Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Scabies

Abstract

Scabies is one of the most common and highest-burden skin diseases globally. Estimates suggest that >200 million people worldwide have scabies at any one time, with an annual prevalence of 455 million people, with children in impoverished and overcrowded settings being the most affected. Scabies infection is highly contagious and leads to considerable morbidity. Secondary bacterial infections are common and can cause severe health complications, including sepsis or necrotizing soft-tissue infection, renal damage and rheumatic heart disease. There is no vaccine or preventive treatment against scabies and, for the past 30 years, only few broad-spectrum antiparasitic drugs (mainly topical permethrin and oral ivermectin) have been widely available. Treatment failure is common because drugs have short half-lives and do not kill all developmental stages of the scabies parasite. At least two consecutive treatments are needed, which is difficult to achieve in resource-poor and itinerant populations. Another key issue is the lack of a practical, rapid, cheap and accurate diagnostic tool for the timely detection of scabies, which could prevent the cycle of exacerbation and disease persistence in communities. Scabies control will require a multifaceted approach, aided by improved diagnostics and surveillance, new treatments, and increased public awareness.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The cellular and molecular landscape in early scabies infection.
Fig. 2: The global burden of scabies and associated sequelae.
Fig. 3: Scabies and bacterial proteins interfering with the host complement and coagulation cascades.
Fig. 4: The skin microenvironment in severe scabies.
Fig. 5: Proposed cellular and molecular mechanisms in scabies-mediated itch.
Fig. 6: Clinical presentation of classic scabies.
Fig. 7: Clinical presentation of crusted scabies.

Similar content being viewed by others

References

  1. Fischer, K. & Chosidow, O. Scabies (Springer, 2023). This book covers the current status quo in scabies research.

  2. Karimkhani, C. et al. The global burden of scabies: a cross-sectional analysis from the Global Burden of Disease Study 2015. Lancet Infect. Dis. 17, 1247–1254 (2017). Unsurpassed analysis and documentation of the global morbidity and burden of scabies.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hay, R. J. et al. The global burden of skin disease in 2010: an analysis of the prevalence and impact of skin conditions. J. Invest. Dermatol. 134, 1527–1534 (2014). Important paper providing an analysis of the global burden of skin disease.

    Article  CAS  PubMed  Google Scholar 

  4. World Health Organization. WHO Informal Consultation on a Framework for Scabies Control (WHO, 2019).

  5. Bornstein, S., Mörner, T. & Samuel, W. M. in Parasitic Diseases of Wild Mammals (eds Samuel, W. M., Pybus, M. J. & Kocan, A. A.) 107–119 (Iowa State University Press, 2001).

  6. Kraabøl, M., Gundersen, V., Fangel, K. & Olstad, K. The taxonomy, life cycle and pathology of Sarcoptes scabiei and Notoedres cati (Acarina, Sarcoptidae): a review in a Fennoscandian wildlife perspective. Fauna Nor. 35, 21 (2015).

    Article  Google Scholar 

  7. Roberts, L. J., Huffam, S. E., Walton, S. F. & Currie, B. J. Crusted scabies: clinical and immunological findings in seventy-eight patients and a review of the literature. J. Infect. 50, 375–381 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Smith, H. J. Transmission of Sarcoptes scabiei in swine by fomites. Can. Vet. J. 27, 252–254 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Mellanby, K. Transmission of scabies. Br. Med. J. 2, 405–406 (1941).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bernigaud, C., Fischer, K. & Chosidow, O. The management of scabies in the 21st century: past, advances and potentials. Acta Derm. Venereol. 100, adv00112 (2020).

    Article  PubMed  Google Scholar 

  11. Slape, D., Russell, R. & McMeniman, E. in Scabies (eds Fischer, K. & Chosidow, O.) 233–268 (Springer, 2023).

  12. Skayem, C. et al. Severe scabies: a French multi-centre study involving 95 patients with crusted and profuse disease and review of the literature. Acta Derm. Venereol. 103, adv00878 (2023).

    Article  CAS  PubMed  Google Scholar 

  13. Niode, N. J. et al. Crusted scabies, a neglected tropical disease: case series and literature review. Infect. Dis. Rep. 14, 479–491 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Moroni, B., Rossi, L., Bernigaud, C. & Guillot, J. Zoonotic episodes of scabies: a global overview. Pathogens 11, 213 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lynar, S., Currie, B. J. & Baird, R. Scabies and mortality. Lancet Infect. Dis. 17, 1234 (2017). This short correspondence discusses the substantial global mortality burden from scabies, in addition to the recognised morbidity.

    Article  PubMed  Google Scholar 

  16. del Giudice, P., Sainte Marie, D., Gérard, Y., Couppié, P. & Pradinaud, R. Is crusted (Norwegian) scabies a marker of adult T cell leukemia/lymphoma in human T lymphotropic virus type I-seropositive patients? J. Infect. Dis. 176, 1090–1092 (1997).

    Article  PubMed  Google Scholar 

  17. Scabies — level 3 cause. IHME https://www.healthdata.org/research-analysis/diseases-injuries-risks/factsheets/2021-scabies-level-3-disease (2020).

  18. Romani, L., Steer, A. C., Whitfeld, M. J. & Kaldor, J. M. Prevalence of scabies and impetigo worldwide: a systematic review. Lancet Infect. Dis. 15, 960–967 (2015). This article summarizes population-based studies that reported on the overlapping prevalence of scabies and impetigo.

    Article  PubMed  Google Scholar 

  19. Zhang, W. et al. Trends in prevalence and incidence of scabies from 1990 to 2017: findings from the Global Burden of Disease study 2017. Emerg. Microbes Infect. 9, 813–816 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Currie, B. J. & Carapetis, J. R. Skin infections and infestations in Aboriginal communities in northern Australia. Australas. J. Dermatol. 41, 139–143 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Amoako, Y. A. et al. A scabies outbreak in the North East Region of Ghana: the necessity for prompt intervention. PLoS Negl. Trop. Dis. 14, e0008902 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Schneider, S., Wu, J., Tizek, L., Ziehfreund, S. & Zink, A. Prevalence of scabies worldwide — an updated systematic literature review in 2022. J. Eur. Acad. Dermatol. Venereol. 37, 1749–1757 (2023).

    Article  CAS  PubMed  Google Scholar 

  23. Enbiale, W. & Ayalew, A. Investigation of a scabies outbreak in drought-affected areas in Ethiopia. Trop. Med. Infect. Dis. 3, 114 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Delaš Aždajić, M. et al. Increased scabies incidence at the beginning of the 21st century: what do reports from Europe and the world show? Life 12, 1598 (2022).

    Article  Google Scholar 

  25. Donà, M. G. et al. Increasing trend in confirmed scabies cases in the only public dermatological institute of scientific research and care in Italy. Eur. J. Dermatol. 33, 709–710 (2023).

    Article  PubMed  Google Scholar 

  26. Richardson, N. A. et al. Scabies outbreak management in refugee/migrant camps in Europe 2014-2017: a retrospective qualitative interview study of healthcare staff experiences and perspectives. BMJ Open 13, e075103 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Abdolrasouli, A., Cousins, C. D., Basu, T. N., Trotman, D. & Hay, R. J. Permethrin-unresponsive scabies in London, UK: a wake-up call. Clin. Exp. Dermatol. 48, 1280–1282 (2023).

    Article  PubMed  Google Scholar 

  28. Khan, S. S. & Fuller, L. C. Is there a growing global threat of scabies treatment failure? An opportunity to discuss health inequity within UK dermatology. Br. J. Dermatol. 190, 139–140 (2024).

    Article  PubMed  Google Scholar 

  29. Skin and subcutaneous diseases — level 2 cause. IHME https://www.healthdata.org/research-analysis/diseases-injuries-risks/factsheets/2021-skin-and-subcutaneous-diseases-level-2 (2020).

  30. Lopes, M. J. et al. Perceptions, attitudes and practices towards scabies in communities on the Bijagos Islands, Guinea-Bissau. Trans. R. Soc. Trop. Med. Hyg. 114, 49–56 (2020).

    PubMed  Google Scholar 

  31. Sara, J., Haji, Y. & Gebretsadik, A. Scabies outbreak investigation and risk factors in East Badewacho District, southern Ethiopia: unmatched case control study. Dermatol. Res. Pract. 2018, 7276938 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Scabies. CDC https://www.cdc.gov/scabies/prevention/index.html (2024).

  33. Talukder, K. et al. Controlling scabies in madrasahs (Islamic religious schools) in Bangladesh. Public Health 127, 83–91 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Kouotou, E. A. et al. Burden of human scabies in sub-Saharan African prisons: evidence from the west region of Cameroon. Australas. J. Dermatol. 59, e6–e10 (2018).

    Article  PubMed  Google Scholar 

  35. Cassell, J. A. et al. Scabies outbreaks in ten care homes for elderly people: a prospective study of clinical features, epidemiology, and treatment outcomes. Lancet Infect. Dis. 18, 894–902 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Raffi, J., Suresh, R. & Butler, D. C. Review of scabies in the elderly. Dermatol. Ther. 9, 623–630 (2019).

    Article  Google Scholar 

  37. Rahman, M. S., Hasan, A. B. M. N., Jahan, I. & Sharif, A. B. Prevalence of scabies and its associated environmental risk factors among the forcibly displaced Myanmar nationals living in the Cox’s Bazar district of Bangladesh. J. Migr. Health 9, 100220 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Thornton, J. Scabies in Cox’s Bazar. Lancet 402, 600 (2023).

    Article  PubMed  Google Scholar 

  39. Engelman, D. et al. Toward the global control of human scabies: introducing the International Alliance for the Control of Scabies. PLoS Negl. Trop. Dis. 7, e2167 (2013). This paper describes a global initiative with the shared objective to foster research, treatment and diagnosis, and to control and, where possible, eliminate infections caused by Sarcoptes scabiei.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Engelman, D. et al. The public health control of scabies: priorities for research and action. Lancet 394, 81–92 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hoy, W. E. et al. Post-streptococcal glomerulonephritis is a strong risk factor for chronic kidney disease in later life. Kidney Int. 81, 1026–1032 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Carapetis, J. R., Steer, A. C., Mulholland, E. K. & Weber, M. The global burden of group A streptococcal diseases. Lancet Infect. Dis. 5, 685–694 (2005).

    Article  PubMed  Google Scholar 

  43. Rheumatic heart disease — level 3 cause. IHME https://www.healthdata.org/research-analysis/diseases-injuries-risks/factsheets/2021-rheumatic-heart-disease-level-3-disease (2020).

  44. Acute glomerulonephritis — level 3 cause. IHME https://www.healthdata.org/research-analysis/diseases-injuries-risks/factsheets/2021-acute-glomerulonephritis-level-3-disease (2020).

  45. Van Neste, D. Behaviour of Sarcoptes scabiei in its burrow in hyperkeratotic scabies. Dermatologica 171, 343–348 (1985).

    Article  PubMed  Google Scholar 

  46. Beckham, S. A. et al. Characterization of a serine protease homologous to house dust mite group 3 allergens from the scabies mite Sarcoptes scabiei. J. Biol. Chem. 284, 34413–34422 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mahmood, W., Viberg, L. T., Fischer, K., Walton, S. F. & Holt, D. C. An aspartic protease of the scabies mite Sarcoptes scabiei is involved in the digestion of host skin and blood macromolecules. PLoS Negl. Trop. Dis. 7, e2525 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Fernando, D. D. & Fischer, K. Proteases and pseudoproteases in parasitic arthropods of clinical importance. FEBS J. 287, 4284–4299 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Korhonen, P. K. et al. High-quality nuclear genome for Sarcoptes scabiei — a critical resource for a neglected parasite. PLoS Negl. Trop. Dis. 14, e0008720 (2020). This paper reports high-quality genome and transcriptome data for S. scabiei.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fischer, K., Holt, D., Currie, B. & Kemp, D. Scabies: important clinical consequences explained by new molecular studies. Adv. Parasitol. 79, 339–373 (2012).

    Article  PubMed  Google Scholar 

  51. Holt, D. C., Burgess, S. T., Reynolds, S. L., Mahmood, W. & Fischer, K. Intestinal proteases of free-living and parasitic astigmatid mites. Cell Tissue Res. 351, 339–352 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Bergstrom, F. C. et al. Scabies mite inactivated serine protease paralogs inhibit the human complement system. J. Immunol. 182, 7809–7817 (2009).

    Article  PubMed  Google Scholar 

  53. Reynolds, S. L. et al. Scabies mite inactive serine proteases are potent inhibitors of the human complement lectin pathway. PLoS Negl. Trop. Dis. 8, e2872 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Swe, P. M., Christian, L. D., Lu, H. C., Sriprakash, K. S. & Fischer, K. Complement inhibition by Sarcoptes scabiei protects Streptococcus pyogenes — an in vitro study to unravel the molecular mechanisms behind the poorly understood predilection of S. pyogenes to infect mite-induced skin lesions. PLoS Negl. Trop. Dis. 11, e0005437 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Swe, P. M. & Fischer, K. A scabies mite serpin interferes with complement-mediated neutrophil functions and promotes staphylococcal growth. PLoS Negl. Trop. Dis. 8, e2928 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Mika, A. et al. Complement inhibitors from scabies mites promote streptococcal growth — a novel mechanism in infected epidermis? PLoS Negl. Trop. Dis. 6, e1563 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Terao, Y. et al. Group A streptococcal cysteine protease degrades C3 (C3b) and contributes to evasion of innate immunity. J. Biol. Chem. 283, 6253–6260 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Fernie-King, B. A. et al. Streptococcal inhibitor of complement (SIC) inhibits the membrane attack complex by preventing uptake of C567 onto cell membranes. Immunology 103, 390–398 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Langley, R. et al. The staphylococcal superantigen-like protein 7 binds IgA and complement C5 and inhibits IgA-FcαRI binding and serum killing of bacteria. J. Immunol. 174, 2926–2933 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Ramsland, P. A. et al. Structural basis for evasion of IgA immunity by Staphylococcus aureus revealed in the complex of SSL7 with Fc of human IgA1. Proc. Natl Acad. Sci. USA 104, 15051–15056 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hallstrom, T., Jarva, H., Riesbeck, K. & Blom, A. M. Interaction with C4b-binding protein contributes to nontypeable Haemophilus influenzae serum resistance. J. Immunol. 178, 6359–6366 (2007).

    Article  PubMed  Google Scholar 

  62. Hallstrom, T. et al. Haemophilus influenzae interacts with the human complement inhibitor factor H. J. Immunol. 181, 537–545 (2008).

    Article  PubMed  Google Scholar 

  63. Rooijakkers, S. H. & van Strijp, J. A. Bacterial complement evasion. Mol. Immunol. 44, 23–32 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Akesson, P., Sjoholm, A. G. & Bjorck, L. Protein SIC, a novel extracellular protein of Streptococcus pyogenes interfering with complement function. J. Biol. Chem. 271, 1081–1088 (1996).

    Article  CAS  PubMed  Google Scholar 

  65. Bisno, A. L., Brito, M. O. & Collins, C. M. Molecular basis of group A streptococcal virulence. Lancet Infect. Dis. 3, 191–200 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Laarman, A. J. et al. Staphylococcus aureus metalloprotease aureolysin cleaves complement C3 to mediate immune evasion. J. Immunol. 186, 6445–6453 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. Laarman, A., Milder, F., van Strijp, J. & Rooijakkers, S. Complement inhibition by gram-positive pathogens: molecular mechanisms and therapeutic implications. J. Mol. Med. 88, 115–120 (2010).

    Article  CAS  PubMed  Google Scholar 

  68. Rooijakkers, S. H. et al. Early expression of SCIN and CHIPS drives instant immune evasion by Staphylococcus aureus. Cell Microbiol. 8, 1282–1293 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Ermert, D. et al. Virulence of group A streptococci is enhanced by human complement inhibitors. PLoS Pathog. 11, e1005043 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Foster, T. J. Immune evasion by staphylococci. Nat. Rev. Microbiol. 3, 948–958 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Hasan, T., Krause, V. L., James, C. & Currie, B. J. Crusted scabies; a 2-year prospective study from the Northern Territory of Australia. PLoS Negl. Trop. Dis. 14, e0008994 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Bhat, S. A. et al. Early immune suppression leads to uncontrolled mite proliferation and potent host inflammatory responses in a porcine model of crusted versus ordinary scabies. PLoS Negl. Trop. Dis. 14, e0008601 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Elwood, H., Berry, R. S., Gardner, J. M. & Shalin, S. C. Superficial fibrin thrombi… and other findings: a review of the histopathology of human scabietic infections. J. Cutan. Pathol. 42, 346–352 (2015).

    Article  PubMed  Google Scholar 

  74. Fernando, D. D. et al. A unique group of scabies mite pseudoproteases promotes cutaneous blood coagulation and delays plasmin-induced fibrinolysis. PLoS Negl. Trop. Dis. 15, e0008997 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Fernando, D. D. et al. Phylogenetic relationships, stage-specific expression and localisation of a unique family of inactive cysteine proteases in Sarcoptes scabiei. Parasit. Vectors 11, 301 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Arlian, L. G., Morgan, M. S. & Paul, C. C. Evidence that scabies mites (Acari: Sarcoptidae) influence production of interleukin-10 and the function of T-regulatory cells (Tr1) in humans. J. Med. Entomol. 43, 283–287 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Morgan, M. S. & Arlian, L. G. Response of human skin equivalents to Sarcoptes scabiei. J. Med. Entomol. 47, 877–883 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Elder, B. L., Arlian, L. G. & Morgan, M. S. Sarcoptes scabiei (Acari: Sarcoptidae) mite extract modulates expression of cytokines and adhesion molecules by human dermal microvascular endothelial cells. J. Med. Entomol. 43, 910–915 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Arlian, L. G., Fall, N. & Morgan, M. S. In vivo evidence that Sarcoptes scabiei (Acari: Sarcoptidae) is the source of molecules that modulate splenic gene expression. J. Med. Entomol. 44, 1054–1063 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Bergamin, G., Hudson, J., Currie, B. J. & Mounsey, K. E. A systematic review of immunosuppressive risk factors and comorbidities associated with the development of crusted scabies. Int. J. Infect. Dis. 143, 107036 (2024).

    Article  PubMed  Google Scholar 

  81. Mounsey, K. et al. A tractable experimental model for study of human and animal scabies. PLoS Negl. Trop. Dis. 4, e756 (2010). This paper describes the pig scabies model, which has enabled the development of comprehensive molecular databases.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Currie, B. J., Maguire, G. P. & Wood, Y. K. Ivermectin and crusted (Norwegian) scabies. Med. J. Aust. 163, 559–560 (1995).

    Article  CAS  PubMed  Google Scholar 

  83. Mounsey, K. E. et al. Prospective study in a porcine model of Sarcoptes scabiei indicates the association of Th2 and Th17 pathways with the clinical severity of scabies. PLoS Negl. Trop. Dis. 9, e0003498 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Skerratt, L. F. Cellular response in the dermis of common wombats (Vombatus ursinus) infected with Sarcoptes scabiei var. wombati. J. Wildl. Dis. 39, 193–202 (2003).

    Article  PubMed  Google Scholar 

  85. Walton, S. F., Beroukas, D., Roberts-Thomson, P. & Currie, B. J. New insights into disease pathogenesis in crusted (Norwegian) scabies: the skin immune response in crusted scabies. Br. J. Dermatol. 158, 1247–1255 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. Amer, M., Mostafa, F. F., Nasr, A. N. & el-Harras, M. The role of mast cells in treatment of scabies. Int. J. Dermatol. 34, 186–189 (1995).

    Article  CAS  PubMed  Google Scholar 

  87. Nimmervoll, H. et al. Pathology of sarcoptic mange in red foxes (Vulpes vulpes): macroscopic and histologic characterization of three disease stages. J. Wildl. Dis. 49, 91–102 (2013).

    Article  PubMed  Google Scholar 

  88. Shehwana, H. et al. Transcriptome analysis of host inflammatory responses to the ectoparasitic mite Sarcoptes scabiei var. hominis. Front. Immunol. 12, 778840 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bhat, S. A., Mounsey, K. E., Liu, X. & Walton, S. F. Host immune responses to the itch mite, Sarcoptes scabiei, in humans. Parasit. Vectors 10, 385 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Liu, X. et al. Crusted scabies is associated with increased IL-17 secretion by skin T cells. Parasite Immunol. 36, 594–604 (2014).

    Article  CAS  PubMed  Google Scholar 

  91. Walton, S. F. et al. Increased allergic immune response to Sarcoptes scabiei antigens in crusted versus ordinary scabies. Clin. Vaccin. Immunol. 17, 1428–1438 (2010).

    Article  CAS  Google Scholar 

  92. Rodriguez-Lago, L. & Borrego, L. Norwegian scabies in an atopic patient under dupilumab treatment. Dermatitis 33, e54–e55 (2022).

    Article  PubMed  Google Scholar 

  93. Nwufoh, O. C., Sadiq, N. A., Adediran, O. A., Jarikre, T. A. & Emikpe, B. O. Sequential histopathological changes and cytokine expressions in dogs naturally infested with Sarcoptes scabiei mites. Acta Parasitol. 65, 452–461 (2020).

    Article  CAS  PubMed  Google Scholar 

  94. Rampton, M. et al. Antibody responses to Sarcoptes scabiei apolipoprotein in a porcine model: relevance to immunodiagnosis of recent infection. PLoS ONE 8, e65354 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Boralevi, F. et al. Clinical phenotype of scabies by age. Pediatrics 133, e910–e916 (2014).

    Article  PubMed  Google Scholar 

  96. Sanders, K. M. et al. Non-histaminergic itch mediators elevated in the skin of a porcine model of scabies and of human scabies patients. J. Invest. Dermatol. 139, 971–973 (2019).

    Article  CAS  PubMed  Google Scholar 

  97. Estrada-Chávez, G., Estrada, R., Engelman, D., Molina, J. & Chávez-López, G. Cushing syndrome due to inappropriate corticosteroid topical treatment of undiagnosed scabies. Trop. Med. Infect. Dis. 3, 82 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Marlière, V., Roul, S., Labrèze, C. & Taïeb, A. Crusted (Norwegian) scabies induced by use of topical corticosteroids and treated successfully with ivermectin. J. Pediatr. 135, 122–124 (1999).

    Article  PubMed  Google Scholar 

  99. Hashimoto, T., Satoh, T. & Yokozeki, H. Pruritus in ordinary scabies: IL-31 from macrophages induced by overexpression of thymic stromal lymphopoietin and periostin. Allergy 74, 1727–1737 (2019).

    Article  CAS  PubMed  Google Scholar 

  100. Bowen, A. C., Tong, S. Y. C., Chatfield, M. D. & Carapetis, J. R. The microbiology of impetigo in Indigenous children: associations between Streptococcus pyogenes, Staphylococcus aureus, scabies, and nasal carriage. BMC Infect. Dis. 14, 727 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Thean, L. J. et al. Prevention of bacterial complications of scabies using mass drug administration: a population-based, before-after trial in Fiji, 2018–2020. Lancet Reg. Health West. Pac. 22, 100433 (2022).

    PubMed  PubMed Central  Google Scholar 

  102. Bernigaud, C. et al. First description of the composition and the functional capabilities of the skin microbial community accompanying severe scabies infestation in humans. Microorganisms 9, 907 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Swe, P. M., Zakrzewski, M., Kelly, A., Krause, L. & Fischer, K. Scabies mites alter the skin microbiome and promote growth of opportunistic pathogens in a porcine model. PLoS Negl. Trop. Dis. 8, e2897 (2014). This paper describes in vivo experimental evidence in a longitudinal preclinical study to demonstrate that scabies mites drastically alter the healthy skin microbiota and promote the growth of pathogens.

    Article  PubMed  PubMed Central  Google Scholar 

  104. McDonald, M. I. et al. Low rates of streptococcal pharyngitis and high rates of pyoderma in Australian aboriginal communities where acute rheumatic fever is hyperendemic. Clin. Infect. Dis. 43, 683–689 (2006).

    Article  PubMed  Google Scholar 

  105. Williamson, D. A. et al. M-protein analysis of Streptococcus pyogenes isolates associated with acute rheumatic fever in New Zealand. J. Clin. Microbiol. 53, 3618–3620 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Wyber, R., Bowen, A. C., Ralph, A. P. & Peiris, D. Primary prevention of acute rheumatic fever. Aust. J. Gen. Pract. 50, 265–269 (2021).

    Article  PubMed  Google Scholar 

  107. Francis, J. R. et al. A cluster of acute rheumatic fever cases among Aboriginal Australians in a remote community with high baseline incidence. Aust. N. Z. J. Public Health 43, 288–293 (2019).

    Article  PubMed  Google Scholar 

  108. Steer, A. C. et al. High burden of impetigo and scabies in a tropical country. PLoS Negl. Trop. Dis. 3, e467 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Lin, S., Farber, J. & Lado, L. A case report of crusted scabies with methicillin-resistant Staphylococcus aureus bacteremia. J. Am. Geriatr. Soc. 57, 1713–1714 (2009).

    Article  PubMed  Google Scholar 

  110. Mulholland, E. K. et al. Etiology of serious infections in young Gambian infants. Pediatr. Infect. Dis. 18, S35–S41 (1999).

    Article  CAS  Google Scholar 

  111. Tong, S. Y., Varrone, L., Chatfield, M. D., Beaman, M. & Giffard, P. M. Progressive increase in community-associated methicillin-resistant Staphylococcus aureus in Indigenous populations in northern Australia from 1993 to 2012. Epidemiol. Infect. 143, 1519–1523 (2015).

    Article  CAS  PubMed  Google Scholar 

  112. Engelman, D. et al. The 2020 International Alliance for the Control of Scabies consensus criteria for the diagnosis of scabies. Br. J. Dermatol. 183, 808–820 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Lavery, M. J., Stull, C., Kinney, M. O. & Yosipovitch, G. Nocturnal pruritus: the battle for a peaceful night’s sleep. Int. J. Mol. Sci. 17, 425 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Patel, T., Ishiuji, Y. & Yosipovitch, G. Nocturnal itch: why do we itch at night. Acta Derm. Venereol. 87, 295–298 (2007).

    Article  CAS  PubMed  Google Scholar 

  115. Podder, I., Mondal, H. & Kroumpouzos, G. Nocturnal pruritus and sleep disturbance associated with dermatologic disorders in adult patients. Int. J. Womens Dermatol. 7, 403–410 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Chosidow, O. Scabies. N. Engl. J. Med. 354, 1718–1727 (2006).

    Article  CAS  PubMed  Google Scholar 

  117. Mason, D. S. et al. The prevalence of scabies and impetigo in the Solomon Islands: a population-based survey. PLoS Negl. Trop. Dis. 10, e0004803 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Hengge, U. R., Currie, B. J., Jager, G., Lupi, O. & Schwartz, R. A. Scabies: a ubiquitous neglected skin disease. Lancet Infect. Dis. 6, 769–779 (2006).

    Article  PubMed  Google Scholar 

  119. Ostlere, L. S., Harris, D. & Rustin, M. H. Scabies associated with a bullous pemphigoid-like eruption. Br. J. Dermatol. 128, 217–219 (1993).

    Article  CAS  PubMed  Google Scholar 

  120. Grodner, C. et al. Crusted scabies in children in France: a series of 20 cases. Eur. J. Pediatr. 181, 1167–1174 (2022).

    Article  PubMed  Google Scholar 

  121. Thompson, M. J., Engelman, D., Gholam, K., Fuller, L. C. & Steer, A. C. Systematic review of the diagnosis of scabies in therapeutic trials. Clin. Exp. Dermatol. 42, 481–487 (2017).

    Article  CAS  PubMed  Google Scholar 

  122. Brenaut, E., Garlantezec, R., Talour, K. & Misery, L. Itch characteristics in five dermatoses: non-atopic eczema, atopic dermatitis, urticaria, psoriasis and scabies. Acta Derm. Venereol. 93, 573–574 (2013).

    Article  PubMed  Google Scholar 

  123. Sunderkötter, C., Wohlrab, J. & Hamm, H. Scabies: epidemiology, diagnosis, and treatment. Dtsch Arztebl Int. 118, 695–704 (2021).

    PubMed  PubMed Central  Google Scholar 

  124. Osti, M. H. et al. The diagnosis of scabies by non-expert examiners: a study of diagnostic accuracy. PLoS Negl. Trop. Dis. 13, e0007635 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Yari, N., Malone, C. H. & Rivas, A. Misdiagnosed crusted scabies in an AIDS patient leads to hyperinfestation. Cutis 99, 202–204 (2017).

    PubMed  Google Scholar 

  126. Fonseca, V., Price, H. N., Jeffries, M., Alder, S. L. & Hansen, R. C. Crusted scabies misdiagnosed as erythrodermic psoriasis in a 3-year-old girl with Down syndrome. Pediatr. Dermatol. 31, 753–754 (2014).

    Article  PubMed  Google Scholar 

  127. de Beer, G., Miller, M. A., Tremblay, L. & Monette, J. An outbreak of scabies in a long-term care facility: the role of misdiagnosis and the costs associated with control. Infect. Control. Hosp. Epidemiol. 27, 517–518 (2006).

    Article  PubMed  Google Scholar 

  128. Trettin, B., Amstrup Lassen, J., Andersen, F. & Agerskov, H. The journey of having scabies — a qualitative study. J. Nurs. Educ. Pract. https://doi.org/10.5430/jnep.v9n2p1 (2019).

  129. Siddig, E. E. & Hay, R. Laboratory-based diagnosis of scabies: a review of the current status. Trans. R. Soc. Trop. Med. Hyg. 116, 4–9 (2022).

    Article  CAS  PubMed  Google Scholar 

  130. Marks, M. et al. Diagnostics to support the control of scabies-development of two target product profiles. PLoS Negl. Trop. Dis. 16, e0010556 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Shin, K. et al. Clinical characteristics of pruritus in scabies. Indian J. Dermatol. Venereol. Leprol. 83, 492–492 (2017).

    Article  PubMed  Google Scholar 

  132. Engelman, D., Fuller, L. C., Steer, A. C. & International Alliance for the Control of Scabies Delphi Panel. Consensus criteria for the diagnosis of scabies: a Delphi study of international experts. PLoS Negl. Trop. Dis. 12, e0006549 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Walker, S. L. et al. A community-based validation of the International Alliance for the Control of Scabies Consensus Criteria by expert and non-expert examiners in Liberia. PLoS Negl. Trop. Dis. 14, e0008717 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Leung, V. & Miller, M. Detection of scabies: a systematic review of diagnostic methods. Can. J. Infect. Dis. Med. Microbiol. 22, 698494 (2011).

    Article  Google Scholar 

  135. Micali, G., Lacarrubba, F., Verzì, A. E., Chosidow, O. & Schwartz, R. A. Scabies: advances in noninvasive diagnosis. PLoS Negl. Trop. Dis. 10, e0004691 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Cinotti, E. et al. Videodermoscopy compared to reflectance confocal microscopy for the diagnosis of scabies. J. Eur. Acad. Dermatol. Venereol. 30, 1573–1577 (2016).

    Article  CAS  PubMed  Google Scholar 

  137. Ruini, C. et al. In vivo imaging of Sarcoptes scabiei infestation using line-field confocal optical coherence tomography. J. Eur. Acad. Dermatol. Venereol. 34, e808–e809 (2020).

    Article  CAS  PubMed  Google Scholar 

  138. Rider, S. D., Morgan, M. S. & Arlian, L. G. Draft genome of the scabies mite. Vectors 8, 585 (2015).

    Article  Google Scholar 

  139. Jayaraj, R. et al. A diagnostic test for scabies: IgE specificity for a recombinant allergen of Sarcoptes scabiei. Diagn. Microbiol. Infect. Dis. 71, 403–407 (2011).

    Article  CAS  PubMed  Google Scholar 

  140. He, R. et al. Molecular characterization and allergenicity potential of triosephosphate isomerase from Sarcoptes scabiei. Vet. Parasitol. 257, 40–47 (2018).

    Article  CAS  PubMed  Google Scholar 

  141. Shen, N. et al. Expression and characterisation of a Sarcoptes scabiei protein tyrosine kinase as a potential antigen for scabies diagnosis. Sci. Rep. 7, 9639 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  142. He, R. et al. Molecular characterization of calmodulin from Sarcoptes scabiei. Parasitol. Int. 66, 1–6 (2017).

    Article  CAS  PubMed  Google Scholar 

  143. Shen, N. et al. A chitinase-like protein from Sarcoptes scabiei as a candidate anti-mite vaccine that contributes to immune protection in rabbits. Parasit. Vectors 11, 599 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Chng, L. et al. Molecular diagnosis of scabies using a novel probe-based polymerase chain reaction assay targeting high-copy number repetitive sequences in the Sarcoptes scabiei genome. PLoS Negl. Trop. Dis. 15, e0009149 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Delaunay, P. et al. Scabies polymerase chain reaction with standardized dry swab sampling: an easy tool for cluster diagnosis of human scabies. Br. J. Dermatol. 182, 197–201 (2020).

    CAS  PubMed  Google Scholar 

  146. Fraser, T. A. et al. A Sarcoptes scabiei specific isothermal amplification assay for detection of this important ectoparasite of wombats and other animals. PeerJ 6, e5291 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Naz, S., Rizvi, D. A., Javaid, A., Ismail, M. & Chaudhry, F. R. Validation of PCR assay for identification of Sarcoptes scabiei var. hominis. Iran. J. Parasitol. 8, 437–440 (2013).

    PubMed  PubMed Central  Google Scholar 

  148. Bharadwaj, M., Bengtson, M., Golverdingen, M., Waling, L. & Dekker, C. Diagnosing point-of-care diagnostics for neglected tropical diseases. PLoS Negl. Trop. Dis. 15, e0009405 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Neglected tropical diseases. WHO https://www.who.int/news-room/questions-and-answers/item/neglected-tropical-diseases (WHO, 2023).

  150. World Health Organization. Ending the Neglect to Attain the Sustainable Development Goals: A Road Map for Neglected Tropical Diseases 2021–2030 (WHO, 2021).

  151. Mahé, A. et al. Integration of basic dermatological care into primary health care services in Mali. Bull. World Health Organ. 83, 935–941 (2005).

    PubMed  Google Scholar 

  152. Estrada, R., Chavez-Lopez, G., Estrada-Chavez, G. & Paredes-Solis, S. Specialized dermatological care for marginalized populations and education at the primary care level: is community dermatology a feasible proposal. Int. J. Dermatol. 51, 1345–1350 (2012).

    Article  PubMed  Google Scholar 

  153. Micali, G., Lacarrubba, F., Verzi, A. E. & Nasca, M. R. Low-cost equipment for diagnosis and management of endemic scabies outbreaks in underserved populations. Clin. Infect. Dis. 60, 327–329 (2015).

    Article  PubMed  Google Scholar 

  154. Romani, L. et al. Mass drug administration for scabies control in a population with endemic disease. N. Engl. J. Med. 373, 2305–2313 (2015).

    Article  CAS  PubMed  Google Scholar 

  155. Bernigaud, C. et al. How to eliminate scabies parasites from fomites: a high-throughput ex vivo experimental study. J. Am. Acad. Dermatol. 83, 241–245 (2020). Statistically standardized experimental data validating real-life decontamination modalities for scabies, applicable in settings without electricity, to develop clear and simple directions for scabies outbreaks.

    Article  PubMed  Google Scholar 

  156. Currie, B. J. Scabies and global control of neglected tropical diseases. N. Engl. J. Med. 373, 2371–2372 (2015).

    Article  CAS  PubMed  Google Scholar 

  157. Scabies. WHO https://www.who.int/news-room/fact-sheets/detail/scabies (2023).

  158. Lake, S. J. et al. Mass drug administration for the control of scabies: a systematic review and meta-analysis. Clin. Infect. Dis. 75, 959–967 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Fernando, D. D. & Fischer, K. Spinosad topical suspension (0.9%): a new topical treatment for scabies. Expert. Rev. Anti Infect. Ther. 20, 1149–1154 (2022).

    Article  CAS  PubMed  Google Scholar 

  160. Currie, B. J. & McCarthy, J. S. Permethrin and ivermectin for scabies. N. Engl. J. Med. 362, 717–725 (2010).

    Article  CAS  PubMed  Google Scholar 

  161. Bernigaud, C. et al. In vitro ovicidal activity of current and under‐development scabicides: which treatments kill scabies eggs? Br. J. Dermatol. 182, 511–513 (2020). This paper discusses systematic and comprehensive testing of all available drugs in use to treat scabies in humans, confirming that the most used drugs to treat scabies are indeed not ovicidal.

    Article  CAS  PubMed  Google Scholar 

  162. Bernigaud, C. et al. Efficacy and pharmacokinetics evaluation of a single oral dose of afoxolaner against Sarcoptes scabiei in the porcine scabies model for human infestation. Antimicrob. Agents Chemother. 62, e02334-17 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Nolan, K., Kamrath, J. & Levitt, J. Lindane toxicity: a comprehensive review of the medical literature. Pediatr. Dermatol. 29, 141–146 (2012).

    Article  PubMed  Google Scholar 

  164. Singh, B., Kaur, J. & Singh, K. Microbial degradation of an organophosphate pesticide, malathion. Crit. Rev. Microbiol. 40, 146–154 (2014).

    Article  CAS  PubMed  Google Scholar 

  165. Strong, M. & Johnstone, P. Interventions for treating scabies. Cochrane Database Syst. Rev. 3, CD000320 (2007).

    Google Scholar 

  166. Rosumeck, S., Nast, A. & Dressler, C. Ivermectin and permethrin for treating scabies. Cochrane Database Syst. Rev. 4, CD012994 (2018).

    PubMed  Google Scholar 

  167. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT02407782 (2015).

  168. Thadanipon, K., Anothaisintawee, T., Rattanasiri, S., Thakkinstian, A. & Attia, J. Efficacy and safety of antiscabietic agents: a systematic review and network meta-analysis of randomized controlled trials. J. Am. Acad. Dermatol. 80, 1435–1444 (2019).

    Article  CAS  PubMed  Google Scholar 

  169. Bernigaud, C., Samarawickrama, G. R., Jones, M. K., Gasser, R. B. & Fischer, K. The challenge of developing a single-dose treatment for scabies. Trends Parasitol. 35, 931–943 (2019).

    Article  CAS  PubMed  Google Scholar 

  170. Seiler, J. C. et al. Spinosad at 0.9% in the treatment of scabies: efficacy results from 2 multicenter, randomized, double-blind, vehicle-controlled studies. J. Am. Acad. Dermatol. 86, 97–103 (2022).

    Article  CAS  PubMed  Google Scholar 

  171. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT05875441?cond=scabies&rank=8 (2023).

  172. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT03905265?cond=scabies&page=2&rank=12 (2023).

  173. Weill, A. et al. Scabies-infested pregnant women: a critical therapeutic challenge. PLoS Negl. Trop. Dis. 15, e0008929 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Levy, M. et al. Ivermectin safety in infants and children under 15 kg treated for scabies: a multicentric observational study. Br. J. Dermatol. 182, 1003–1006 (2020).

    Article  CAS  PubMed  Google Scholar 

  175. Jittamala, P. et al. Correction: a systematic review and an individual patient data meta-analysis of ivermectin use in children weighing less than fifteen kilograms: is it time to reconsider the current contraindication? PLoS Negl. Trop. Dis. 17, e0011053 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Davis, J. S., McGloughlin, S., Tong, S. Y., Walton, S. F. & Currie, B. J. A novel clinical grading scale to guide the management of crusted scabies. PLoS Negl. Trop. Dis. 7, e2387 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Kim, H. S. et al. Scabies itch: an update on neuroimmune interactions and novel targets. J. Eur. Acad. Dermatol. Venereol. 35, 1765–1776 (2021).

    Article  CAS  PubMed  Google Scholar 

  178. Bowen, A. C. et al. Short-course oral co-trimoxazole versus intramuscular benzathine benzylpenicillin for impetigo in a highly endemic region: an open-label, randomised, controlled, non-inferiority trial. Lancet 384, 2132–2140 (2014).

    Article  CAS  PubMed  Google Scholar 

  179. Hotez, P. J., Fenwick, A., Ray, S. E., Hay, S. I. & Molyneux, D. H. “Rapid impact” 10 years after: the first “decade” (2006–2016) of integrated neglected tropical disease control. PLoS Negl. Trop. Dis. 12, e0006137 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Taplin, D. et al. Community control of scabies: a model based on use of permethrin cream. Lancet 337, 1016–1018 (1991).

    Article  CAS  PubMed  Google Scholar 

  181. Engelman, D. et al. A framework for scabies control. PLoS Negl. Trop. Dis. 15, e0009661 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Mounsey, K. E., Bernigaud, C., Chosidow, O. & McCarthy, J. S. Prospects for moxidectin as a new oral treatment for human scabies. PLoS Negl. Trop. Dis. 10, e0004389 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Elsner, E., Uhlmann, T., Krause, S. & Hartmann, R. Increase of scabies and therapy resistance among German military personnel : an 8-year follow-up study in the Department of Dermatology of the Armed Forces Hospital Berlin, Germany (2012-2019) [German]. Hautarzt 71, 447–454 (2020).

    Article  CAS  PubMed  Google Scholar 

  184. Hackenberg, B. et al. Scabies therapy in Germany : results of a nationwide survey with a special focus on the efficacy of first-line therapy with permethrin [German]. Hautarzt 71, 374–379 (2020).

    Article  CAS  PubMed  Google Scholar 

  185. Sunderkötter, C. et al. Increase of scabies in Germany and development of resistant mites? Evidence and consequences. J. Dtsch. Dermatol. Ges. 17, 15–23 (2019).

    PubMed  Google Scholar 

  186. Mang, R., Kremer, A., Lehmann, P. & Assmann, T. Scabies-clinical resistance to permethrin therapy : case reports and a critical discussion of current treatment recommendations [German]. Hautarzt 72, 595–599 (2021).

    Article  PubMed  Google Scholar 

  187. Meyersburg, D., Kaiser, A. & Bauer, J. W. Loss of efficacy of topical 5% permethrin for treating scabies: an Austrian single-center study. J. Dermatol. Treat. 33, 774–777 (2022).

    Article  Google Scholar 

  188. Balestri, R. et al. Scabies is becoming less sensitive to permethrin therapy. J. Eur. Acad. Dermatol. Venereol. 35, e889–e891 (2021).

    Article  CAS  PubMed  Google Scholar 

  189. Mazzatenta, C., Piccolo, V., Argenziano, G. & Bassi, A. Is scabies becoming less sensitive to permethrin therapy? J. Eur. Acad. Dermatol. Venereol. 35, e607–e609 (2021).

    Article  CAS  PubMed  Google Scholar 

  190. Coleman, H. & Sethi, G. C. Treatment failure in scabies: a single-centre 5-year retrospective review. Sex. Transm. Infect. https://doi.org/10.1136/sextrans-2023-055949 (2023).

    Article  PubMed  Google Scholar 

  191. Nemecek, R., Stockbauer, A., Lexa, M., Poeppl, W. & Mooseder, G. Application errors associated with topical treatment of scabies: an observational study. J. Dtsch Dermatol. Ges. 18, 554–559 (2020).

    PubMed  Google Scholar 

  192. Riebenbauer, K. et al. Detection of a knockdown mutation in the voltage-sensitive sodium channel associated with permethrin tolerance in Sarcoptes scabiei var. hominis mites. J. Eur. Acad. Dermatol. Venereol. 37, 2355–2361 (2023).

    Article  CAS  PubMed  Google Scholar 

  193. Veraldi, S., Schianchi, R., Silvio, M. & Aromolo, I. F. Pseudoresistance to permethrin in scabies. J. Infect. Dev. Ctries 17, 713–715 (2023).

    Article  CAS  PubMed  Google Scholar 

  194. Pasay, C. et al. The effect of insecticide synergists on the response of scabies mites to pyrethroid acaricides. PLoS Negl. Trop. Dis. 3, e354 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Pasay, C., Walton, S., Fischer, K., Holt, D. & McCarthy, J. PCR-based assay to survey for knockdown resistance to pyrethroid acaricides in human scabies mites (Sarcoptes scabiei var hominis). Am. J. Trop. Med. Hyg. 74, 649–657 (2006).

    Article  CAS  PubMed  Google Scholar 

  196. Yürekli, A. Is there a really resistance to scabies treatment with permethrin? In vitro killing activity of permethrin on Sarcoptes scabiei from patients with resistant scabies. Dermatol. Ther. 35, e15260 (2022).

    Article  PubMed  Google Scholar 

  197. Fang, F. et al. Efficacy assessment of biocides or repellents for the control of Sarcoptes scabiei in the environment. Parasit. Vectors 8, 416 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Pallesen, K. et al. In vitro survival of scabies mites. Clin. Exp. Dermatol. 45, 712–715 (2020).

    Article  CAS  PubMed  Google Scholar 

  199. Fujimoto, K., Kawasaki, Y., Morimoto, K., Kikuchi, I. & Kawana, S. Treatment for crusted scabies: limitations and side effects of treatment with Ivermectin. J. Nippon. Med. Sch. 81, 157–163 (2014).

    Article  PubMed  Google Scholar 

  200. Currie, B. J., Harumal, P., McKinnon, M. & Walton, S. F. First documentation of in vivo and in vitro ivermectin resistance in Sarcoptes scabiei. Clin. Infect. Dis. 39, e8–e12 (2004).

    Article  CAS  PubMed  Google Scholar 

  201. Mounsey, K. E., Holt, D. C., McCarthy, J. S., Currie, B. J. & Walton, S. F. Longitudinal evidence of increasing in vitro tolerance of scabies mites to ivermectin in scabies-endemic communities. Arch. Dermatol. 145, 840–841 (2009).

    Article  PubMed  Google Scholar 

  202. Mounsey, K. E. et al. Increased transcription of Glutathione S-transferases in acaricide exposed scabies mites. Parasit. Vectors 3, 43 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Chang, A. Y. & Heukelbach, J. In: Scabies (eds Fischer, K. & Chosidow, O.) 471-482 (Springer, 2023).

  204. Krotneva, S. P. et al. African program for onchocerciasis control 1995-2010: impact of annual ivermectin mass treatment on off-target infectious diseases. PLoS Negl. Trop. Dis. 9, e0004051 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Kearns, T. M. et al. Strongyloides seroprevalence before and after an ivermectin mass drug administration in a remote Australian Aboriginal community. PLoS Negl. Trop. Dis. 11, e0005607 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Mohammed, K. A., Deb, R. M., Stanton, M. C. & Molyneux, D. H. Soil transmitted helminths and scabies in Zanzibar, Tanzania following mass drug administration for lymphatic filariasis-a rapid assessment methodology to assess impact. Parasit. Vectors 5, 299 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Martin, D. et al. Impact of ivermectin mass drug administration for lymphatic filariasis on scabies in eight villages in Kongwa District, Tanzania. Am. J. Trop. Med. Hyg. 99, 937–939 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Heukelbach, J. et al. Selective mass treatment with ivermectin to control intestinal helminthiases and parasitic skin diseases in a severely affected population. Bull. World Health Organ. 82, 563–571 (2004).

    PubMed  PubMed Central  Google Scholar 

  209. Chosidow, O. & Fuller, L. C. Scratching the itch: is scabies a truly neglected disease. Lancet Infect. Dis. 17, 1220–1221 (2017).

    Article  PubMed  Google Scholar 

  210. Lake, S. J. et al. Health-related quality of life impact of scabies in the Solomon Islands. Trans. R. Soc. Trop. Med. Hyg. 116, 148–156 (2022).

    Article  PubMed  Google Scholar 

  211. Karadoğan, S. K. & Altay, B. U. Dermatology Quality of Life and Depression, Anxiety, and Stress-42 scale in scabies patients. Dermatol. pract. concept. 14, e2024112 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Paudel, S., Pudasaini, P., Adhikari, S., Pradhan, M. B. & Shekhar Babu, K. C. Quality of life in patients with scabies: a cross-sectional study using Dermatology Life Quality Index (DLQI) questionnaire. JEADV Clin. Pract. 2, 399–403 (2023).

    Article  Google Scholar 

  213. Jin-gang, A. et al. Quality of life of patients with scabies. J. Eur. Acad. Dermatol. Venereol. 24, 1187–1191 (2010).

    Article  CAS  PubMed  Google Scholar 

  214. Nair, P. A., Vora, R. V., Jivani, N. B. & Gandhi, S. S. A study of clinical profile and quality of life in patients with scabies at a rural tertiary care centre. J. Clin. Diagn. Res. 10, WC01–WC05 (2016).

    PubMed  PubMed Central  Google Scholar 

  215. Worth, C. et al. Impaired quality of life in adults and children with scabies from an impoverished community in Brazil. Int. J. Dermatol. 51, 275–282 (2012).

    Article  PubMed  Google Scholar 

  216. Mohammed Ali, K. B., Othman, S. M. & Asaad, Y. A. Quality of life in patients with scabies in Erbil, Iraq. Zanco J. Med. Sci. 25, 638–648 (2021).

    Article  Google Scholar 

  217. Koc Yildirim, S., Demirel Ogut, N., Erbagci, E. & Ogut, C. Scabies affects quality of life in correlation with depression and anxiety. Dermatol. Pract. Concept. 13, e2023144 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Menaldi, S. L. S. W., Surya, D., The, V. V. & Marissa, M. Impact of scabies on Indonesian public boarding school students’ quality of life: a mixed-method analysis. J. Gen. Proced. Dermatol. Venereol. Indones. https://doi.org/10.19100/jdvi.v5i2.264 (2021).

  219. Duran, S. & YÜReklİ, A. Determination of drug compliance and quality of life in individuals diagnosed with scabies. Karya J. Health Sci. 4, 6–10 (2023).

    Article  Google Scholar 

  220. Korycinska, J., Dzika, E. & Kloch, M. Epidemiology of scabies in relation to socio-economic and selected climatic factors in north-east Poland. Ann. Agric. Env. Med. 27, 374–378 (2020).

    Article  Google Scholar 

  221. Chowdhry, S., Sheoran, P., D’souza, P., Yadav, M. K. & Rathore, S. Assessment of the quality of life in patients with scabies in an urban tertiary care centre in North India. Serb. J. Dermatol. Venerol. 12, 41–46 (2020).

    Article  Google Scholar 

  222. Balcı, D. D., Sangün, Ö. & İnandı, T. Cross validation of the Turkish version of children’s Dermatology Life Quality Index. J. Turk. Acad. Dermatol. 1, 71402a (2007).

    Google Scholar 

  223. Temel, B. et al. Evaluation of dermatology life quality index, depression-anxiety-stress scores of patients with genital dermatoses. Indian J. Dermatol. 68, 399–404 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  224. Makigami, K. et al. Risk factors for recurrence of scabies: a retrospective study of scabies patients in a long-term care hospital. J. Dermatol. 38, 874–879 (2011).

    PubMed  Google Scholar 

  225. Hay, R. J. et al. Wastage of family income on skin disease in Mexico. BMJ 309, 848 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Campbell, M. et al. Health care cost of crusted scabies in Aboriginal communities in the Northern Territory, Australia. PLoS Negl. Trop. Dis. 16, e0010288 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Welch, E., Romani, L. & Whitfeld, M. J. Recent advances in understanding and treating scabies. Fac. Rev. 10, 28 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. El-Moamly, A. A. Scabies as a part of the World Health Organization roadmap for neglected tropical diseases 2021-2030: what we know and what we need to do for global control. Trop. Med. Health 49, 64 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Cox, V., Fuller, L. C., Engelman, D., Steer, A. & Hay, R. J. Estimating the global burden of scabies: what else do we need? Br. J. Dermatol. 184, 237–242 (2021).

    Article  CAS  PubMed  Google Scholar 

  230. Romani, L. et al. Efficacy of mass drug administration with ivermectin for control of scabies and impetigo, with coadministration of azithromycin: a single-arm community intervention trial. Lancet Infect. Dis. 19, 510–518 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Romani, L. et al. Feasibility and safety of mass drug coadministration with azithromycin and ivermectin for the control of neglected tropical diseases: a single-arm intervention trial. Lancet Glob. Health 6, e1132–e1138 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  232. Chosidow, O. & Hay, R. J. Control of scabies and secondary impetigo: optimising treatment effectiveness in endemic settings. Lancet Infect. Dis. 19, 454–456 (2019).

    Article  PubMed  Google Scholar 

  233. UKHSA guidance on the management of scabies cases and outbreaks in long-term care facilities and other closed settings. UKHSA https://www.gov.uk/government/publications/scabies-management-advice-for-health-professionals/ukhsa-guidance-on-the-management-of-scabies-cases-and-outbreaks-in-long-term-care-facilities-and-other-closed-settings (2023).

  234. Marks, M. Why does treatment for scabies fail? J. Eur. Acad. Dermatol. Venereol. 38, 462–463 (2024).

    Article  PubMed  Google Scholar 

  235. Shelley, W. B., Shelley, E. D. & Burmeister, V. Staphylococcus aureus colonization of burrows in erythrodermic Norwegian scabies. A case study of iatrogenic contagion. J. Am. Acad. Dermatol. 19, 673–678 (1988).

    Article  CAS  PubMed  Google Scholar 

  236. Shelley, W. B. & Shelley, E. D. Scanning electron microscopy of the scabies burrow and its contents, with special reference to the Sarcoptes scabiei egg. J. Am. Acad. Dermatol. 9, 673–679 (1983).

    Article  CAS  PubMed  Google Scholar 

  237. Rapp, C. M., Morgan, M. S. & Arlian, L. G. Presence of host immunoglobulin in the gut of Sarcoptes scabiei (Acari: Sarcoptidae). J. Med. Entomol. 43, 539–542 (2006).

    Article  CAS  PubMed  Google Scholar 

  238. Willis, C., Fischer, K., Walton, S. F., Currie, B. J. & Kemp, D. J. Scabies mite inactivated serine protease paralogues are present both internally in the mite gut and externally in feces. Am. J. Trop. Med. Hyg. 75, 683–687 (2006).

    Article  CAS  PubMed  Google Scholar 

  239. Lambris, J. D., Ricklin, D. & Geisbrecht, B. V. Complement evasion by human pathogens. Nat. Rev. Microbiol. 6, 132–142 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Arlian, L. G., Vyszenski-Moher, D. L. & Pole, M. J. Survival of adults and development stages of Sarcoptes scabiei var. canis when off the host. Exp. Appl. Acarol. 6, 181–187 (1989).

    Article  CAS  PubMed  Google Scholar 

  241. Rodríguez-Cadenas, F., Carbajal-González, M. T., Fregeneda-Grandes, J. M., Aller-Gancedo, J. M. & Rojo-Vázquez, F. A. Clinical evaluation and antibody responses in sheep after primary and secondary experimental challenges with the mange mite Sarcoptes scabiei var. ovis. Vet. Immunol. Immunopathol. 133, 109–116 (2010).

    Article  PubMed  Google Scholar 

  242. Tarigan, S. & Huntley, J. F. Failure to protect goats following vaccination with soluble proteins of Sarcoptes scabiei: evidence for a role for IgE antibody in protection. Vet. Parasitol. 133, 101–109 (2005).

    Article  CAS  PubMed  Google Scholar 

  243. Zhang, R. et al. Characterization and evaluation of a Sarcoptes scabiei allergen as a candidate vaccine. Parasit. Vectors 5, 176 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  244. Van Neste, D. J. & Staquet, M. J. Similar epidermal changes in hyperkeratotic scabies of humans and pigs. Am. J. Dermatopathol. 8, 267–273 (1986).

    Article  PubMed  Google Scholar 

  245. Bernigaud, C. et al. Preclinical study of single-dose moxidectin, a new oral treatment for scabies: efficacy, safety, and pharmacokinetics compared to two-dose ivermectin in a porcine model. PLoS Negl. Trop. Dis. 10, e0005030 (2016). This trial adapted an existing veterinary drug for use against human scabies.

    Article  PubMed  PubMed Central  Google Scholar 

  246. Mounsey, K. E. et al. Quantitative PCR-based genome size estimation of the astigmatid mites Sarcoptes scabiei, Psoroptes ovis and Dermatophagoides pteronyssinus. Parasit Vectors 5, 3 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Mofiz, E. et al. Mitochondrial genome sequence of the scabies mite provides insight into the genetic diversity of individual scabies infections. PLoS Negl. Trop. Dis. 10, e0004384 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  248. Fernando, D. D. et al. Gene silencing by RNA interference in Sarcoptes scabiei: a molecular tool to identify novel therapeutic targets. Parasit. Vectors 10, 289 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  249. Fernando, D. D., Korhonen, P. K., Gasser, R. B. & Fischer, K. An RNA interference tool to silence genes in Sarcoptes scabiei eggs. Int. J. Mol. Sci. 23, 873 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Korhonen, P. K. et al. Evidence that transcriptional alterations in sarcoptes scabiei are under tight post-transcriptional (microRNA) control. Int. J. Mol. Sci. 23, 9719 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Mofiz, E. et al. Genomic resources and draft assemblies of the human and porcine varieties of scabies mites, Sarcoptes scabiei var. hominis and var. suis. GigaScience 5, 23 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  252. Wang, T. et al. Proteomic analysis of Sarcoptes scabiei reveals that proteins differentially expressed between eggs and female adult stages are involved predominantly in genetic information processing, metabolism and/or host-parasite interactions. PLoS Negl. Trop. Dis. 16, e0010946 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Fischer, K. et al. Structural mechanisms of inactivation in scabies mite serine protease paralogues. J. Mol. Biol. 390, 635–645 (2009).

    Article  CAS  PubMed  Google Scholar 

  254. Taylor, S., Walther, D., Fernando, D. D., Swe-Kay, P. & Fischer, K. Investigating the antibacterial properties of prospective scabicides. Biomedicines 10, 3287 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Swe, P. M., Zakrzewski, M., Waddell, R., Sriprakash, K. S. & Fischer, K. High-throughput metagenome analysis of the Sarcoptes scabiei internal microbiota and in-situ identification of intestinal Streptomyces sp. Sci. Rep. 9, 11744 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank M. Flynn and M. Naghavi for help on the Figures. The authors also thank the anonymous patient for providing their experience.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (K.F. and D.D.F.); Epidemiology (R.J.H. and B.J.C.); Mechanisms/pathophysiology (K.F., D.D.F. and K.E.M.); Diagnosis, screening and prevention (K.F. and C.B.); Management (K.E.M., C.B., G.E.E.C., B.J.C. and O.C.); Quality of life (K.F. and N.S.); Outlook (K.F. and O.C.); overview of the Primer (K.F.).

Corresponding author

Correspondence to Katja Fischer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Disease Primers thanks P. T. Campbell, R. R. Yotsu, A. Bowen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Informed consent

The authors affirm that human research participants provided informed consent for publication of the images in Figs. 6 and 7 and Box 4.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernando, D.D., Mounsey, K.E., Bernigaud, C. et al. Scabies. Nat Rev Dis Primers 10, 74 (2024). https://doi.org/10.1038/s41572-024-00552-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-024-00552-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing