor and intratumor NY-ESO-1 expression heterogeneity is associated with promoter-specific and global DNA methylation status in ovarian cancer. Clin. Cancer Res. 14, 3283–3290 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Yegnasubramanian, S. et al. DNA hypomethylation arises later in prostate cancer progression than CpG island hypermethylation and contributes to metastatic tumor heterogeneity. Cancer Res. 68, 8954–8967 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Yang, L. et al. Both methylation and copy number variation participated in the varied expression of PRAME in multiple myeloma. Onco Targets Ther. 13, 7545–7553 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Huijbers, I. J. et al. Minimal tolerance to a tumor antigen encoded by a cancer-germline gene. J. Immunol. 188, 111–121 (2012).

    Article  CAS  PubMed  Google Scholar 

  106. Linette, G. P. et al. Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma. Blood 122, 863–871 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Baker, D. J., Arany, Z., Baur, J. A., Epstein, J. A. & June, C. H. CAR T therapy beyond cancer: the evolution of a living drug. Nature 619, 707–715 (2023).

    Article  CAS  PubMed  Google Scholar 

  108. Abrahamsen, I. W. et al. Targeting B cell leukemia with highly specific allogeneic T cells with a public recognition motif. Leukemia 24, 1901–1909 (2010).

    Article  CAS  PubMed  Google Scholar 

  109. Kumari, S. et al. Alloreactive cytotoxic T cells provide means to decipher the immunopeptidome and reveal a plethora of tumor-associated self-epitopes. Proc. Natl Acad. Sci. USA 111, 403–408 (2014).

    Article  CAS  PubMed  Google Scholar 

  110. Jahn, L. et al. TCR-based therapy for multiple myeloma and other B-cell malignancies targeting intracellular transcription factor BOB1. Blood 129, 1284–1295 (2017).

    Article  CAS  PubMed  Google Scholar 

  111. Ali, M. et al. T cells targeted to TdT kill leukemic lymphoblasts while sparing normal lymphocytes. Nat. Biotechnol. 40, 488–498 (2022).

    Article  CAS  PubMed  Google Scholar 

  112. Kim, M. Y. et al. Genetic inactivation of CD33 in hematopoietic stem cells to enable CAR T cell immunotherapy for acute myeloid leukemia. Cell 173, 1439–1453.e19 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kikushige, Y. et al. Human Flt3 is expressed at the hematopoietic stem cell and the granulocyte/macrophage progenitor stages to maintain cell survival. J. Immunol. 180, 7358–7367 (2008).

    Article  CAS  PubMed  Google Scholar 

  114. Olweus, J., Terstappen, L. W. M. M., Thompson, P. A. & Lund-Johansen, F. Expression and function of receptors for stem cell factor and erythropoietin during lineage commitment of human hematopoietic progenitor cells. Blood 88, 1594–1607 (1996).

    Article  CAS  PubMed  Google Scholar 

  115. Olweus, J. et al. Dendritic cell ontogeny: a human dendritic cell lineage of myeloid origin. Proc. Natl Acad. Sci. USA 94, 12551–12556 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Wellhausen, N. et al. Epitope base editing CD45 in hematopoietic cells enables universal blood cancer immune therapy. Sci. Transl. Med. 15, eadi1145 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Marone, R. et al. Epitope-engineered human hematopoietic stem cells are shielded from CD123-targeted immunotherapy. J. Exp. Med. 220, e20231235 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Casirati, G. et al. Epitope editing enables targeted immunotherapy of acute myeloid leukaemia. Nature 621, 404–414 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Granados, D. P. et al. Impact of genomic polymorphisms on the repertoire of human MHC class I-associated peptides. Nat. Commun. 5, 3600 (2014).

    Article  PubMed  Google Scholar 

  120. Granados, D. P. et al. Proteogenomic-based discovery of minor histocompatibility antigens with suitable features for immunotherapy of hematologic cancers. Leukemia 30, 1344–1354 (2016).

    Article  CAS  PubMed  Google Scholar 

  121. Bykova, N. A., Malko, D. B. & Efimov, G. A. In silico analysis of the minor histocompatibility antigen landscape based on the 1000 Genomes Project. Front. Immunol. 9, 1819 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Bonnet, D., Warren, E. H., Greenberg, P. D., Dick, J. E. & Riddell, S. R. CD8+ minor histocompatibility antigen-specific cytotoxic T lymphocyte clones eliminate human acute myeloid leukemia stem cells. Proc. Natl Acad. Sci. USA 96, 8639–8644 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. den Haan, J. M. et al. The minor histocompatibility antigen HA-1: a diallelic gene with a single amino acid polymorphism. Science 279, 1054–1057 (1998).

    Article  Google Scholar 

  124. Hobo, W. et al. Association of disparities in known minor histocompatibility antigens with relapse-free survival and graft-versus-host disease after allogeneic stem cell transplantation. Biol. Blood Marrow Transpl. 19, 274–282 (2013).

    Article  CAS  Google Scholar 

  125. Pont, M. J. et al. Microarray gene expression analysis to evaluate cell type specific expression of targets relevant for immunotherapy of hematological malignancies. PLoS One 11, e0155165 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. van Balen, P. et al. HA-1H T-cell receptor gene transfer to redirect virus-specific T cells for treatment of hematological malignancies after allogeneic stem cell transplantation: a phase 1 clinical study. Front. Immunol. 11, 1804 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Al Malki, M. M. et al. 924 TSC-100 and TSC-101 demonstrate the potential to reduce relapse rates and increase relapse-free survival in patients with AML, ALL, or MDS undergoing allogeneic HCT with reduced intensity conditioning (RIC): preliminary results from the phase 1 alloha. ASH 2024 Proc. https://ash.confex.com/ash/2024/webprogram/Paper201526.html (2024).

  128. Krakow, E. F. et al. HA-1-targeted T-cell receptor T-cell therapy for recurrent leukemia after hematopoietic stem cell transplantation. Blood 144, 1069–1082 (2024).

    Article  CAS  PubMed  Google Scholar 

  129. Dossa, R. G. et al. Development of T-cell immunotherapy for hematopoietic stem cell transplantation recipients at risk of leukemia relapse. Blood 131, 108–120 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Franssen, L. E. et al. A phase I/II minor histocompatibility antigen-loaded dendritic cell vaccination trial to safely improve the efficacy of donor lymphocyte infusions in myeloma. Bone Marrow Transpl. 52, 1378–1383 (2017).

    Article  CAS  Google Scholar 

  131. Oostvogels, R. et al. Efficacy of host-dendritic cell vaccinations with or without minor histocompatibility antigen loading, combined with donor lymphocyte infusion in multiple myeloma patients. Bone Marrow Transpl. 52, 228–237 (2017).

    Article  CAS  Google Scholar 

  132. Fuchs, K. J. et al. Expanding the repertoire reveals recurrent, cryptic, and hematopoietic HLA class I minor histocompatibility antigens. Blood 143, 1856–1872 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Parkhurst, M. R. et al. Unique neoantigens arise from somatic mutations in patients with gastrointestinal cancers. Cancer Discov. 9, 1022–1035 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Foy, S. P. et al. Non-viral precision T cell receptor replacement for personalized cell therapy. Nature 615, 687–696 (2023).

    Article  CAS  PubMed  Google Scholar 

  135. Leidner, R. et al. Neoantigen T-cell receptor gene therapy in pancreatic cancer. N. Engl. J. Med. 386, 2112–2119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Kim, S. P. et al. Adoptive cellular therapy with autologous tumor-infiltrating lymphocytes and T-cell receptor-engineered T cells targeting common p53 neoantigens in human solid tumors. Cancer Immunol. Res. 10, 932–946 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Grinfeld, J. et al. Classification and personalized prognosis in myeloproliferative neoplasms. N. Engl. J. Med. 379, 1416–1430 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Papaemmanuil, E. et al. Genomic classification and prognosis in acute myeloid leukemia. N. Engl. J. Med. 374, 2209–2221 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Bernard, E. et al. Molecular taxonomy of myelodysplastic syndromes and its clinical implications. Blood 144, 1617–1632 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Matsushita, H. et al. Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature 482, 400–404 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Van den Eynden, J., Jimenez-Sanchez, A., Miller, M. L. & Larsson, E. Lack of detectable neoantigen depletion signals in the untreated cancer genome. Nat. Genet. 51, 1741–1748 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Kherreh, N., Cleary, S. & Seoighe, C. No evidence that HLA genotype influences the driver mutations that occur in cancer patients. Cancer Immunol. Immunother. 71, 819–827 (2022).

    Article  CAS  PubMed  Google Scholar 

  144. Walkowiak, B., MacGregor, H. A. J. & Blundell, J. R. No evidence of immunosurveillance in mutation-hotspot driven clonal haematopoiesis. Preprint at https://www.biorxiv.org/content/10.1101/2024.09.27.615394v1 (2024).

  145. Bassani-Sternberg, M. et al. Direct identification of clinically relevant neoepitopes presented on native human melanoma tissue by mass spectrometry. Nat. Commun. 7, 13404 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Loffler, M. W. et al. Multi-omics discovery of exome-derived neoantigens in hepatocellular carcinoma. Genome Med. 11, 28 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Rojas, L. A. et al. Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer. Nature 618, 144–150 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Weber, J. S. et al. Individualised neoantigen therapy mRNA-4157 (V940) plus pembrolizumab versus pembrolizumab monotherapy in resected melanoma (KEYNOTE-942): a randomised, phase 2b study. Lancet 403, 632–644 (2024).

    Article  CAS  PubMed  Google Scholar 

  149. Drake, C. G. et al. Androgen ablation mitigates tolerance to a prostate/prostate cancer-restricted antigen. Cancer Cell 7, 239–249 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Willimsky, G. & Blankenstein, T. Sporadic immunogenic tumours avoid destruction by inducing T-cell tolerance. Nature 437, 141–146 (2005).

    Article  CAS  PubMed  Google Scholar 

  151. Schietinger, A. et al. Tumor-specific T cell dysfunction is a dynamic antigen-driven differentiation program initiated early during tumorigenesis. Immunity 45, 389–401 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Yost, K. E. et al. Clonal replacement of tumor-specific T cells following PD-1 blockade. Nat. Med. 25, 1251–1259 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Noviello, M. et al. Bone marrow central memory and memory stem T-cell exhaustion in AML patients relapsing after HSCT. Nat. Commun. 10, 1–15 (2019).

    Article  CAS  Google Scholar 

  154. Kim, Y. J. et al. Characterization of the bone marrow lymphoid microenvironment and discovery of prognostic immune-related factors in acute myeloid leukemia. Int. J. Mol. Sci. 25, 13039 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Bogen, B. Peripheral T cell tolerance as a tumor escape mechanism: deletion of CD4+ T cells specific for a monoclonal immunoglobulin idiotype secreted by a plasmacytoma. Eur. J. Immunol. 26, 2671–2679 (1996).

    Article  CAS  PubMed  Google Scholar 

  156. Staveley-O’Carroll, K. et al. Induction of antigen-specific T cell anergy: an early event in the course of tumor progression. Proc. Natl Acad. Sci. USA 95, 1178–1183 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  157. van der Lee, D. I. et al. Mutated nucleophosmin 1 as immunotherapy target in acute myeloid leukemia. J. Clin. Invest. 129, 774–785 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Biernacki, M. A. et al. CBFB–MYH11 fusion neoantigen enables T cell recognition and killing of acute myeloid leukemia. J. Clin. Invest. 130, 5127–5141 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Giannakopoulou, E. et al. A T cell receptor targeting a recurrent driver mutation in FLT3 mediates elimination of primary human acute myeloid leukemia in vivo. Nat. Cancer 4, 1474–1490 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Biernacki, M. A. et al. Discovery of U2AF1 neoantigens in myeloid neoplasms. J. Immunother. Cancer 11, e007490 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Leung, W. K. et al. Targeting IDH2R140Q and other neoantigens in acute myeloid leukemia. Blood 143, 1726–1737 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Bear, A. S. et al. Biochemical and functional characterization of mutant KRAS epitopes validates this oncoprotein for immunological targeting. Nat. Commun. 12, 4365 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Laumont, C. M. & Perreault, C. Exploiting non-canonical translation to identify new targets for T cell-based cancer immunotherapy. Cell Mol. Life Sci. 75, 607–621 (2018).

    Article  CAS  PubMed  Google Scholar 

  164. Erhard, F., Dolken, L., Schilling, B. & Schlosser, A. Identification of the cryptic HLA-I immunopeptidome. Cancer Immunol. Res. 8, 1018–1026 (2020).

    Article  CAS  PubMed  Google Scholar 

  165. Pan, Y. et al. IRIS: discovery of cancer immunotherapy targets arising from pre-mRNA alternative splicing. Proc. Natl Acad. Sci. USA 120, e2221116120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Merlotti, A. et al. Noncanonical splicing junctions between exons and transposable elements represent a source of immunogenic recurrent neo-antigens in patients with lung cancer. Sci. Immunol. 8, eabm6359 (2023).

    Article  CAS  PubMed  Google Scholar 

  167. Yoshida, K. et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 478, 64–69 (2011).

    Article  CAS  PubMed  Google Scholar 

  168. Bonnal, S. C., Lopez-Oreja, I. & Valcarcel, J. Roles and mechanisms of alternative splicing in cancer—implications for care. Nat. Rev. Clin. Oncol. 17, 457–474 (2020).

    Article  PubMed  Google Scholar 

  169. Kim, W. J. et al. Mis-splicing-derived neoantigens and cognate TCRs in splicing factor mutant leukemias. Cell https://doi.org/10.1016/j.cell.2025.03.047 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Kwok, D. W. et al. Tumour-wide RNA splicing aberrations generate actionable public neoantigens. Nature 639, 463–473 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Lozano-Rabella, M. et al. Exploring the immunogenicity of noncanonical HLA-I tumor ligands identified through proteogenomics. Clin. Cancer Res. 29, 2250–2265 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Saini, S. K. et al. Human endogenous retroviruses form a reservoir of T cell targets in hematological cancers. Nat. Commun. 11, 5660 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Bartok, O. et al. Anti-tumour immunity induces aberrant peptide presentation in melanoma. Nature 590, 332–337 (2021).

    Article  CAS  PubMed  Google Scholar 

  174. Pataskar, A. et al. Tryptophan depletion results in tryptophan-to-phenylalanine substitutants. Nature 603, 721–727 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Champagne, J. et al. Adoptive T cell therapy targeting a broadly shared, inducible product of aberrant mRNA translation. Immunity 58, 247–262.e9 (2025).

    Article  CAS  PubMed  Google Scholar 

  176. Weller, C. et al. Translation dysregulation in cancer as a source for targetable antigens. Cancer Cell https://doi.org/10.1016/j.ccell.2025.03.003 (2025).

  177. Kacen, A. et al. Post-translational modifications reshape the antigenic landscape of the MHC I immunopeptidome in tumors. Nat. Biotechnol. 41, 239–251 (2023).

    Article  CAS  PubMed  Google Scholar 

  178. Patskovsky, Y. et al. Molecular mechanism of phosphopeptide neoantigen immunogenicity. Nat. Commun. 14, 3763 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Jaiswal, S. et al. Age-related clonal hematopoiesis associated with adverse outcomes. N. Engl. J. Med. 371, 2488–2498 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Genovese, G. et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N. Engl. J. Med. 371, 2477–2487 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Weeks, L. D. & Ebert, B. L. Causes and consequences of clonal hematopoiesis. Blood 142, 2235–2246 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Desai, P. et al. Somatic mutations precede acute myeloid leukemia years before diagnosis. Nat. Med. 24, 1015–1023 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Tanaka, T. et al. Clonal dynamics and clinical implications of postremission clonal hematopoiesis in acute myeloid leukemia. Blood 138, 1733–1739 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Lee-Six, H. et al. Population dynamics of normal human blood inferred from somatic mutations. Nature 561, 473–478 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Sender, R. & Milo, R. The distribution of cellular turnover in the human body. Nat. Med. 27, 45–48 (2021).

    Article  CAS  PubMed  Google Scholar 

  186. Osorio, F. G. et al. Somatic mutations reveal lineage relationships and age-related mutagenesis in human hematopoiesis. Cell Rep. 25, 2308–2316.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Welch, J. S. et al. The origin and evolution of mutations in acute myeloid leukemia. Cell 150, 264–278 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Miles, L. A. et al. Single-cell mutation analysis of clonal evolution in myeloid malignancies. Nature 587, 477–482 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Morita, K. et al. Clonal evolution of acute myeloid leukemia revealed by high-throughput single-cell genomics. Nat. Commun. 11, 5327 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Sloma, I., Jiang, X., Eaves, A. C. & Eaves, C. J. Insights into the stem cells of chronic myeloid leukemia. Leukemia 24, 1823–1833 (2010).

    Article  CAS  PubMed  Google Scholar 

  191. Goardon, N. et al. Coexistence of LMPP-like and GMP-like leukemia stem cells in acute myeloid leukemia. Cancer Cell 19, 138–152 (2011).

    Article  CAS  PubMed  Google Scholar 

  192. Taussig, D. C. et al. Anti-CD38 antibody-mediated clearance of human repopulating cells masks the heterogeneity of leukemia-initiating cells. Blood 112, 568–575 (2008).

    Article  CAS  PubMed  Google Scholar 

  193. Uckelmann, H. J. & Armstrong, S. A. Chromatin complexes maintain self-renewal of myeloid progenitors in AML: opportunities for therapeutic intervention. Stem Cell Rep. 15, 6–12 (2020).

    Article  CAS  Google Scholar 

  194. Wagenblast, E. et al. Mapping the cellular origin and early evolution of leukemia in Down syndrome. Science 373, eabf6202 (2021).

    Article  CAS  PubMed  Google Scholar 

  195. Ediriwickrema, A. et al. Single-cell mutational profiling enhances the clinical evaluation of AML MRD. Blood Adv. 4, 943–952 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Shlush, L. I. et al. Tracing the origins of relapse in acute myeloid leukaemia to stem cells. Nature 547, 104–108 (2017).

    Article  CAS  PubMed  Google Scholar 

  197. Tehranchi, R. et al. Persistent malignant stem cells in del(5q) myelodysplasia in remission. N. Engl. J. Med. 363, 1025–1037 (2010).

    Article  CAS  PubMed  Google Scholar 

  198. Vetrie, D., Helgason, G. V. & Copland, M. The leukaemia stem cell: similarities, differences and clinical prospects in CML and AML. Nat. Rev. Cancer 20, 158–173 (2020).

    Article  CAS  PubMed  Google Scholar 

  199. Uchida, N. et al. High doses of purified stem cells cause early hematopoietic recovery in syngeneic and allogeneic hosts. J. Clin. Invest. 101, 961–966 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Dimitriou, M. et al. Identification and surveillance of rare relapse-initiating stem cells during complete remission after transplantation. Blood 143, 953–966 (2024).

    Article  CAS  PubMed  Google Scholar 

  201. Eppert, K. et al. Stem cell gene expression programs influence clinical outcome in human leukemia. Nat. Med. 17, 1086–1093 (2011).

    Article  CAS  PubMed  Google Scholar 

  202. Ng, S. W. et al. A 17-gene stemness score for rapid determination of risk in acute leukaemia. Nature 540, 433–437 (2016).

    Article  CAS  PubMed  Google Scholar 

  203. Brieger, J. et al. The Wilms’ tumor gene is frequently expressed in acute myeloblastic leukemias and may provide a marker for residual blast cells detectable by PCR. Ann. Oncol. 6, 811–816 (1995).

    Article  CAS  PubMed  Google Scholar 

  204. Woll, P. S. & Jacobsen, S. E. W. Stem cell concepts in myelodysplastic syndromes: lessons and challenges. J. Intern. Med. 289, 650–661 (2021).

    Article  CAS  PubMed  Google Scholar 

  205. Schneider, V. et al. Leukemic progenitor cells are susceptible to targeting by stimulated cytotoxic T cells against immunogenic leukemia-associated antigens. Int. J. Cancer 137, 2083–2092 (2015).

    Article  CAS  PubMed  Google Scholar 

  206. Jordan, C. T. et al. The interleukin-3 receptor α chain is a unique marker for human acute myelogenous leukemia stem cells. Leukemia 14, 1777–1784 (2000).

    Article  CAS  PubMed  Google Scholar 

  207. Nelde, A. et al. Immune surveillance of acute myeloid leukemia is mediated by HLA-presented antigens on leukemia progenitor cells. Blood Cancer Discov. 4, 468–489 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Hope, K. J., Jin, L. & Dick, J. E. Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat. Immunol. 5, 738–743 (2004).

    Article  CAS  PubMed  Google Scholar 

  209. Chu, S. et al. Persistence of leukemia stem cells in chronic myelogenous leukemia patients in prolonged remission with imatinib treatment. Blood 118, 5565–5572 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Saito, Y. et al. Induction of cell cycle entry eliminates human leukemia stem cells in a mouse model of AML. Nat. Biotechnol. 28, 275–280 (2010).

    Article  CAS  PubMed  Google Scholar 

  211. Agudo, J. et al. Quiescent tissue stem cells evade immune surveillance. Immunity 48, 271–285.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Chen, X. et al. A membrane-associated MHC-I inhibitory axis for cancer immune evasion. Cell 186, 3903–3920.e21 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Wang, J., Lu, Q., Chen, X. & Aifantis, I. Targeting MHC-I inhibitory pathways for cancer immunotherapy. Trends Immunol. 45, 177–187 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Lasry, A. et al. An inflammatory state remodels the immune microenvironment and improves risk stratification in acute myeloid leukemia. Nat. Cancer 4, 27–42 (2023).

    CAS  PubMed  Google Scholar 

  215. Yeaton, A. et al. The impact of inflammation-induced tumor plasticity during myeloid transformation. Cancer Discov. 12, 2392–2413 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Vadakekolathu, J. & Rutella, S. Escape from T-cell-targeting immunotherapies in acute myeloid leukemia. Blood 143, 2689–2700 (2024).

    Article  CAS  PubMed  Google Scholar 

  217. Bijen, H. M. et al. Preclinical strategies to identify off-target toxicity of high-affinity TCRs. Mol. Ther. 26, 1206–1214 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Sanderson, J. P. et al. Preclinical evaluation of an affinity-enhanced MAGE-A4-specific T-cell receptor for adoptive T-cell therapy. Oncoimmunology 9, 1682381 (2020).

    Article  PubMed  Google Scholar 

  219. Foldvari, Z. et al. A systematic safety pipeline for selection of T-cell receptors to enter clinical use. NPJ Vaccines 8, 126 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. van Amerongen, R. A. et al. Human iPSC-derived preclinical models to identify toxicity of tumor-specific T cells with clinical potential. Mol. Ther. Methods Clin. Dev. 28, 249–261 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Abdelfattah, N. S., Kula, T. & Elledge, S. J. T-switch: a specificity-based engineering platform for developing safe and effective T cell therapeutics. Immunity 57, 2945–2958.e5 (2024).

    Article  CAS  PubMed  Google Scholar 

  222. Stadtmauer, E. A. et al. Long-term safety and activity of NY-ESO-1 SPEAR T cells after autologous stem cell transplant for myeloma. Blood Adv. 3, 2022–2034 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Kawai, A. et al. Safety and efficacy of NY-ESO-1 antigen-specific T-cell receptor gene-transduced T lymphocytes in patients with synovial sarcoma: a phase I/II clinical trial. Clin. Cancer Res. 29, 5069–5078 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Arnon, J. et al. 11P successful transfer and prolonged persistence of engineered lymphocytes with T-cell receptor targeting NY-ESO-1. ESMO Open. 8, 100977–100977 (2023).

    Article  Google Scholar 

  225. Karapetyan, A. R. et al. TCR fingerprinting and off-target peptide identification. Front. Immunol. 10, 2501 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Ishihara, M. et al. NY-ESO-1-specific redirected T cells with endogenous TCR knockdown mediate tumor response and cytokine release syndrome. J. Immunother. Cancer 10, e003811 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Ou, Y. et al. Development of an affinity-enhanced clinical candidate TCR targeting NY-ESO-1 with optimal potency and high specificity. Preprint at https://www.biorxiv.org/content/10.1101/2022.10.12.511904v1 (2022).

  228. Levine, B. L. et al. Unanswered questions following reports of secondary malignancies after CAR-T cell therapy. Nat. Med. 30, 338–341 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Lamble, A. J. et al. Risk of T-cell malignancy after CAR T-cell therapy in children, adolescents, and young adults. Blood Adv. 8, 3544–3548 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  230. Hamilton, M. P. et al. Risk of second tumors and T-cell lymphoma after CAR T-cell therapy. N. Engl. J. Med. 390, 2047–2060 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Maschan, M. et al. Multiple site place-of-care manufactured anti-CD19 CAR-T cells induce high remission rates in B-cell malignancy patients. Nat. Commun. 12, 7200 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Mallapaty, S. Cutting-edge CAR-T cancer therapy is now made in India—at one-tenth the cost. Nature 627, 709–710 (2024).

    Article  CAS  PubMed  Google Scholar 

  233. Schober, K. et al. Orthotopic replacement of T-cell receptor α- and β-chains with preservation of near-physiological T-cell function. Nat. Biomed. Eng. 3, 974–984 (2019).

    Article  PubMed  Google Scholar 

  234. Tretbar, U. S. et al. Non-viral vectors for chimeric antigen receptor immunotherapy. Nat. Rev. Methods Prim. 4, 1–19 (2024).

    Google Scholar 

  235. Schmid, D. A. et al. Evidence for a TCR affinity threshold delimiting maximal CD8 T cell function. J. Immunol. 184, 4936–4946 (2010).

    Article  CAS  PubMed  Google Scholar 

  236. Allard, M. et al. TCR-ligand dissociation rate is a robust and stable biomarker of CD8+ T cell potency. JCI Insight 2, e92570 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  237. Guy, C. S. et al. Distinct TCR signaling pathways drive proliferation and cytokine production in T cells. Nat. Immunol. 14, 262–270 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Nagai, K. et al. Aurora kinase A-specific T-cell receptor gene transfer redirects T lymphocytes to display effective antileukemia reactivity. Blood 119, 368–376 (2012).

    Article  CAS  PubMed  Google Scholar 

  239. Arber, C. et al. Survivin-specific T cell receptor targets tumor but not T cells. J. Clin. Invest. 125, 157–168 (2015).

    Article  PubMed  Google Scholar 

  240. Holler, P. D. & Kranz, D. M. Quantitative analysis of the contribution of TCR/pepMHC affinity and CD8 to T cell activation. Immunity 18, 255–264 (2003).

    Article  CAS  PubMed  Google Scholar 

  241. Davari, K. et al. Development of a CD8 co-receptor independent T-cell receptor specific for tumor-associated antigen MAGE-A4 for next generation T-cell-based immunotherapy. J. Immunother. Cancer 9, e002035 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  242. Stadtmauer, E. A. et al. CRISPR-engineered T cells in patients with refractory cancer. Science 367, eaba7365 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Johnson, L. A. et al. Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood 114, 535–546 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Chodon, T. et al. Adoptive transfer of MART-1 T-cell receptor transgenic lymphocytes and dendritic cell vaccination in patients with metastatic melanoma. Clin. Cancer Res. 20, 2457–2465 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Khan, A. O. et al. Human bone marrow organoids for disease modeling, discovery, and validation of therapeutic targets in hematologic malignancies. Cancer Discov. 13, 364–385 (2023).

    Article  CAS  PubMed  Google Scholar 

  246. Leick, M. B. et al. Non-cleavable hinge enhances avidity and expansion of CAR-T cells for acute myeloid leukemia. Cancer Cell 40, 494–508.e5 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Carr, A. et al. Advances in preclinical TCR characterization: leveraging cell avidity to identify functional TCRs. Biol. Chem. 405, 517–529 (2024).

    Article  CAS  PubMed  Google Scholar 

  248. Rosenberger, L. et al. Selection of therapeutically effective T-cell receptors from the diverse tumor-bearing repertoire. J. Immunother. Cancer 13, 1–13 (2025).

    Article  Google Scholar 

  249. Labanieh, L. & Mackall, C. L. CAR immune cells: design principles, resistance and the next generation. Nature 614, 635–648 (2023).

    Article  CAS  PubMed  Google Scholar 

  250. Arunachalam, A. K., Gregoire, C., Coutinho de Oliveira, B. & Melenhorst, J. J. Advancing CAR T-cell therapies: preclinical insights and clinical translation for hematological malignancies. Blood Rev. 68, 101241 (2024).

    Article  CAS  PubMed  Google Scholar 

  251. Wunderlich, M. et al. OKT3 prevents xenogeneic GVHD and allows reliable xenograft initiation from unfractionated human hematopoietic tissues. Blood 123, e134–e144 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  252. Provasi, E. et al. Editing T cell specificity towards leukemia by zinc finger nucleases and lentiviral gene transfer. Nat. Med. 18, 807–815 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Tsuchida, C. A. et al. Mitigation of chromosome loss in clinical CRISPR–Cas9-engineered T cells. Cell 186, 4567–4582.e20 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Gottschlich, A. et al. Single-cell transcriptomic atlas-guided development of CAR-T cells for the treatment of acute myeloid leukemia. Nat. Biotechnol. 41, 1618–1632 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Perna, F. et al. Integrating proteomics and transcriptomics for systematic combinatorial chimeric antigen receptor therapy of AML. Cancer Cell 32, 506–519.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Tikhonova, A. N. et al. The bone marrow microenvironment at single-cell resolution. Nature 569, 222–228 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Haubner, S. et al. Cooperative CAR targeting to selectively eliminate AML and minimize escape. Cancer Cell 41, 1871–1891.e6 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Dao, T. et al. A dual-receptor T-cell platform with Ab-TCR and costimulatory receptor achieves specificity and potency against AML. Blood 143, 507–521 (2024).

    Article  CAS  PubMed  Google Scholar 

  259. Wellhausen, N., Baek, J., Gill, S. I. & June, C. H. Enhancing cellular immunotherapies in cancer by engineering selective therapeutic resistance. Nat. Rev. Cancer 24, 614–628 (2024).

    Article  CAS  PubMed  Google Scholar 

  260. Pogorelyy, M. V. et al. TIRTL-seq: deep, quantitative, and affordable paired TCR repertoire sequencing. Preprint at bioRxiv https://doi.org/10.1101/2024.09.16.613345 (2024).

  261. Messemaker, M. et al. A functionally validated TCR-pMHC database for TCR specificity model development. Preprint at bioRxiv https://doi.org/10.1101/2025.04.28.651095 (2025).

  262. Leem, J., de Oliveira, S. H. P., Krawczyk, K. & Deane, C. M. STCRDab: the structural T-cell receptor database. Nucleic Acids Res. 46, D406–D412 (2018).

    Article  CAS  PubMed  Google Scholar 

  263. Nobel Prize Organization. Nobel Prize in Chemistry 2024 [press release]; https://www.nobelprize.org/prizes/chemistry/2024/press-release/ (2024).

  264. van Loenen, M. M. et al. Optimization of the HA-1-specific T-cell receptor for gene therapy of hematologic malignancies. Haematologica 96, 477–481 (2011).

    Article  PubMed  Google Scholar 

  265. van Loenen, M. M. et al. A good manufacturing practice procedure to engineer donor virus-specific T cells into potent anti-leukemic effector cells. Haematologica 99, 759–768 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  266. Al Malki, M. M. et al. A phase 1 trial of TSC-100 and TSC-101, engineered T cell therapies that target minor histocompatibility antigens to eliminate residual disease after hematopoietic cell transplantation. J. Clin. Oncol. 42, TPS2678 (2024).

    Article  Google Scholar 

  267. Bajwa, G. et al. 163 Improved anti-tumor activity of next-generation TCR-engineered T cells through CD8 co-expression. J. Immunother. Cancer 9, A173 (2021).

    Google Scholar 

  268. Xue, S.-A. et al. Development of a Wilms’ tumor antigen-specific T-cell receptor for clinical trials: engineered patient’s T cells can eliminate autologous leukemia blasts in NOD/SCID mice. Haematologica 95, 126–134 (2010).

    Article  PubMed  Google Scholar 

  269. Ohminami, H., Yasukawa, M. & Fujita, S. HLA class I-restricted lysis of leukemia cells by a CD8+ cytotoxic T-lymphocyte clone specific for WT1 peptide. Blood 95, 286–293 (2000).

    Article  CAS  PubMed  Google Scholar 

  270. Ochi, T. et al. Novel adoptive T-cell immunotherapy using a WT1-specific TCR vector encoding silencers for endogenous TCRs shows marked antileukemia reactivity and safety. Blood 118, 1495–1503 (2011).

    Article  CAS  PubMed  Google Scholar 

  271. Wermke, M. et al. 687 ACTengine IMA203 TCR-T targeting PRAME shows deep and durable anti-tumor activity in heavily pretreated solid cancer patients. J. Immunother. Cancer 12, A788 (2024).

    Google Scholar 

  272. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT02408016 (2021).

Download references

Acknowledgements

The authors acknowledge the constructive expert feedback of J. E. Dick, D. H. Busch, A. J. Mead, M. S. Leisegang, F. Lund-Johansen and E. H. Rustad on the pre-final draft of this manuscript. This work was delivered as part of projects supported by grants to S.E.W.J. from the Knut and Alice Wallenberg Foundation (2016.0105 and 2023.0263), the Swedish Research Council (538-2013-8995), the Swedish Cancer Society (23 3138 PJ), the Torsten Söderberg Foundation and the UK Medical Research Council, to M.S.B. from the Swedish Cancer Society (21 0355 PT) and to J.O. from the Research Council of Norway through its Centres of Excellence scheme (332727) and research grant (316060), the Norwegian Cancer Society (216135-2020), South-Eastern Regional Health Authority Norway (2021074), the Cancer Grand Challenges partnership financed by CRUK (CGCATF-2023/100011), the National Cancer Institute (1OT2CA297513-01) and The Mark Foundation for Cancer Research, as members of the MATCHMAKERS team, the University of Oslo and Oslo University Hospital and the Novo Nordisk Foundation. The authors apologize to colleagues whose relevant work has not been cited due to space restrictions guiding the preparation of this Perspective.

Author information

Authors and Affiliations

Authors

Contributions

S.E.W.J. and J.O. contributed equally and jointly supervised this work. All authors contributed to all aspects of this article.

Corresponding authors

Correspondence to Sten Eirik W. Jacobsen or Johanna Olweus.

Ethics declarations

Competing interests

J.O. is an inventor on several patents and patent applications protecting TCR sequences owned by Oslo University Hospital/University of Oslo; is on the scientific advisory board of Asgard Therapeutics; and is cofounder of T-Rx therapeutics. Z.F., M.S.B., A.T. and S.E.W.J. declare no competing interests.

Peer review

Peer review information

Nature Reviews Cancer thanks Sebastian Kobold and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Beacon Cell Therapy, Hanson Wade Group: https://beacon-intelligence.com/solutions/cell-therapy-database/

Genotype-Tissue Expression (GTEx): https://www.gtexportal.org/home/

GoCART Coalition: https://www.ebmt.org/research/gocart-coalition

Structural T-Cell Receptor Database (STCRDab): https://opig.stats.ox.ac.uk/webapps/stcrdab-stcrpred/

T2Eolve: https://t2evolve.com/

Supplementary information

Glossary

Affinity

The strength of the monovalent interaction between an antigen (for example, a peptide–major histocompatibility complex (pMHC) complex) and a receptor complex (for example, T cell receptor (TCR)); contributes to antigen sensitivity.

Allogeneic haematopoietic stem cell transplantation

(allo-HSCT). A procedure in which a patient receives healthy blood-forming cells (stem cells) from a donor to replace their own stem cells that have been destroyed by treatment with radiation or high doses of chemotherapy, and to attack remaining malignant haematopoietic cells in the patient.

Antigens

In the context of a B cell, molecules that specifically bind to an antibody or a B cell receptor expressed by a B cell; or in the context of a T cell, peptide–major histocompatibility complex (pMHC) molecules that specifically bind a T cell receptor (TCR), which evokes an immune response against the molecule or pMHC.

Bispecific antibodies

Engineered antibodies designed to bind to two different antigens or two epitopes on the same antigen simultaneously, for example CD3 on T cells and CD19 on B cells and B cell malignancies, to bring immune effector cells into close proximity to cancer cells.

Bispecific proteins

Engineered proteins that can bind to two different targets simultaneously, for example, bispecific antibodies, and soluble, affinity-enhanced T cell receptors (TCRs) fused to anti-CD3 to redirect T cells to target cells expressing a particular peptide–human leucocyte antigen (pHLA) complex.

Catch bonds

Biological interactions that become stronger when mechanical forces act to pull a ligand–receptor complex apart, which in the context of T cell receptor (TCR)–peptide–major histocompatibility complex (pMHC) interactions can enhance TCR-antigen recognition and promote effective T cell activation.

Clonal haematopoiesis

A common aging-related condition observed in healthy individuals with normal blood parameters, where a recurrent genetic mutation in a haematopoietic stem cell (HSC) results in clonal expansion of cells originating from the HSC clone.

Epitopes

Short peptides that derive from a protein, bind to a major histocompatibility complex (MHC) molecule and are recognized by a particular T cell receptor (TCR) expressed on a T cell.

Functional avidity

Refers to the sensitivity of a T cell receptor (TCR) to its cognate peptide–major histocompatibility complex (pMHC), typically measured by the amount of peptide needed to trigger T cell activation (peptide sensitivity), integrating TCR–pMHC binding affinity, TCR density, TCR signalling efficiency, co-receptor engagement and cellular context.

Graft-versus-host disease

(GVHD). A potentially fatal condition whereby the donor immune cells recognize and attack patient non-haematopoietic cells after allogeneic haematopoietic stem cell transplantation (allo-HSCT).

Graft-versus-leukaemia (GVL) effect

An immune response to a patient’s leukaemic cells by donor immune cells, as observed after allogeneic haematopoietic stem cell transplantation (allo-HSCT).

Haematopoietic progenitor cells

An undifferentiated cell population that is highly proliferative and can replenish one, some or all the different blood cell types, but unlike haematopoietic stem cells (HSCs) possesses limited or no self-renewal ability.

Haematopoietic stem cells

(HSCs). Immature blood-forming cells capable of both self-renewal and multi-lineage differentiation into all blood cell lineages, ensuring their replenishment throughout the lifetime of an organism.

Human leukocyte antigen

(HLA). The set of major histocompatibility complex (MHC) molecules in humans comprising cell surface receptors expressed on all nucleated cells (HLA class I) and on antigen-presenting cells (HLA class II), specialized to present antigenic peptides to T cells.

Immune privileged

Indicating that certain immunogenic cells in the body are protected from immune attack.

Immunoediting

The process whereby the immune system can both constrain and promote tumour development, often leading to the tumour being able to evade detection by immune cells.

Immunogenic

The ability of an antigen to provoke an immune response.

Immunoproteasome

A specialized form of the proteasome responsible for degrading proteins in immune cells, with altered cleavage activity favouring the generation of peptides that are presented by major histocompatibility complex (MHC) class I molecules.

Leukaemia-propagating cells

(LPCs). Populations of leukaemic cells that possess the ability to self-renew, and sustain the growth of the leukaemia.

Leukaemic stem cells

(LSCs). Leukaemic cells residing at the top of the cellular hierarchy of a leukaemic clone, possessing extensive self-renewal potential and ability to replenish all other cell types constituting the leukaemic clone, including other leukaemia-propagating cells (LPCs).

Measurable residual disease

(MRD; previously termed minimal residual disease). Denotes the detection of rare cancer cells with advanced molecular methods while patients remain in complete clinical remission after therapy, a finding with prognostic and therapeutic implications.

Myeloid cells

A heterogeneous group of white blood cells involved in antigen presentation and innate immunity that include monocytes, macrophages, granulocytes, dendritic cells, erythrocytes and megakaryocytes.

Neoantigens

New antigens with an amino acid sequence that is not present in the normal human proteome and that can evoke an immune response (that is, a neoepitope); a private neoantigen is unique to an individual tumour and patient, whereas a public neoantigen is shared among tumours and patients.

Quiescent

A state of reversible growth arrest in which cells have exited the cell cycle but remain capable of renewed division upon stimulation.

Self-renewal

The process by which haematopoietic stem cells (HSCs) divide to sustain or make more HSCs, perpetuating the HSC pool and multi-lineage blood replenishment throughout life.

Self-tolerance

The ability of the immune system to identify and not react against self-produced antigens.

T cell receptor (TCR)-engineered T cells

T cells that have been genetically engineered to express a specific T cell receptor (TCR) that recognizes a defined antigen.

Transposons

DNA sequences that can move from one location in the genome to another, also known as transposable elements (TEs), which in gene therapy are used to deliver and stably integrate therapeutic genes into target cells, using a transposase enzyme.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foldvari, Z., Brennan, M.S., Titov, A. et al. Targeting the roots of myeloid malignancies with T cell receptors. Nat Rev Cancer (2025). https://doi.org/10.1038/s41568-025-00857-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41568-025-00857-0

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer