Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Primary sclerosing cholangitis

Abstract

Primary sclerosing cholangitis (PSC) is a chronic biliary inflammation associated with periductular fibrosis of the intrahepatic and extrahepatic bile ducts leading to strictures, bacterial cholangitis, decompensated liver disease and need for liver transplantation. This rare focal liver disease affects all races and ages, with a predominance of young males. There is an up to 88% association with inflammatory bowel disease. Although the aetiology is unknown and the pathophysiology is poorly understood, PSC is regarded as an autoimmune liver disease based on a strong immunogenetic background. Further, the associated risk for various malignancies, particularly cholangiocellular carcinoma, is also poorly understood. No medical therapy has been approved so far nor has been shown to improve transplant-free survival. However, ursodeoxycholic acid is widely used since it improves the biochemical parameters of cholestasis and is safe at low doses. MRI of the biliary tract is the primary imaging technology for diagnosis. Endoscopic interventions of the bile ducts should be limited to clinically relevant strictures for balloon dilatation, biopsy and brush cytology. End-stage liver disease with decompensation is an indication for liver transplantation with recurrent PSC in up to 38% of patients. Several novel therapeutic strategies are in various stages of development, including apical sodium-dependent bile acid transporter and ileal bile acid transporter inhibitors, integrin inhibitors, peroxisome proliferator-activated receptor agonists, CCL24 blockers, recombinant FGF19, CCR2/CCR5 inhibitors, farnesoid X receptor bile acid receptor agonists, and nor-ursodeoxycholic acid. Manipulation of the gut microbiome includes faecal microbiota transplantation. This article summarizes present knowledge and defines unmet medical needs to improve quality of life and survival.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Global prevalence of PSC alone and in coexistence with IBD.
Fig. 2: Disease phenotypes of inflammatory bowel disease in patients with PSC.
Fig. 3: Principle aspects of bile duct lesions in PSC.
Fig. 4: International Primary Sclerosing Cholangitis Study Group Diagnostic Criteria for PSC.
Fig. 5: Diagnosis and risk stratification in PSC.
Fig. 6: Effects of PSC on PROs.

Similar content being viewed by others

References

  1. Chazouilleres, O. et al. EASL Clinical Practice Guidelines on sclerosing cholangitis. J. Hepatol. 77, 761–806 (2022). One of the latest clinical practice guidelines of the most important scientific societies in the field: EASL, AASLD and European Society of Gastrointestinal Endoscopy.

    Article  Google Scholar 

  2. Bowlus, C. L. et al. AASLD practice guidance on primary sclerosing cholangitis and cholangiocarcinoma. Hepatology 77, 659–702 (2023). One of the latest clinical practice guidelines of the most important scientific societies in the field: EASL, AASLD and European Society of Gastrointestinal Endoscopy.

    Article  PubMed  Google Scholar 

  3. Mehta, T. I. et al. Global incidence, prevalence and features of primary sclerosing cholangitis: a systematic review and meta‐analysis. Liver Int. 41, 2418–2426 (2021).

    Article  PubMed  Google Scholar 

  4. Barberio, B. et al. Prevalence of primary sclerosing cholangitis in patients with inflammatory bowel disease: a systematic review and meta-analysis. Gastroenterology 161, 1865–1877 (2021). A global perspective on the association of PSC with IBD.

    Article  CAS  PubMed  Google Scholar 

  5. Karlsen, T. H. et al. Genome-wide association analysis in primary sclerosing cholangitis. Gastroenterology 138, 1102–1111 (2010).

    Article  PubMed  Google Scholar 

  6. Trivedi, P. J., Bowlus, C. L., Yimam, K. K., Razavi, H. & Estes, C. Epidemiology, natural history, and outcomes of primary sclerosing cholangitis: a systematic review of population-based studies. Clin. Gastroenterol. Hepatol. 20, 1687–1700.e4 (2022).

    Article  PubMed  Google Scholar 

  7. Tanaka, A. & Takikawa, H. Geoepidemiology of primary sclerosing cholangitis: a critical review. J. Autoimmun. 46, 35–40 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Zhang, Y. et al. Prevalence of inflammatory bowel disease in patients with primary sclerosing cholangitis: a systematic review and meta-analysis. Liver Int. 42, 1814–1822 (2022).

    Article  PubMed  Google Scholar 

  9. Lunder, A. K. et al. Prevalence of sclerosing cholangitis detected by magnetic resonance cholangiography in patients with long-term inflammatory bowel disease. Gastroenterology 151, 660–669.e4 (2016).

    Article  PubMed  Google Scholar 

  10. Deneau, M. R. et al. The natural history of primary sclerosing cholangitis in 781 children: a multicenter, international collaboration. Hepatology 66, 518–527 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Ng, S. C. et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet 390, 2769–2778 (2017).

    Article  PubMed  Google Scholar 

  12. Boonstra, K. et al. Population-based epidemiology, malignancy risk, and outcome of primary sclerosing cholangitis. Hepatology 58, 2045–2055 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Bakhshi, Z. et al. An update on primary sclerosing cholangitis epidemiology, outcomes and quantification of alkaline phosphatase variability in a population-based cohort. J. Gastroenterol. 55, 523–532 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Crothers, H. et al. Past, current, and future trends in the prevalence of primary sclerosing cholangitis and inflammatory bowel disease across England (2015-2027): a nationwide, population-based study. Lancet Reg. Health Eur. 44, 101002 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Goldberg, D. S. et al. Primary sclerosing cholangitis is not rare among blacks in a multicenter North American Consortium. Clin. Gastroenterol. Hepatol. 16, 591–593 (2018).

    Article  PubMed  Google Scholar 

  16. Bowlus, C. L., Li, C.-S., Karlsen, T. H., Lie, B. A. & Selmi, C. Primary sclerosing cholangitis in genetically diverse populations listed for liver transplantation: unique clinical and human leukocyte antigen associations. Liver Transpl. 16, 1324–1330 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Barner-Rasmussen, N., Pukkala, E., Jussila, A. & Färkkilä, M. Epidemiology, risk of malignancy and patient survival in primary sclerosing cholangitis: a population-based study in Finland. Scand. J. Gastroenterol. 55, 74–81 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Lindkvist, B., Benito De Valle, M., Gullberg, B. & Björnsson, E. Incidence and prevalence of primary sclerosing cholangitis in a defined adult population in sweden. Hepatology 52, 571–577 (2010).

    Article  PubMed  Google Scholar 

  19. Óli Guðnason, H. et al. Frumkomin trefjunargallgangabólga á Íslandi 1992-2012. Læknablaðið 2019, 371–376 (2019).

    Article  Google Scholar 

  20. Takikawa, H., Takamori, Y., Tanaka, A., Kurihara, H. & Nakanuma, Y. Analysis of 388 cases of primary sclerosing cholangitis in Japan; presence of a subgroup without pancreatic involvement in older patients. Hepatol. Res. 29, 153–159 (2004).

    Article  PubMed  Google Scholar 

  21. Okolicsanyi, L. et al. Primary sclerosing cholangitis: clinical presentation, natural history and prognostic variables: an Italian multicentre study. The Italian PSC Study Group. Eur. J. Gastroenterol. Hepatol. 8, 685–691 (1996).

    CAS  PubMed  Google Scholar 

  22. Jrgensen, K. K. et al. Inflammatory bowel disease in patients with primary sclerosing cholangitis: clinical characterization in liver transplanted and nontransplanted patients. Inflamm. Bowel Dis. 18, 536–545 (2012).

    Article  Google Scholar 

  23. Bowlus, C. L., Lim, J. K. & Lindor, K. D. AGA clinical practice update on surveillance for hepatobiliary cancers in patients with primary sclerosing cholangitis: expert review. Clin. Gastroenterol. Hepatol. 17, 2416–2422 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Culver, E. L. et al. Prevalence and long-term outcome of sub-clinical primary sclerosing cholangitis in patients with ulcerative colitis. Liver Int. 40, 2744–2757 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Loftus, E. V. PSC-IBD: a unique form of inflammatory bowel disease associated with primary sclerosing cholangitis. Gut 54, 91–96 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sørensen, J. Ø. et al. Inflammatory bowel disease with primary sclerosing cholangitis: a Danish population-based cohort study 1977-2011. Liver Int. 38, 532–541 (2018).

    Article  PubMed  Google Scholar 

  27. Trivedi, P. J. et al. Effects of primary sclerosing cholangitis on risks of cancer and death in people with inflammatory bowel disease, based on sex, race, and age. Gastroenterology 159, 915–928 (2020).

    Article  PubMed  Google Scholar 

  28. Wang, M.-H. et al. Unique phenotypic characteristics and clinical course in patients with ulcerative colitis and primary sclerosing cholangitis: a multicenter US experience. Inflamm. Bowel Dis. 26, 774–779 (2020).

    Article  PubMed  Google Scholar 

  29. Zheng, H.-H. & Jiang, X.-L. Increased risk of colorectal neoplasia in patients with primary sclerosing cholangitis and inflammatory bowel disease: a meta-analysis of 16 observational studies. Eur. J. Gastroenterol. Hepatol. 28, 383–390 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Lundberg Båve, A., von Seth, E., Ingre, M., Nordenvall, C. & Bergquist, A. Autoimmune diseases in primary sclerosing cholangitis and their first-degree relatives. Hepatology 80, 527–535 (2024).

    Article  PubMed  Google Scholar 

  31. Saarinen, S., Olerup, O. & Broome, U. Increased frequency of autoimmune diseases in patients with primary sclerosing cholangitis. Am. J. Gastroenterol. 95, 3195–3199 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Bergquist, A. et al. Hepatic and extrahepatic malignancies in primary sclerosing cholangitis. J. Hepatol. 36, 321–327 (2002).

    Article  PubMed  Google Scholar 

  33. Lundberg Båve, A. et al. Increased risk of cancer in patients with primary sclerosing cholangitis. Hepatol. Int. 15, 1174–1182 (2021).

    Article  PubMed  Google Scholar 

  34. Weismüller, T. J. et al. Patient age, sex, and inflammatory bowel disease phenotype associate with course of primary sclerosing cholangitis. Gastroenterology 152, 1975–1984.e8 (2017).

    Article  PubMed  Google Scholar 

  35. Fevery, J., Verslype, C., Lai, G., Aerts, R. & Van Steenbergen, W. Incidence, diagnosis, and therapy of cholangiocarcinoma in patients with primary sclerosing cholangitis. Dig. Dis. Sci. 52, 3123–3135 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Erichsen, R. et al. Hepatobiliary cancer risk in patients with inflammatory bowel disease: a Scandinavian population-based cohort study. Cancer Epidemiol. Biomarkers Prev. 30, 886–894 (2021).

    Article  PubMed  Google Scholar 

  37. Villard, C. et al. Prospective surveillance for cholangiocarcinoma in unselected individuals with primary sclerosing cholangitis. J. Hepatol. 78, 604–613 (2023).

    Article  PubMed  Google Scholar 

  38. Zenouzi, R. et al. Low risk of hepatocellular carcinoma in patients with primary sclerosing cholangitis with cirrhosis. Clin. Gastroenterol. Hepatol. 12, 1733–1738 (2014).

    Article  PubMed  Google Scholar 

  39. Ali, A. H. et al. Surveillance for hepatobiliary cancers in patients with primary sclerosing cholangitis. Hepatology 67, 2338–2351 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Bergquist, A. et al. Impact on follow‐up strategies in patients with primary sclerosing cholangitis. Liver Int. 43, 127–138 (2023).

    Article  PubMed  Google Scholar 

  41. Tan, N. et al. Surveillance MRI is associated with improved survival in patients with primary sclerosing cholangitis. Hepatol. Commun. 8, e0442 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Said, K., Glaumann, H. & Bergquist, A. Gallbladder disease in patients with primary sclerosing cholangitis. J. Hepatol. 48, 598–605 (2008).

    Article  PubMed  Google Scholar 

  43. Buckles, D. C., Lindor, K. D., Larusso, N. F., Petrovic, L. M. & Gores, G. J. In primary sclerosing cholangitis, gallbladder polyps are frequently malignant. Am. J. Gastroenterol. 97, 1138–1142 (2002).

    Article  PubMed  Google Scholar 

  44. Bergquist, A., Glaumann, H., Persson, B. & Broomé, U. Risk factors and clinical presentation of hepatobiliary carcinoma in patients with primary sclerosing cholangitis: a case-control study: risk factors and clinical presentation of hepatobiliary carcinoma in patients with primary sclerosing cholangitis: a case-control study. Hepatology 27, 311–316 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Boberg, K. M. et al. Cholangiocarcinoma in primary sclerosing cholangitis: risk factors and clinical presentation. Scand. J. Gastroenterol. 37, 1205–1211 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Burak, K. et al. Incidence and risk factors for cholangiocarcinoma in primary sclerosing cholangitis. Am. J. Gastroenterol. 99, 523–526 (2004).

    Article  PubMed  Google Scholar 

  47. Chalasani, N. et al. Cholangiocarcinoma in patients with primary sclerosing cholangitis: a multicenter case-control study. Hepatology 31, 7–11 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Gulamhusein, A. F. et al. Duration of inflammatory bowel disease is associated with increased risk of cholangiocarcinoma in patients with primary sclerosing cholangitis and IBD. Am. J. Gastroenterol. 111, 705–711 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Soetikno, R. M., Lin, O. S., Heidenreich, P. A., Young, H. S. & Blackstone, M. O. Increased risk of colorectal neoplasia in patients with primary sclerosing cholangitis and ulcerative colitis: a meta-analysis. Gastrointest. Endosc. 56, 48–54 (2002).

    Article  PubMed  Google Scholar 

  50. Halliday, J. S. et al. A unique clinical phenotype of primary sclerosing cholangitis associated with Crohn’s disease. J. Crohns Colitis 6, 174–181 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Björnsson, E. et al. The natural history of small-duct primary sclerosing cholangitis. Gastroenterology 134, 975–980 (2008).

    Article  PubMed  Google Scholar 

  52. Karlsen, T. H., Folseraas, T., Thorburn, D. & Vesterhus, M. Primary sclerosing cholangitis — a comprehensive review. J. Hepatol. 67, 1298–1323 (2017).

    Article  PubMed  Google Scholar 

  53. Weaver, G. H. Cirrhosis of liver of the guinea pig, produced by a bacterium and its products. Johns Hopkins Hosp. Rep. 9, 297 (1900).

    Google Scholar 

  54. Boden, R. W., Rankin, J. G., Goulston, S. J. M. & Morrow, W. The liver in ulcerative colitis the significance of raised serum-alkaline-phosphatase levels. Lancet 274, 245–248 (1959).

    Article  Google Scholar 

  55. Thorpe, M. E., Scheuer, P. J. & Sherlock, S. Primary sclerosing cholangitis, the biliary tree, and ulcerative colitis. Gut 8, 435–448 (1967).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lichtman, S. N., Keku, J., Clark, R. L., Schwab, J. H. & Sartor, R. B. Biliary tract disease in rats with experimental small bowel bacterial overgrowth. Hepatology 13, 766–772 (1991).

    Article  CAS  PubMed  Google Scholar 

  57. Lichtman, S. N., Keku, J., Schwab, J. H. & Sartor, R. B. Evidence for peptidoglycan absorption in rats with experimental small bowel bacterial overgrowth. Infect. Immun. 59, 555–562 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Fiorotto, R. et al. Loss of CFTR affects biliary epithelium innate immunity and causes TLR4–NF-κB-mediated inflammatory response in mice. Gastroenterology 141, 1498–1508.e5 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Nakamoto, N. et al. Gut pathobionts underlie intestinal barrier dysfunction and liver T helper 17 cell immune response in primary sclerosing cholangitis. Nat. Microbiol. 4, 492–503 (2019).

    Article  CAS  PubMed  Google Scholar 

  60. Björnsson, E. et al. Intestinal permeability and bacterial growth of the small bowel in patients with primary sclerosing cholangitis. Scand. J. Gastroenterol. 40, 1090–1094 (2005).

    Article  PubMed  Google Scholar 

  61. Dhillon, A. K. et al. Circulating markers of gut barrier function associated with disease severity in primary sclerosing cholangitis. Liver Int. 39, 371–381 (2019).

    Article  CAS  PubMed  Google Scholar 

  62. Beuers, U. Drug Insight: mechanisms and sites of action of ursodeoxycholic acid in cholestasis. Nat. Clin. Pract. Gastroenterol. Hepatol. 3, 318–328 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Vesterhus, M. & Karlsen, T. H. Emerging therapies in primary sclerosing cholangitis: pathophysiological basis and clinical opportunities. J. Gastroenterol. 55, 588–614 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Beuers, U., Trauner, M., Jansen, P. & Poupon, R. New paradigms in the treatment of hepatic cholestasis: from UDCA to FXR, PXR and beyond. J. Hepatol. 62, S25–S37 (2015).

    Article  CAS  PubMed  Google Scholar 

  65. Fuchs, C. D. & Trauner, M. Role of bile acids and their receptors in gastrointestinal and hepatic pathophysiology. Nat. Rev. Gastroenterol. Hepatol. 19, 432–450 (2022).

    Article  CAS  PubMed  Google Scholar 

  66. Fickert, P. et al. norUrsodeoxycholic acid improves cholestasis in primary sclerosing cholangitis. J. Hepatol. 67, 549–558 (2017).

    Article  CAS  PubMed  Google Scholar 

  67. Fickert, P. et al. 24-norUrsodeoxycholic acid is superior to ursodeoxycholic acid in the treatment of sclerosing cholangitis in Mdr2 (Abcb4) knockout mice. Gastroenterology 130, 465–481 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Van Niekerk, J., Kersten, R. & Beuers, U. Role of bile acids and the biliary HCO3 umbrella in the pathogenesis of primary biliary cholangitis. Clin. Liver Dis. 22, 457–479 (2018).

    Article  PubMed  Google Scholar 

  69. Hohenester, S. et al. A biliary HCO3 umbrella constitutes a protective mechanism against bile acid-induced injury in human cholangiocytes. Hepatology 55, 173–183 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. Reich, M. et al. Downregulation of TGR5 (GPBAR1) in biliary epithelial cells contributes to the pathogenesis of sclerosing cholangitis. J. Hepatol. 75, 634–646 (2021).

    Article  CAS  PubMed  Google Scholar 

  71. Kowdley, K. V. et al. A randomized, placebo-controlled, phase II study of obeticholic acid for primary sclerosing cholangitis. J. Hepatol. 73, 94–101 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hirschfield, G. M. et al. Effect of NGM282, an FGF19 analogue, in primary sclerosing cholangitis: a multicenter, randomized, double-blind, placebo-controlled phase II trial. J. Hepatol. 70, 483–493 (2019).

    Article  CAS  PubMed  Google Scholar 

  73. Königshofer, P. et al. Nuclear receptors in liver fibrosis. Biochim. Biophys. Acta Mol. Basis Dis. 1867, 166235 (2021).

    Article  PubMed  Google Scholar 

  74. Gadaleta, R. M. & Moschetta, A. Dark and bright side of targeting fibroblast growth factor receptor 4 in the liver. J. Hepatol. 75, 1440–1451 (2021).

    Article  CAS  PubMed  Google Scholar 

  75. Braadland, P. R. et al. Suppression of bile acid synthesis as a tipping point in the disease course of primary sclerosing cholangitis. JHEP Rep. 4, 100561 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Schneider, K. M. et al. Gut microbiota depletion exacerbates cholestatic liver injury via loss of FXR signalling. Nat. Metab. 3, 1228–1241 (2021).

    Article  CAS  PubMed  Google Scholar 

  77. Mousa, O. Y. et al. Bile acid profiles in primary sclerosing cholangitis and their ability to predict hepatic decompensation. Hepatology 74, 281–295 (2021).

    Article  CAS  PubMed  Google Scholar 

  78. Bowlus, C. L. et al. Safety, tolerability, and efficacy of maralixibat in adults with primary sclerosing cholangitis: open-label pilot study. Hepatol. Commun. 7, e0153 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Banales, J. M. et al. Cholangiocyte pathobiology. Nat. Rev. Gastroenterol. Hepatol. 16, 269–281 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  80. O’Hara, S. P., Karlsen, T. H. & LaRusso, N. F. Cholangiocytes and the environment in primary sclerosing cholangitis: where is the link? Gut 66, 1873–1877 (2017).

    Article  PubMed  Google Scholar 

  81. Carpino, G. et al. Activation of biliary tree stem cells within peribiliary glands in primary sclerosing cholangitis. J. Hepatol. 63, 1220–1228 (2015).

    Article  PubMed  Google Scholar 

  82. Mederacke, I. et al. Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology. Nat. Commun. 4, 2823 (2013).

    Article  PubMed  Google Scholar 

  83. Lei, L. et al. Portal fibroblasts with mesenchymal stem cell features form a reservoir of proliferative myofibroblasts in liver fibrosis. Hepatology 76, 1360–1375 (2022).

    Article  CAS  PubMed  Google Scholar 

  84. Helgadottir, H. & Vesterhus, M. Noninvasive evaluation of fibrosis in adult biliary diseases. Curr. Opin. Gastroenterol. 39, 83–88 (2023).

    Article  CAS  PubMed  Google Scholar 

  85. Vesterhus, M. et al. Comprehensive assessment of ECM turnover using serum biomarkers establishes PBC as a high-turnover autoimmune liver disease. JHEP Rep. 3, 100178 (2021).

    Article  PubMed  Google Scholar 

  86. Vesterhus, M. et al. Enhanced liver fibrosis score predicts transplant‐free survival in primary sclerosing cholangitis. Hepatology 62, 188–197 (2015).

    Article  PubMed  Google Scholar 

  87. Heydtmann, M. et al. CXC chemokine ligand 16 promotes integrin-mediated adhesion of liver-infiltrating lymphocytes to cholangiocytes and hepatocytes within the inflamed human liver. J. Immunol. 174, 1055–1062 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Zimmer, C. L. et al. A biliary immune landscape map of primary sclerosing cholangitis reveals a dominant network of neutrophils and tissue-resident T cells. Sci. Transl. Med. 13, eabb3107 (2021).

    Article  CAS  PubMed  Google Scholar 

  89. Afford, S. C. The role of cholangiocytes in the development of chronic inflammatory liver disease. Front. Biosci. 7, e276–e285 (2002).

    Article  PubMed  Google Scholar 

  90. Locatelli, L. et al. Macrophage recruitment by fibrocystin‐defective biliary epithelial cells promotes portal fibrosis in congenital hepatic fibrosis. Hepatology 63, 965–982 (2016).

    Article  CAS  PubMed  Google Scholar 

  91. Vesterhus, M. et al. Novel serum and bile protein markers predict primary sclerosing cholangitis disease severity and prognosis. J. Hepatol. 66, 1214–1222 (2017).

    Article  CAS  PubMed  Google Scholar 

  92. Meng, F. et al. Ursodeoxycholate inhibits mast cell activation and reverses biliary injury and fibrosis in Mdr2−/− mice and human primary sclerosing cholangitis. Lab. Invest. 98, 1465–1477 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zhou, T. et al. Mast cells selectively target large cholangiocytes during biliary injury via H2HR‐mediated cAMP/pERK1/2 signaling. Hepatol. Commun. 6, 2715–2731 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Meadows, V. et al. Mast cells regulate ductular reaction and intestinal inflammation in cholestasis through farnesoid X receptor signaling. Hepatology 74, 2684–2698 (2021).

    Article  CAS  PubMed  Google Scholar 

  95. Johnson, C. et al. Interleukin-6 and its receptor, key players in hepatobiliary inflammation and cancer. Transl. Gastrointest. Cancer 1, 58–70 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature 431, 931–945 (2004).

    Article  Google Scholar 

  97. Jiang, X. & Karlsen, T. H. Genetics of primary sclerosing cholangitis and pathophysiological implications. Nat. Rev. Gastroenterol. Hepatol. 14, 279–295 (2017).

    Article  CAS  PubMed  Google Scholar 

  98. Jiang, X. et al. A heterozygous germline CD100 mutation in a family with primary sclerosing cholangitis. Sci. Transl. Med. 13, eabb0036 (2021).

    Article  CAS  PubMed  Google Scholar 

  99. The UK-PSC Consortium et al. Genome-wide association study of primary sclerosing cholangitis identifies new risk loci and quantifies the genetic relationship with inflammatory bowel disease. Nat. Genet. 49, 269–273 (2017).

    Article  Google Scholar 

  100. The UK-PSCSC Consortium et al. Dense genotyping of immune-related disease regions identifies nine new risk loci for primary sclerosing cholangitis. Nat. Genet. 45, 670–675 (2013).

    Article  Google Scholar 

  101. Peng, X. et al. Immunosuppressive agents for the treatment of primary sclerosing cholangitis: a systematic review and meta-analysis. Dig. Dis. 35, 478–485 (2017).

    Article  PubMed  Google Scholar 

  102. Leung, K. K., Deeb, M., Fischer, S. E. & Gulamhusein, A. Recurrent primary sclerosing cholangitis: current understanding, management, and future directions. Semin. Liver Dis. 41, 409–420 (2021).

    Article  PubMed  Google Scholar 

  103. Ramachandran, P. et al. Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature 575, 512–518 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Aizarani, N. et al. A human liver cell atlas reveals heterogeneity and epithelial progenitors. Nature 572, 199–204 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hildebrandt, F. et al. Spatial transcriptomics to define transcriptional patterns of zonation and structural components in the mouse liver. Nat. Commun. 12, 7046 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Chung, B. K., Øgaard, J., Reims, H. M., Karlsen, T. H. & Melum, E. Spatial transcriptomics identifies enriched gene expression and cell types in human liver fibrosis. Hepatol. Commun. 6, 2538–2550 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Poch, T. et al. Single-cell atlas of hepatic T cells reveals expansion of liver-resident naive-like CD4+ cells in primary sclerosing cholangitis. J. Hepatol. 75, 414–423 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Shi, T. et al. Farnesoid X receptor antagonizes macrophage-dependent licensing of effector T lymphocytes and progression of sclerosing cholangitis. Sci. Transl. Med. 14, eabi4354 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kunzmann, L. K. et al. Monocytes as potential mediators of pathogen‐induced T‐helper 17 differentiation in patients with primary sclerosing cholangitis (PSC). Hepatology 72, 1310–1326 (2020).

    Article  CAS  PubMed  Google Scholar 

  110. Katt, J. et al. Increased T helper type 17 response to pathogen stimulation in patients with primary sclerosing cholangitis: hepatology. Hepatology 58, 1084–1093 (2013).

    Article  CAS  PubMed  Google Scholar 

  111. Liaskou, E. et al. High‐throughput T‐cell receptor sequencing across chronic liver diseases reveals distinct disease‐associated repertoires. Hepatology 63, 1608–1619 (2016).

    Article  CAS  PubMed  Google Scholar 

  112. Henriksen, E. K. K. et al. Gut and liver T-cells of common clonal origin in primary sclerosing cholangitis-inflammatory bowel disease. J. Hepatol. 66, 116–122 (2017).

    Article  CAS  PubMed  Google Scholar 

  113. von Seth, E. et al. Primary sclerosing cholangitis leads to dysfunction and loss of MAIT cells. Eur. J. Immunol. 48, 1997–2004 (2018).

    Article  Google Scholar 

  114. Valestrand, L. et al. Bile from patients with primary sclerosing cholangitis contains mucosal-associated invariant T-cell antigens. Am. J. Pathol. 192, 629–641 (2022).

    Article  CAS  PubMed  Google Scholar 

  115. Andrews, T. S. et al. Single-cell and spatial transcriptomics characterisation of the immunological landscape in the healthy and PSC human liver. J. Hepatol. 80, 730–743 (2024).

    Article  CAS  PubMed  Google Scholar 

  116. Hov, J. & Karlsen, T. The microbiome in primary sclerosing cholangitis: current evidence and potential concepts. Semin. Liver Dis. 37, 314–331 (2017).

    Article  PubMed  Google Scholar 

  117. Kummen, M. et al. The gut microbial profile in patients with primary sclerosing cholangitis is distinct from patients with ulcerative colitis without biliary disease and healthy controls. Gut 66, 611–619 (2017).

    Article  PubMed  Google Scholar 

  118. Hole, M. J. et al. A shared mucosal gut microbiota signature in primary sclerosing cholangitis before and after liver transplantation. Hepatology 77, 715–728 (2023).

    Article  PubMed  Google Scholar 

  119. Hov, J. R. & Karlsen, T. H. The microbiota and the gut–liver axis in primary sclerosing cholangitis. Nat. Rev. Gastroenterol. Hepatol. 20, 135–154 (2023).

    Article  PubMed  Google Scholar 

  120. Vieira-Silva, S. et al. Quantitative microbiome profiling disentangles inflammation- and bile duct obstruction-associated microbiota alterations across PSC/IBD diagnoses. Nat. Microbiol. 4, 1826–1831 (2019).

    Article  CAS  PubMed  Google Scholar 

  121. Liwinski, T. et al. Alterations of the bile microbiome in primary sclerosing cholangitis. Gut 69, 665–672 (2020).

    Article  CAS  PubMed  Google Scholar 

  122. Kummen, M. et al. Altered gut microbial metabolism of essential nutrients in primary sclerosing cholangitis. Gastroenterology 160, 1784–1798.e0 (2021).

    Article  CAS  PubMed  Google Scholar 

  123. Kummen, M. et al. Elevated trimethylamine‐ N‐oxide (TMAO) is associated with poor prognosis in primary sclerosing cholangitis patients with normal liver function. United European Gastroenterol. J. 5, 532–541 (2017).

    Article  CAS  PubMed  Google Scholar 

  124. Ponsioen, C. Y. et al. Defining primary sclerosing cholangitis: results from an international primary sclerosing cholangitis study group consensus process. Gastroenterology 161, 1764–1775.e5 (2021). An interdisciplinary group of experts defines PSC, which is helpful worldwide to increase awareness and facilitate early diagnosis.

    Article  PubMed  Google Scholar 

  125. Kozaka, K., Sheedy, S. P., Eaton, J. E., Venkatesh, S. K. & Heiken, J. P. Magnetic resonance imaging features of small-duct primary sclerosing cholangitis. Abdom. Radiol. 45, 2388–2399 (2020).

    Article  Google Scholar 

  126. Ringe, K. I. et al. Clinical features and MRI progression of small duct primary sclerosing cholangitis (PSC). Eur. J. Radiol. 129, 109101 (2020).

    Article  PubMed  Google Scholar 

  127. Broome, U. et al. Natural history and prognostic factors in 305 Swedish patients with primary sclerosing cholangitis. Gut 38, 610–615 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Kuo, A. et al. Characteristics and outcomes reported by patients with primary sclerosing cholangitis through an online registry. Clin. Gastroenterol. Hepatol. 17, 1372–1378 (2019).

    Article  PubMed  Google Scholar 

  129. Valentino, P. L. et al. The natural history of primary sclerosing cholangitis in children: a large single-center longitudinal cohort study. J. Pediatr. Gastroenterol. Nutr. 63, 603–609 (2016).

    Article  PubMed  Google Scholar 

  130. Dave, M., Elmunzer, B. J., Dwamena, B. A. & Higgins, P. D. R. Primary sclerosing cholangitis: meta-analysis of diagnostic performance of MR cholangiopancreatography. Radiology 256, 387–396 (2010).

    Article  PubMed  Google Scholar 

  131. Alvarez, F. et al. International Autoimmune Hepatitis Group Report: review of criteria for diagnosis of autoimmune hepatitis. J. Hepatol. 31, 929–938 (1999).

    Article  CAS  PubMed  Google Scholar 

  132. van Buuren, H. R., van Hoogstraten, H. J. E., Terkivatan, T., Schalm, S. W. & Vleggaar, F. P. High prevalence of autoimmune hepatitis among patients with primary sclerosing cholangitis. J. Hepatol. 33, 543–548 (2000).

    Article  PubMed  Google Scholar 

  133. Ricciuto, A., Kamath, B. M., Hirschfield, G. M. & Trivedi, P. J. Primary sclerosing cholangitis and overlap features of autoimmune hepatitis: a coming of age or an age-ist problem? J. Hepatol. 79, 567–575 (2023).

    Article  PubMed  Google Scholar 

  134. Trivedi, P. J. & Hirschfield, G. M. Review article: overlap syndromes and autoimmune liver disease. Aliment. Pharmacol. Ther. 36, 517–533 (2012).

    Article  CAS  PubMed  Google Scholar 

  135. Wunsch, E. et al. Anti‐glycoprotein 2 (anti‐GP2) IgA and anti‐neutrophil cytoplasmic antibodies to serine proteinase 3 (PR3‐ANCA): antibodies to predict severe disease, poor survival and cholangiocarcinoma in primary sclerosing cholangitis. Aliment. Pharmacol. Ther. 53, 302–313 (2021).

    Article  CAS  PubMed  Google Scholar 

  136. Hunyady, P. et al. Secondary sclerosing cholangitis following coronavirus disease 2019 (COVID-19): a multicenter retrospective study. Clin. Infect. Dis. 76, e179–e187 (2023).

    Article  PubMed  Google Scholar 

  137. Pi, B. et al. Immune-related cholangitis induced by immune checkpoint inhibitors: a systematic review of clinical features and management. Eur. J. Gastroenterol. Hepatol. 33, e858–e867 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Peeraphatdit, T. B. et al. Hepatotoxicity from immune checkpoint inhibitors: a systematic review and management recommendation. Hepatology 72, 315–329 (2020).

    Article  PubMed  Google Scholar 

  139. Cazzagon, N. et al. The complementary value of magnetic resonance imaging and vibration-controlled transient elastography for risk stratification in primary sclerosing cholangitis. Am. J. Gastroenterol. 114, 1878–1885 (2019).

    Article  PubMed  Google Scholar 

  140. Muir, A. J. et al. Simtuzumab for primary sclerosing cholangitis: phase 2 study results with insights on the natural history of the disease. Hepatology 69, 684–698 (2019).

    Article  CAS  PubMed  Google Scholar 

  141. Eaton, J. E. et al. Changes in liver stiffness, measured by magnetic resonance elastography, associated with hepatic decompensation in patients with primary sclerosing cholangitis. Clin. Gastroenterol. Hepatol. 18, 1576–1583.e1 (2020).

    Article  CAS  PubMed  Google Scholar 

  142. Trivedi, P. J. et al. Inter- and intra-individual variation, and limited prognostic utility, of serum alkaline phosphatase in a trial of patients with primary sclerosing cholangitis. Clin. Gastroenterol. Hepatol. 19, 1248–1257 (2021).

    Article  CAS  PubMed  Google Scholar 

  143. De Vries, E. M. et al. A novel prognostic model for transplant-free survival in primary sclerosing cholangitis. Gut 67, 1864–1869 (2018).

    Article  PubMed  Google Scholar 

  144. Goode, E. C. et al. Factors associated with outcomes of patients with primary sclerosing cholangitis and development and validation of a risk scoring system. Hepatology 69, 2120–2135 (2019).

    Article  CAS  PubMed  Google Scholar 

  145. Eaton, J. E. et al. Primary sclerosing cholangitis risk estimate tool (PREsTo) predicts outcomes of the disease: a derivation and validation study using machine learning. Hepatology 71, 214–224 (2020).

    Article  CAS  PubMed  Google Scholar 

  146. Deneau, M. R. et al. The sclerosing cholangitis outcomes in pediatrics (SCOPE) index: a prognostic tool for children. Hepatology 73, 1074–1087 (2021).

    Article  CAS  PubMed  Google Scholar 

  147. Lundberg Båve, A. et al. Colectomy in patients with ulcerative colitis is not associated to future diagnosis of primary sclerosing cholangitis. United European Gastroenterol. J. 11, 471–481 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  148. van Munster, K. N. et al. Disease burden in primary sclerosing cholangitis in the Netherlands: a long-term follow-up study. Liver Int. 43, 639–648 (2023).

    Article  CAS  PubMed  Google Scholar 

  149. Olsson, R. et al. High-dose ursodeoxycholic acid in primary sclerosing cholangitis: a 5-year multicenter, randomized, controlled study. Gastroenterology 129, 1464–1472 (2005).

    Article  CAS  PubMed  Google Scholar 

  150. Lindor, K. D. et al. High-dose ursodeoxycholic acid for the treatment of primary sclerosing cholangitis. Hepatology 50, 808–814 (2009).

    Article  CAS  PubMed  Google Scholar 

  151. Ponsioen, C. Y., Lindor, K. D., Mehta, R. & Dimick‐Santos, L. Design and endpoints for clinical trials in primary sclerosing cholangitis. Hepatology 68, 1174–1188 (2018).

    Article  PubMed  Google Scholar 

  152. Ponsioen, C. Y. et al. Surrogate endpoints for clinical trials in primary sclerosing cholangitis: review and results from an International PSC Study Group consensus process. Hepatology 63, 1357–1367 (2016).

    Article  PubMed  Google Scholar 

  153. Poupon, R. Liver alkaline phosphatase: a missing link between choleresis and biliary inflammation. Hepatology 61, 2080–2090 (2015).

    Article  CAS  PubMed  Google Scholar 

  154. Stanich, P. P. et al. Alkaline phosphatase normalization is associated with better prognosis in primary sclerosing cholangitis. Dig. Liver Dis. 43, 309–313 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Lindström, L., Hultcrantz, R., Boberg, K. M., Friis–Liby, I. & Bergquist, A. Association between reduced levels of alkaline phosphatase and survival times of patients with primary sclerosing cholangitis. Clin. Gastroenterol. Hepatol. 11, 841–846 (2013).

    Article  PubMed  Google Scholar 

  156. Rupp, C. et al. Reduction in alkaline phosphatase is associated with longer survival in primary sclerosing cholangitis, independent of dominant stenosis. Aliment. Pharmacol. Ther. 40, 1292–1301 (2014).

    Article  CAS  PubMed  Google Scholar 

  157. Al Mamari, S., Djordjevic, J., Halliday, J. S. & Chapman, R. W. Improvement of serum alkaline phosphatase to <1.5 upper limit of normal predicts better outcome and reduced risk of cholangiocarcinoma in primary sclerosing cholangitis. J. Hepatol. 58, 329–334 (2013).

    Article  CAS  PubMed  Google Scholar 

  158. De Vries, E. M. G. et al. Alkaline phosphatase at diagnosis of primary sclerosing cholangitis and 1 year later: evaluation of prognostic value. Liver Int. 36, 1867–1875 (2016).

    Article  PubMed  Google Scholar 

  159. Middelburg, T. et al. The association between cholestatic biochemical markers and clinical symptoms in patients with non-end-stage primary sclerosing cholangitis. J. Hepatol. 78, S408 (2023).

    Article  Google Scholar 

  160. Corpechot, C. et al. Baseline values and changes in liver stiffness measured by transient elastography are associated with severity of fibrosis and outcomes of patients with primary sclerosing cholangitis. Gastroenterology 146, 970–979.e6 (2014).

    Article  PubMed  Google Scholar 

  161. Ehlken, H. et al. Validation of transient elastography and comparison with spleen length measurement for staging of fibrosis and clinical prognosis in primary sclerosing cholangitis. PLoS ONE 11, e0164224 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Chazouilleres, O. et al. Prospective validation of the prognostic value of liver stiffness (LS) assessed by Fibroscan in primary sclerosing cholangitis (PSC): interim analysis of the Ficus study. Hepatology 70, 33A–34A (2019).

    Google Scholar 

  163. Chazouillères, O. et al. GS-007 Prospective validation of the prognostic value of liver stiffness assessed by Fibroscan in primary sclerosing cholangitis: final results of the FICUS study. J. Hepatol. 80, S5 (2024).

    Article  Google Scholar 

  164. Fossdal, G. et al. Fluctuating biomarkers in primary sclerosing cholangitis: a longitudinal comparison of alkaline phosphatase, liver stiffness, and ELF. JHEP Rep. Innov. Hepatol. 3, 100328 (2021).

    Article  Google Scholar 

  165. de Vries, E. M. G. et al. Enhanced liver fibrosis test predicts transplant-free survival in primary sclerosing cholangitis, a multi-centre study. Liver Int. 37, 1554–1561 (2017).

    Article  PubMed  Google Scholar 

  166. Cadranel, J.-F., Rufat, P. & Degos, F. Practices of liver biopsy in France: results of a prospective nationwide survey. For the Group of Epidemiology of the French Association for the Study of the Liver (AFEF). Hepatology 32, 477–481 (2000).

    Article  CAS  PubMed  Google Scholar 

  167. Lindor, K. D. et al. The role of ultrasonography and automatic-needle biopsy in outpatient percutaneous liver biopsy. Hepatology 23, 1079–1083 (1996).

    Article  CAS  PubMed  Google Scholar 

  168. Olsson, R. et al. Sampling variability of percutaneous liver biopsy in primary sclerosing cholangitis. J. Clin. Pathol. 48, 933–935 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. De Vries, E. M. G. et al. Applicability and prognostic value of histologic scoring systems in primary sclerosing cholangitis. J. Hepatol. 63, 1212–1219 (2015).

    Article  PubMed  Google Scholar 

  170. De Vries, E. M. G. et al. Validation of the prognostic value of histologic scoring systems in primary sclerosing cholangitis: an international cohort study. Hepatology 65, 907–919 (2017).

    Article  PubMed  Google Scholar 

  171. Kim, W. R. et al. A revised natural history model for primary sclerosing cholangitis. Mayo Clin. Proc. 75, 688–694 (2000).

    Article  CAS  PubMed  Google Scholar 

  172. Goet, J. C. et al. Validation, clinical utility and limitations of the Amsterdam-Oxford model for primary sclerosing cholangitis. J. Hepatol. 71, 992–999 (2019).

    Article  PubMed  Google Scholar 

  173. Ponsioen, C. Y., Lam, K., Van Milligen De Wit, A. W. M., Huibregtse, K. & Tytgat, G. N. J. Four years experience with short term stenting in primary sclerosing cholangitis. Am. J. Gastroenterol. 94, 2403–2407 (1999).

    Article  CAS  PubMed  Google Scholar 

  174. Ponsioen, C. Y. Endpoints in the design of clinical trials for primary sclerosing cholangitis. Biochim. Biophys. Acta Mol. Basis Dis. 1864, 1410–1414 (2018).

    Article  CAS  PubMed  Google Scholar 

  175. Younossi, Z. M. et al. Development and validation of a primary sclerosing cholangitis-specific patient‐reported outcomes instrument: the PSC PRO. Hepatology 68, 155–165 (2018).

    Article  PubMed  Google Scholar 

  176. Younossi, Z. M., Stepanova, M., Younossi, I. & Racila, A. Development and validation of a primary sclerosing cholangitis-specific health-related quality of life instrument: CLDQ-PSC. Hepatol. Commun. 7, e0049 (2023). PSC-specific HRQoL criteria to be used in future clinical trials for developing urgently needed novel therapies.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Munster, K. N., Dijkgraaf, M. G. W., Gennep, S., Beuers, U. & Ponsioen, C. Y. The simple cholestatic complaints score is a valid and quick patient‐reported outcome measure in primary sclerosing cholangitis. Liver Int. 40, 2758–2766 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Walmsley, R. S., Ayres, R. C., Pounder, R. E. & Allan, R. N. A simple clinical colitis activity index. Gut 43, 29–32 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Harvey, R. F. & Bradshaw, M. J. Measuring Crohn’s disease activity. Lancet 1, 1134–1135 (1980).

    Article  CAS  PubMed  Google Scholar 

  180. Stiehl, A., Rudolph, G., Klöters-Plachky, P., Sauer, P. & Walker, S. Development of dominant bile duct stenoses in patients with primary sclerosing cholangitis treated with ursodeoxycholic acid: outcome after endoscopic treatment. J. Hepatol. 36, 151–156 (2002).

    Article  PubMed  Google Scholar 

  181. Gotthardt, D. N., Rudolph, G., Klöters-Plachky, P., Kulaksiz, H. & Stiehl, A. Endoscopic dilation of dominant stenoses in primary sclerosing cholangitis: outcome after long-term treatment. Gastrointest. Endosc. 71, 527–534 (2010).

    Article  PubMed  Google Scholar 

  182. Aabakken, L. et al. Role of endoscopy in primary sclerosing cholangitis: European Society of Gastrointestinal Endoscopy (ESGE) and European Association for the Study of the Liver (EASL) Clinical Guideline. Endoscopy 49, 588–608 (2017). One of the latest clinical practice guidelines of the most important scientific societies in the field: EASL, AASLD and European Society of Gastrointestinal Endoscopy.

    Article  PubMed  Google Scholar 

  183. Venkatesh, S. K. et al. Reporting standards for primary sclerosing cholangitis using MRI and MR cholangiopancreatography: guidelines from MR Working Group of the International Primary Sclerosing Cholangitis Study Group. Eur. Radiol. 32, 923–937 (2022).

    Article  PubMed  Google Scholar 

  184. Ferreira, M. T. G. B. et al. Stent versus balloon dilation for the treatment of dominant strictures in primary sclerosing cholangitis: a systematic review and meta-analysis. Clin. Endosc. 54, 833–842 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Ponsioen, C. Y. et al. No superiority of stents vs balloon dilatation for dominant strictures in patients with primary sclerosing cholangitis. Gastroenterology 155, 752–759.e5 (2018).

    Article  PubMed  Google Scholar 

  186. Rupp, C. et al. Effect of scheduled endoscopic dilatation of dominant strictures on outcome in patients with primary sclerosing cholangitis. Gut 68, 2170–2178 (2019).

    Article  CAS  PubMed  Google Scholar 

  187. Jansen, P. L. M. et al. The ascending pathophysiology of cholestatic liver disease. Hepatology 65, 722–738 (2017).

    Article  CAS  PubMed  Google Scholar 

  188. Vartak, N. et al. On the mechanisms of biliary flux. Hepatology 74, 3497–3512 (2021).

    Article  PubMed  Google Scholar 

  189. Eaton, J. E. et al. Predictors of jaundice resolution and survival after endoscopic treatment of primary sclerosing cholangitis. Hepatol. Commun. 6, 809–820 (2022).

    Article  PubMed  Google Scholar 

  190. Peiseler, M. et al. Risk of endoscopic biliary interventions in primary sclerosing cholangitis is similar between patients with and without cirrhosis. PLoS ONE 13, e0202686 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Natt, N., Michael, F., Michael, H., Dubois, S. & Al Mazrou’i, A. ERCP-related adverse events in primary sclerosing cholangitis: a systematic review and meta-analysis. Can. J. Gastroenterol. Hepatol. 2022, 2372257 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  192. El-Matary, W. et al. Colorectal dysplasia and cancer in pediatric-onset ulcerative colitis associated with primary sclerosing cholangitis. Clin. Gastroenterol. Hepatol. 19, 1067–1070.e2 (2021).

    Article  PubMed  Google Scholar 

  193. Navaneethan, U. et al. Random biopsies during surveillance colonoscopy increase dysplasia detection in patients with primary sclerosing cholangitis and ulcerative colitis. J. Crohns Colitis 7, 974–981 (2013).

    Article  PubMed  Google Scholar 

  194. Pouw, R. E. et al. Endoscopic tissue sampling – Part 2: lower gastrointestinal tract. European Society of Gastrointestinal Endoscopy (ESGE) Guideline. Endoscopy 53, 1261–1273 (2021).

    Article  PubMed  Google Scholar 

  195. Wanders, L. K. et al. Cancer risk after resection of polypoid dysplasia in patients with longstanding ulcerative colitis: a meta-analysis. Clin. Gastroenterol. Hep. 12, 756–764 (2014).

    Article  Google Scholar 

  196. Laine, L. et al. SCENIC international consensus statement on surveillance and management of dysplasia in inflammatory bowel disease. Gastrointest. Endosc. 81, 489–501 (2015).

    Article  PubMed  Google Scholar 

  197. Eliasson, J. et al. Survey uncovering variations in the management of primary sclerosing cholangitis across Europe. JHEP Rep. Innov. Hepatol. 4, 100553 (2022).

    Article  Google Scholar 

  198. Poropat, G., Giljaca, V., Stimac, D. & Gluud, C. Bile acids for primary sclerosing cholangitis. Cochrane Database Syst. Rev. 2011, CD003626 (2011).

    PubMed  PubMed Central  Google Scholar 

  199. Beuers, U. et al. Ursodeoxycholic acid for treatment of primary sclerosing cholangitis: a placebo-controlled trial. Hepatology 16, 707–714 (1992).

    Article  CAS  PubMed  Google Scholar 

  200. Lindor, K. D. Ursodiol for primary sclerosing cholangitis. N. Engl. J. Med. 336, 691–695 (1997).

    Article  CAS  PubMed  Google Scholar 

  201. Arizumi, T. et al. Ursodeoxycholic acid is associated with improved long-term outcome in patients with primary sclerosing cholangitis. J. Gastroenterol. 57, 902–912 (2022). Significant publication on the controversial use of UDCA in PSC.

    Article  CAS  PubMed  Google Scholar 

  202. Deneau, M. R. et al. Gamma glutamyltransferase reduction is associated with favorable outcomes in pediatric primary sclerosing cholangitis. Hepatol. Commun. 2, 1369–1378 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Wunsch, E. et al. Prospective evaluation of ursodeoxycholic acid withdrawal in patients with primary sclerosing cholangitis. Hepatology 60, 931–940 (2014).

    Article  CAS  PubMed  Google Scholar 

  204. Card, T. R., Solaymani-Dodaran, M. & West, J. Incidence and mortality of primary sclerosing cholangitis in the UK: a population-based cohort study. J. Hepatol. 48, 939–944 (2008).

    Article  PubMed  Google Scholar 

  205. Roberts, M. S., Angus, D. C., Bryce, C. L., Valenta, Z. & Weissfeld, L. Survival after liver transplantation in the United States: a disease-specific analysis of the UNOS database. Liver Transplant. 10, 886–897 (2004).

    Article  Google Scholar 

  206. Organ Procurement and Transplantation Network Policies 188–189 (OPTN, 2024).

  207. Ghali, P. et al. Liver transplantation for incidental cholangiocarcinoma: analysis of the Canadian experience. Liver Transpl. 11, 1412–1416 (2005).

    Article  PubMed  Google Scholar 

  208. Sierra, L. et al. Living-donor liver transplant and improved post-transplant survival in patients with primary sclerosing cholangitis. J. Clin. Med. 12, 2807 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Heinemann, M. et al. Long-term outcome after living donor liver transplantation compared to donation after brain death in autoimmune liver diseases: experience from the European Liver Transplant Registry. Am. J. Transplant. 22, 626–633 (2022).

    Article  CAS  PubMed  Google Scholar 

  210. Onofrio, F. et al. Living donor liver transplantation can address disparities in transplant access for patients with primary sclerosing cholangitis. Hepatol. Commun. 7, e0219 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Forman, L. M. et al. Reply: living donor liver transplantation for people with PSC. Hepatology 77, E97–E98 (2023).

    Article  PubMed  Google Scholar 

  212. Visseren, T. et al. Inflammatory conditions play a role in recurrence of PSC after liver transplantation: an international multicentre study. JHEP Rep. 4, 100599 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Pandanaboyana, S., Bell, R., Bartlett, A. J., McCall, J. & Hidalgo, E. Meta-analysis of duct-to-duct versus roux-en-Y biliary reconstruction following liver transplantation for primary sclerosing cholangitis. Transpl. Int. 28, 485–491 (2015).

    Article  PubMed  Google Scholar 

  214. Jonica, E. R., Han, S., Burton, J. R., Pomposelli, J. J. & Shah, R. J. Choledochoduodenostomy is associated with fewer post-transplant biliary complications compared to Roux-en-Y in primary sclerosing cholangitis patients. Clin. Transplant. 36, e14597 (2022).

    Article  PubMed  Google Scholar 

  215. Shamsaeefar, A. et al. Biliary reconstruction in liver transplant patients with primary sclerosing cholangitis, duct-to-duct or Roux-en-Y? Clin. Transplant. https://doi.org/10.1111/ctr.12964 (2017).

  216. Fosby, B., Karlsen, T. H. & Melum, E. Recurrence and rejection in liver transplantation for primary sclerosing cholangitis. World J. Gastroenterol. 18, 1–15 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Narumi, S., Roberts, J. P., Emond, J. C., Lake, J. & Ascher, N. L. Liver transplantation for sclerosing cholangitis. Hepatology 22, 451–457 (1995).

    Article  CAS  PubMed  Google Scholar 

  218. Graziadei, I. W. et al. Recurrence of primary sclerosing cholangitis following liver transplantation. Hepatology 29, 1050–1056 (1999).

    Article  CAS  PubMed  Google Scholar 

  219. Hildebrand, T. et al. Biliary strictures and recurrence after liver transplantation for primary sclerosing cholangitis: a retrospective multicenter analysis. Liver Transpl. 22, 42–52 (2016).

    Article  PubMed  Google Scholar 

  220. Montano-Loza, A. J., Bhanji, R. A., Wasilenko, S. & Mason, A. L. Systematic review: recurrent autoimmune liver diseases after liver transplantation. Aliment. Pharmacol. Ther. 45, 485–500 (2017).

    Article  CAS  PubMed  Google Scholar 

  221. Alabraba, E. et al. A re-evaluation of the risk factors for the recurrence of primary sclerosing cholangitis in liver allografts: recurrence of primary sclerosing cholangitis. Liver Transpl. 15, 330–340 (2009).

    Article  PubMed  Google Scholar 

  222. Ravikumar, R. et al. Risk factors for recurrent primary sclerosing cholangitis after liver transplantation. J. Hepatol. 63, 1139–1146 (2015).

    Article  PubMed  Google Scholar 

  223. Joshi, D. et al. The impact of inflammatory bowel disease post-liver transplantation for primary sclerosing cholangitis. Liver Int. 33, 53–61 (2013).

    Article  PubMed  Google Scholar 

  224. Steenstraten, I. C. et al. Systematic review with meta-analysis: risk factors for recurrent primary sclerosing cholangitis after liver transplantation. Aliment. Pharmacol. Ther. 49, 636–643 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  225. Trivedi, P. J. et al. The impact of ileal pouch-anal anastomosis on graft survival following liver transplantation for primary sclerosing cholangitis. Aliment. Pharmacol. Ther. 48, 322–332 (2018).

    Article  CAS  PubMed  Google Scholar 

  226. Rowe, I. A. et al. The impact of disease recurrence on graft survival following liver transplantation: a single centre experience. Transpl. Int. 21, 459–465 (2008).

    Article  PubMed  Google Scholar 

  227. Trauner, M., Fuchs, C. D., Halilbasic, E. & Paumgartner, G. New therapeutic concepts in bile acid transport and signaling for management of cholestasis. Hepatology 65, 1393–1404 (2017).

    Article  PubMed  Google Scholar 

  228. Nevens, F. et al. a placebo-controlled trial of obeticholic acid in primary biliary cholangitis. N. Engl. J. Med. 375, 631–643 (2016).

    Article  CAS  PubMed  Google Scholar 

  229. Murillo Perez, C. F. et al. Greater transplant-free survival in patients receiving obeticholic acid for primary biliary cholangitis in a clinical trial setting compared to real-world external controls. Gastroenterology 163, 1630–1642.e3 (2022).

    Article  CAS  PubMed  Google Scholar 

  230. Trauner, M. et al. The nonsteroidal farnesoid X receptor agonist cilofexor (GS-9674) improves markers of cholestasis and liver injury in patients with primary sclerosing cholangitis. Hepatology 70, 788–801 (2019).

    Article  CAS  PubMed  Google Scholar 

  231. Trauner, M. et al. Safety and sustained efficacy of the farnesoid X receptor (FXR) agonist cilofexor over a 96-week open-label extension in patients with PSC. Clin. Gastroenterol. Hepatol. 21, 1552–1560.e2 (2023).

    Article  CAS  PubMed  Google Scholar 

  232. Trauner, M. et al. PRIMIS: design of a pivotal, randomized, phase 3 study evaluating the safety and efficacy of the nonsteroidal farnesoid X receptor agonist cilofexor in noncirrhotic patients with primary sclerosing cholangitis. BMC Gastroenterol. 23, 75 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Trauner, M. et al. A phase 3, randomized, double-blind, placebo-controlled study evaluating the efficacy and safety of cilofexor in patients with non-cirrhotic primary sclerosing cholangitis (PRIMIS). J. Hepatol. 78, S12–S13 (2023).

    Article  Google Scholar 

  234. Levy, C. et al. Safety and efficacy of the farnesoid X receptor (FXR) agonist cilofexor in a proof-of-concept study in patients with compensated cirrhosis due to primary sclerosing cholangitis (PSC). J. Hepatol. 77, S319–S320 (2022).

    Article  Google Scholar 

  235. Karpen, S. J., Kelly, D., Mack, C. & Stein, P. Ileal bile acid transporter inhibition as an anticholestatic therapeutic target in biliary atresia and other cholestatic disorders. Hepatol. Int. 14, 677–689 (2020).

    Article  PubMed  Google Scholar 

  236. Kamath, B. M., Stein, P., Houwen, R. H. J. & Verkade, H. J. Potential of ileal bile acid transporter inhibition as a therapeutic target in Alagille syndrome and progressive familial intrahepatic cholestasis. Liver Int. 40, 1812–1822 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Hegade, V. S. et al. Effect of ileal bile acid transporter inhibitor GSK2330672 on pruritus in primary biliary cholangitis: a double-blind, randomised, placebo-controlled, crossover, phase 2a study. Lancet 389, 1114–1123 (2017).

    Article  CAS  PubMed  Google Scholar 

  238. Levy, C. et al. GLIMMER: a randomized phase 2b dose-ranging trial of linerixibat in primary biliary cholangitis patients with pruritus. Clin. Gastroenterol. Hepatol. 21, 1902–1912.e13 (2023).

    Article  CAS  PubMed  Google Scholar 

  239. Baghdasaryan, A. et al. Dual farnesoid X receptor/TGR5 agonist INT-767 reduces liver injury in the Mdr2−/− (Abcb4−/−) mouse cholangiopathy model by promoting biliary HCO3 output. Hepatology 54, 1303–1312 (2011).

    Article  CAS  PubMed  Google Scholar 

  240. Miethke, A. G. et al. Pharmacological inhibition of apical sodium-dependent bile acid transporter changes bile composition and blocks progression of sclerosing cholangitis in multidrug resistance 2 knockout mice. Hepatology 63, 512–523 (2016).

    Article  CAS  PubMed  Google Scholar 

  241. Fuchs, C. D. et al. Colesevelam attenuates cholestatic liver and bile duct injury in Mdr2−/− mice by modulating composition, signalling and excretion of faecal bile acids. Gut 67, 1683–1691 (2018).

    Article  CAS  PubMed  Google Scholar 

  242. Yoon, Y. B. et al. Effect of side-chain shortening on the physiologic properties of bile acids: hepatic transport and effect on biliary secretion of 23-nor-ursodeoxycholate in rodents. Gastroenterology 90, 837–852 (1986).

    Article  CAS  PubMed  Google Scholar 

  243. Halilbasic, E. et al. Side chain structure determines unique physiologic and therapeutic properties of norursodeoxycholic acid in Mdr2−/− mice. Hepatology 49, 1972–1981 (2009).

    Article  CAS  PubMed  Google Scholar 

  244. Moustafa, T. et al. Alterations in lipid metabolism mediate inflammation, fibrosis, and proliferation in a mouse model of chronic cholestatic liver injury. Gastroenterology 142, 140–151.e12 (2012).

    Article  CAS  PubMed  Google Scholar 

  245. Zhu, C. et al. 24-Norursodeoxycholic acid reshapes immunometabolism in CD8+ T cells and alleviates hepatic inflammation. J. Hepatol. 75, 1164–1176 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Trauner, M. et al. Norucholic acid for the treatment of primary sclerosing cholangitis: baseline data from a phase III trial. J. Hepatol. 78, S403 (2023).

    Article  Google Scholar 

  247. Kowdley, K. V. et al. A randomized, dose-finding, proof-of-concept study of berberine ursodeoxycholate in patients with primary sclerosing cholangitis. Am. J. Gastroenterol. 117, 1805–1815 (2022).

    Article  CAS  PubMed  Google Scholar 

  248. Mueller, M. et al. Ursodeoxycholic acid exerts farnesoid X receptor-antagonistic effects on bile acid and lipid metabolism in morbid obesity. J. Hepatol. 62, 1398–1404 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Nevens, F., Trauner, M. & Manns, M. P. Primary biliary cholangitis as a roadmap for the development of novel treatments for cholestatic liver diseases. J. Hepatol. 78, 430–441 (2023).

    Article  PubMed  Google Scholar 

  250. Corpechot, C. et al. A placebo-controlled trial of bezafibrate in primary biliary cholangitis. N. Engl. J. Med. 378, 2171–2181 (2018).

    Article  CAS  PubMed  Google Scholar 

  251. Tanaka, A. et al. Association of bezafibrate with transplant-free survival in patients with primary biliary cholangitis. J. Hepatol. 75, 565–571 (2021).

    Article  CAS  PubMed  Google Scholar 

  252. Mizuno, S. et al. Prospective study of bezafibrate for the treatment of primary sclerosing cholangitis. J. Hepatobiliary Pancreatic Sci. 22, 766–770 (2015).

    Article  Google Scholar 

  253. Lemoinne, S. et al. Primary sclerosing cholangitis response to the combination of fibrates with ursodeoxycholic acid: French-Spanish experience. Clin. Res. Hepatol. Gastroenterol. 42, 521–528 (2018).

    Article  CAS  PubMed  Google Scholar 

  254. Ghonem, N. S. et al. Fenofibrate improves liver function and reduces the toxicity of the bile acid pool in patients with primary biliary cholangitis and primary sclerosing cholangitis who are partial responders to ursodiol. Clin. Pharmacol. Ther. 108, 1213–1223 (2020).

    Article  CAS  PubMed  Google Scholar 

  255. de Vries, E. et al. Fibrates for itch (FITCH) in fibrosing cholangiopathies: a double-blind, randomized, placebo-controlled trial. Gastroenterology 160, 734–743.e6 (2021).

    Article  PubMed  Google Scholar 

  256. Hatami, B. et al. Fenofibrate in primary sclerosing cholangitis; a randomized, double-blind, placebo-controlled trial. Pharmacol. Res. Perspect. 10, e00984 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Hirschfield, G. M. et al. A phase 3 trial of seladelpar in primary biliary cholangitis. N. Engl. J. Med. 390, 783–794 (2024).

    Article  CAS  PubMed  Google Scholar 

  258. Bowlus, C. L. et al. A phase II, randomized, open-label, 52-week study of seladelpar in patients with primary biliary cholangitis. J. Hepatol. 77, 353–364 (2022).

    Article  CAS  PubMed  Google Scholar 

  259. Kremer, A. E. et al. Seladelpar improved measures of pruritus, sleep, and fatigue and decreased serum bile acids in patients with primary biliary cholangitis. Liver Int. 42, 112–123 (2022).

    Article  CAS  PubMed  Google Scholar 

  260. Schattenberg, J. M. et al. A randomized placebo-controlled trial of elafibranor in patients with primary biliary cholangitis and incomplete response to UDCA. J. Hepatol. 74, 1344–1354 (2021).

    Article  CAS  PubMed  Google Scholar 

  261. Kowdley, K. V. et al. Efficacy and safety of elafibranor in primary biliary cholangitis. N. Engl. J. Med. 390, 795–805 (2024).

    Article  CAS  PubMed  Google Scholar 

  262. Trauner, M. & Fuchs, C. D. Novel therapeutic targets for cholestatic and fatty liver disease. Gut 71, 194–209 (2022).

    Article  CAS  PubMed  Google Scholar 

  263. Stokkeland, K., Höijer, J., Bottai, M., Söderberg-Löfdal, K. & Bergquist, A. Statin use is associated with improved outcomes of patients with primary sclerosing cholangitis. Clin. Gastroenterol. Hepatol. 17, 1860–1866.e1 (2019).

    Article  CAS  PubMed  Google Scholar 

  264. Dubrovsky, A. M. K. & Bowlus, C. L. Statins, fibrates, and other peroxisome proliferator-activated receptor agonists for the treatment of cholestatic liver diseases. Gastroenterol. Hepatol. 16, 31–38 (2020).

    Google Scholar 

  265. Eksteen, B. et al. Efficacy and safety of cenicriviroc in patients with primary sclerosing cholangitis: PERSEUS study. Hepatol. Commun. 5, 478–490 (2021).

    Article  PubMed  Google Scholar 

  266. Hirschfield, G. et al. INTEGRIS-PSC phase 2a study: evaluating the safety, tolerability, and pharmacokinetics of bexotegrast (PLN-74809) in participants with primary sclerosing cholangitis. J. Hepatol. 78, S356 (2023).

    Article  Google Scholar 

  267. de Krijger, M., Wildenberg, M. E., de Jonge, W. J. & Ponsioen, C. Y. Return to sender: lymphocyte trafficking mechanisms as contributors to primary sclerosing cholangitis. J. Hepatol. 71, 603–615 (2019).

    Article  PubMed  Google Scholar 

  268. Graham, J. J. et al. Aberrant hepatic trafficking of gut-derived T cells is not specific to primary sclerosing cholangitis. Hepatology 75, 518–530 (2022).

    Article  CAS  PubMed  Google Scholar 

  269. Caron, B. et al. Vedolizumab therapy is ineffective for primary sclerosing cholangitis in patients with inflammatory bowel disease: a GETAID multicentre cohort study. J. Crohns Colitis 13, 1239–1247 (2019).

    Article  PubMed  Google Scholar 

  270. Lynch, K. D. et al. Effects of vedolizumab in patients with primary sclerosing cholangitis and inflammatory bowel diseases. Clin. Gastroenterol. Hepatol. 18, 179–187.e6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Christensen, B. et al. Vedolizumab in patients with concurrent primary sclerosing cholangitis and inflammatory bowel disease does not improve liver biochemistry but is safe and effective for the bowel disease. Aliment. Pharmacol. Ther. 47, 753–762 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Tse, C. S., Loftus, E. V., Raffals, L. E., Gossard, A. A. & Lightner, A. L. Effects of vedolizumab, adalimumab and infliximab on biliary inflammation in individuals with primary sclerosing cholangitis and inflammatory bowel disease. Aliment. Pharmacol. Ther. 48, 190–195 (2018).

    Article  CAS  PubMed  Google Scholar 

  273. Hedin, C. R. H. et al. Effects of tumor necrosis factor antagonists in patients with primary sclerosing cholangitis. Clin. Gastroenterol. Hepatol. 18, 2295–2304.e2 (2020).

    Article  CAS  PubMed  Google Scholar 

  274. Tilg, H., Adolph, T. E. & Trauner, M. Gut-liver axis: pathophysiological concepts and clinical implications. Cell Metab. 34, 1700–1718 (2022).

    Article  CAS  PubMed  Google Scholar 

  275. Damman, J. L. et al. Review article: the evidence that vancomycin is a therapeutic option for primary sclerosing cholangitis. Aliment. Pharmacol. Ther. 47, 886–895 (2018).

    Article  CAS  PubMed  Google Scholar 

  276. Allegretti, J. R. et al. Fecal microbiota transplantation in patients with primary sclerosing cholangitis: a pilot clinical trial. Am. J. Gastroenterol. 114, 1071–1079 (2019).

    Article  PubMed  Google Scholar 

  277. Tabibian, J. H. et al. Absence of the intestinal microbiota exacerbates hepatobiliary disease in a murine model of primary sclerosing cholangitis. Hepatology 63, 185–196 (2016).

    Article  CAS  PubMed  Google Scholar 

  278. Ichikawa, M. et al. Bacteriophage therapy against pathological Klebsiella pneumoniae ameliorates the course of primary sclerosing cholangitis. Nat. Commun. 14, 3261 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. van Munster, K. N., Dijkgraaf, M. G. W., Oude Elferink, R. P. J., Beuers, U. & Ponsioen, C. Y. Symptom patterns in the daily life of PSC patients. Liver Int. 42, 1562–1570 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  280. Ponsioen, C. Diagnosis, prognosis, and management of primary sclerosing cholangitis. Gastroenterol. Hepatol. 9, 453–465 (2013).

    Google Scholar 

  281. Haapamäki, J., Tenca, A., Sintonen, H., Barner-Rasmussen, N. & Färkkilä, M. A. Health-related quality of life among patients with primary sclerosing cholangitis. Liver Int. 35, 2194–2201 (2015).

    Article  PubMed  Google Scholar 

  282. Cheung, A. C. et al. Factors that influence health-related quality of life in patients with primary sclerosing cholangitis. Dig. Dis. Sci. 61, 1692–1699 (2016).

    Article  PubMed  Google Scholar 

  283. Schmeltzer, P. A. & Russo, M. W. Systematic review of prognostic models compared to the Mayo Risk Score for primary sclerosing cholangitis. J. Clin. Med. 10, 4476 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Van Der Plas, S. M. et al. Generic and disease-specific health related quality of life of liver patients with various aetiologies: a survey. Qual. Life Res. 16, 375–388 (2007).

    Article  PubMed  Google Scholar 

  285. Hawthorne, G., Densley, K., Pallant, J. F., Mortimer, D. & Segal, L. Deriving utility scores from the SF-36 health instrument using Rasch analysis. Qual. Life Res. 17, 1183–1193 (2008).

    Article  PubMed  Google Scholar 

  286. Younossi, Z. M., Guyatt, G., Kiwi, M., Boparai, N. & King, D. Development of a disease specific questionnaire to measure health related quality of life in patients with chronic liver disease. Gut 45, 295–300 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Younossi, Z. M., Stepanova, M. & Henry, L. Performance and validation of chronic liver disease questionnaire-hepatitis C version (CLDQ-HCV) in clinical trials of patients with chronic hepatitis C. Value Health 19, 544–551 (2016).

    Article  PubMed  Google Scholar 

  288. Younossi, Z. M., Stepanova, M., Younossi, I. & Racila, A. Development and validation of a hepatitis B‐specific health‐related quality‐of‐life instrument: CLDQ‐HBV. J. Viral Hepat. 28, 484–492 (2021).

    Article  CAS  PubMed  Google Scholar 

  289. Younossi, Z. M. et al. A disease-specific quality of life instrument for non-alcoholic fatty liver disease and non-alcoholic steatohepatitis: CLDQ-NAFLD. Liver Int. 37, 1209–1218 (2017).

    Article  PubMed  Google Scholar 

  290. Hasan, I., Putra, R. P., Yunihastuti, E. & Kurniawan, J. The validity and reliability of the Indonesian version of the chronic liver disease questionnaire (CLDQ) in measuring quality of life in patients with liver cirrhosis. Acta Medica Indones. 54, 10–18 (2022).

    Google Scholar 

  291. Ai, X., Yang, X., Fu, H.-Y., Xu, J.-M. & Tang, Y.-M. Health-related quality of life questionnaires used in primary biliary cholangitis: a systematic review. Scand. J. Gastroenterol. 57, 333–339 (2022).

    Article  PubMed  Google Scholar 

  292. Younossi, Z. M. et al. Long-term patient-centered outcomes in cirrhotic patients with chronic hepatitis C after achieving sustained virologic response. Clin. Gastroenterol. Hepatol. 20, 438–446 (2022).

    Article  PubMed  Google Scholar 

  293. Plotogea, O.-M. et al. Assessment of sleep among patients with chronic liver disease: association with quality of life. J. Pers. Med. 11, 1387 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  294. Khairullah, S. & Mahadeva, S. Translation, adaptation and validation of two versions of the Chronic Liver Disease Questionnaire in Malaysian patients for speakers of both English and Malay languages: a cross-sectional study. BMJ Open 7, e013873 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  295. Elman, S., Hynan, L. S., Gabriel, V. & Mayo, M. J. The 5-D itch scale: a new measure of pruritus. Br. J. Dermatol. 162, 587–593 (2010).

    Article  CAS  PubMed  Google Scholar 

  296. Fisk, J. D. et al. Measuring the functional impact of fatigue: initial validation of the fatigue impact scale. Clin. Infect. Dis. 18, S79–S83 (1994).

    Article  PubMed  Google Scholar 

  297. Krupp, L. B., LaRocca, N. G., Muir-Nash, J. & Steinberg, A. D. The fatigue severity scale. Application to patients with multiple sclerosis and systemic lupus erythematosus. Arch. Neurol. 46, 1121–1123 (1989).

    Article  CAS  PubMed  Google Scholar 

  298. Isa, F. et al. Patient-reported outcome measures used in patients with primary sclerosing cholangitis: a systematic review. Health Qual. Life Outcomes 16, 133 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  299. Dyson, J. K. et al. Fatigue in primary sclerosing cholangitis is associated with sympathetic over-activity and increased cardiac output. Liver Int. 35, 1633–1641 (2015).

    Article  PubMed  Google Scholar 

  300. Jopson, L., Dyson, J. K. & Jones, D. E. J. Understanding and treating fatigue in primary biliary cirrhosis and primary sclerosing cholangitis. Clin. Liver Dis. 20, 131–142 (2016).

    Article  PubMed  Google Scholar 

  301. Mol, B. et al. Health-related quality of life in patients with primary sclerosing cholangitis: a longitudinal population-based cohort study. Liver Int. 43, 1056–1067 (2023).

    Article  CAS  PubMed  Google Scholar 

  302. Reilly, M. C., Zbrozek, A. S. & Dukes, E. M. The validity and reproducibility of a work productivity and activity impairment instrument. PharmacoEconomics 4, 353–365 (1993).

    Article  CAS  PubMed  Google Scholar 

  303. Raszeja-Wyszomirska, J. et al. Prospective evaluation of PBC-specific health-related quality of life questionnaires in patients with primary sclerosing cholangitis. Liver Int. 35, 1764–1771 (2015).

    Article  PubMed  Google Scholar 

  304. Younossi, Z. M., Kiwi, M. L., Boparai, N., Price, L. L. & Guyatt, G. Cholestatic liver diseases and health-related quality of life. Am. J. Gastroenterol. 95, 497–502 (2000).

    Article  CAS  PubMed  Google Scholar 

  305. Marcus, E., Stone, P., Thorburn, D., Walmsley, M. & Vivat, B. Quality of life (QoL) for people with primary sclerosing cholangitis (PSC): a pragmatic strategy for identifying relevant QoL issues for rare disease. J. Patient Rep. Outcomes 6, 76 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  306. Chapman, R. W. Primary sclerosing cholangitis — a long night’s journey into day. Clin. Liver Dis. 20, 21–32 (2022).

    Article  Google Scholar 

  307. Bhat, P. & Aabakken, L. Role of endoscopy in primary sclerosing cholangitis. Clin. Endosc. 54, 193–201 (2021).

    Article  PubMed  Google Scholar 

  308. Fricker, Z. P. & Lichtenstein, D. R. Primary sclerosing cholangitis: a concise review of diagnosis and management. Dig. Dis. Sci. 64, 632–642 (2019).

    Article  CAS  PubMed  Google Scholar 

  309. Pria, H. D. et al. Practical guide for radiological diagnosis of primary and secondary sclerosing cholangitis. Semin. Ultrasound CT MR 43, 490–509 (2022).

    Article  PubMed  Google Scholar 

  310. Hartmann, P. & Schnabl, B. Can a mucosal microbiota signature predict disease severity, survival, and disease recurrence in PSC? Hepatology 77, 709–711 (2023). Understanding the role of the mucosal microbiota signature in PSC may lead to future novel therapies, including FMT.

    Article  PubMed  Google Scholar 

  311. Özdirik, B., Müller, T., Wree, A., Tacke, F. & Sigal, M. The role of microbiota in primary sclerosing cholangitis and related biliary malignancies. Int. J. Mol. Sci. 22, 6975 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  312. Bambha, K. et al. Incidence, clinical spectrum, and outcomes of primary sclerosing cholangitis in a united states community. Gastroenterology 125, 1364–1369 (2003).

    Article  PubMed  Google Scholar 

  313. Byron, D. & Minuk, G. Y. Clinical hepatology: profile of an urban, hospital-based practice. Hepatology 24, 813–815 (1996).

    CAS  PubMed  Google Scholar 

  314. Hurlburt, K. J. et al. Prevalence of autoimmune liver disease in Alaska natives. Am. J. Gastroenterol. 97, 2402–2407 (2002).

    Article  PubMed  Google Scholar 

  315. Toy, E., Balasubramanian, S., Selmi, C., Li, C.-S. & Bowlus, C. L. The prevalence, incidence and natural history of primary sclerosing cholangitis in an ethnically diverse population. BMC Gastroenterol. 11, 83 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  316. Kaplan, G. G., Laupland, K. B., Butzner, D., Urbanski, S. J. & Lee, S. S. The burden of large and small duct primary sclerosing cholangitis in adults and children: a population-based analysis. Am. J. Gastroenterol. 102, 1042–1049 (2007).

    Article  PubMed  Google Scholar 

  317. Nardelli, M. J. et al. Clinical features and outcomes of primary sclerosing cholangitis in the highly admixed Brazilian population. Can. J. Gastroenterol. Hepatol. 2021, 7746401 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  318. Xu, X. et al. Prevalence and clinical profiles of primary sclerosing cholangitis in China: data from electronic medical records and systematic literature retrieval. J. Autoimmun. 147, 103264 (2024).

    Article  PubMed  Google Scholar 

  319. Ang, T. L. et al. Clinical profile of primary sclerosing cholangitis in Singapore. J. Gastroenterol. Hepatol. 17, 908–913 (2002).

    Article  PubMed  Google Scholar 

  320. Tibdewal, P. et al. Clinical profile and outcome of primary sclerosing cholangitis: a single-centre experience from western India. Indian J. Gastroenterol. 38, 295–302 (2019).

    Article  PubMed  Google Scholar 

  321. Berdal, J. E., Ebbesen, J. & Rydning, A. Incidence and prevalence of autoimmune liver diseases [Norweigan]. Tidsskr Nor. Laegeforen. 118, 4517–4519 (1998).

    CAS  PubMed  Google Scholar 

  322. Boberg, K. M. et al. Incidence and prevalence of primary biliary cirrhosis, primary sclerosing cholangitis, and autoimmune hepatitis in a Norwegian population. Scand. J. Gastroenterol. 33, 99–103 (1998).

    Article  CAS  PubMed  Google Scholar 

  323. Escorsell, A. et al. Epidemiology of primary sclerosing cholangitis in Spain. J. Hepatol. 21, 787–791 (1994).

    Article  CAS  PubMed  Google Scholar 

  324. Liang, H., Manne, S., Shick, J., Lissoos, T. & Dolin, P. Incidence, prevalence, and natural history of primary sclerosing cholangitis in the United Kingdom. Medicine 96, e7116 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  325. Kingham, J. G. C., Kochar, N. & Gravenor, M. B. Incidence, clinical patterns, and outcomes of primary sclerosing cholangitis in South Wales, United Kingdom. Gastroenterology 126, 1929–1930 (2004).

    Article  PubMed  Google Scholar 

  326. Garioud, A. et al. Characteristics and clinical course of primary sclerosing cholangitis in France: a prospective cohort study. Eur. J. Gastroenterol. Hepatol. 22, 842–847 (2010).

    Article  PubMed  Google Scholar 

  327. Gudnason, H. O. et al. Primary sclerosing cholangitis in Iceland 1992-2012 [Icelandic]. Laeknabladid 105, 371–376 (2019).

    PubMed  Google Scholar 

  328. Yanai, H. et al. Prognosis of primary sclerosing cholangitis in Israel is independent of coexisting inflammatory bowel disease. J. Crohns Colitis 9, 177–184 (2015).

    Article  PubMed  Google Scholar 

  329. Hadizadeh, M. et al. Prevalence of inflammatory bowel disease among patients with primary sclerosing cholangitis in Iran. Arab. J. Gastroenterol. 17, 17–19 (2016).

    Article  PubMed  Google Scholar 

  330. Ataseven, H. et al. Primary sclerosing cholangitis in Turkish patients: characteristic features and prognosis. Hepatobiliary Pancreat. Dis. Int. 8, 312–315 (2009).

    PubMed  Google Scholar 

  331. Ngu, J. H., Gearry, R. B., Wright, A. J. & Stedman, C. A. M. Inflammatory bowel disease is associated with poor outcomes of patients with primary sclerosing cholangitis. Clin. Gastroenterol. Hepatol. 9, 1092–1097 (2011).

    Article  PubMed  Google Scholar 

  332. Liu, K. et al. Epidemiology and outcomes of primary sclerosing cholangitis with and without inflammatory bowel disease in an Australian cohort. Liver Int. 37, 442–448 (2017).

    Article  PubMed  Google Scholar 

  333. Lamba, M., Ngu, J. H. & Stedman, C. A. M. Trends in incidence of autoimmune liver diseases and increasing incidence of autoimmune hepatitis. Clin. Gastroenterol. Hepatol. 19, 573–579.e1 (2021).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank J. Debarry and S. Riese for providing editorial assistance. They thank X. Jiang for help in developing Fig. 3.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (M.P.M.); Epidemiology (A.B.); Mechanisms/pathophysiology (T.H.K.); Diagnosis, screening and prevention (A.J.M.); Management (C.L., C.P. and M.T.); Quality of life (Z.M.Y.); Outlook (G.W. and M.P.M.); overview of the Primer (M.P.M.). All authors have reviewed and provided input on all sections.

Corresponding author

Correspondence to Michael P. Manns.

Ethics declarations

Competing interests

M.P.M. received grants and or consulting fees from Falk Pharma GmbH (Freiburg, Germany), Gilead Sciences, Intercept and Novartis. A.B. received research grants from Gilead Sciences and is part of the Advisory Board Ipsen. T.H.K. received consulting fees from MSD, Albireo and Falk Pharma, and is Board Member and President Elect at Biomed Alliance. C.L. has received research grants and consulting fees from Gilead Science, Ipsen, High Tide, Mirum, Escient, Chemomab and Intercept. A.J.M. received research grants from Gilead Science and Pilant Therapeutics. C.P. received grants from Gilead Sciences, NGM and Perspectum, consultancy fees from Pliant and Chemomab, and speaker’s fees from Tillotts. M.T. has received research grants from Albireo, Alnylam, Cymabay, Falk, Genentech, Gilead, Intercept, MSD, Takeda and Ultragenyx, and travel grants from Abbvie, Falk, Gilead, Intercept and Jannsen. He has advised for Abbvie, Albireo, Agomab, BiomX, Boehringer Ingelheim, Chemomab, Falk Pharma GmbH, Genfit, Gilead, Hightide, Ipsen, Intercept, Janssen, MSD, Novartis, Phenex, Pliant, Regulus, Siemens and Shire, and has served as speaker for Albireo, BMS, Boehringer Ingelheim, Falk, Gilead, Intercept, Ipsen, Madrigal and MSD. He is a co-inventor (service inventions) of patents for the medical use of norUDCA (nor-ursodeoxycholic acid/norucholic acid)/NCA filed by the Medical Universities of Graz and Vienna. G.W. has served as an advisory committee member for AstraZeneca, Gilead Sciences, GlaxoSmithKline and Janssen, and as a speaker for Abbott, AbbVie, Ascletis, Bristol-Myers Squibb, Echosens, Gilead Sciences, Janssen and Roche. She has also received a research grant from Gilead Science. Z.M.Y. received research funding and/or serves as a consultant to Intercept, Cymabay, Boehringer Ingelheim, BMS, GSK, NovoNordisk, AstraZeneca, Ipsen, Siemens, Madrigal, Merck and Abbott.

Peer review

Peer review information

Nature Reviews Disease Primers thanks N. Cazzagon, A. M. Loza, A. Tanaka and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manns, M.P., Bergquist, A., Karlsen, T.H. et al. Primary sclerosing cholangitis. Nat Rev Dis Primers 11, 17 (2025). https://doi.org/10.1038/s41572-025-00600-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-025-00600-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing