Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Polycythaemia vera

Abstract

Polycythaemia vera (PV) is a haematological malignancy in the myeloproliferative neoplasm family. PV is typically characterized by erythrocytosis and often leukocytosis and thrombocytosis1. Clinical features include reduced life expectancy due to hazards of thrombosis (often in atypical sites), haemorrhage and transformation to myelofibrosis and less frequently to a form of acute myeloid leukaemia called blast phase. Almost two decades ago, the JAK2V617F mutation in exon 14 of JAK2 was described, and is known to be present in more than 95% of patients with PV. Testing for the JAK2V617F mutation is used in the diagnosis of PV, and the quantity of the mutation (that is, the variant allele frequency) is linked to prognosis and the risk of complications. As such, reduction of JAK2V617F variant allele frequency is currently being evaluated as a treatment target. Recommendations for PV treatment include control of vascular risk factors, therapeutic phlebotomy and low-dose aspirin in all patients. Currently, patients at higher risk of thrombosis (aged over 60 years and/or with a history of thrombosis) are offered cytoreductive agents. Hydroxyurea or interferons remain the preferred first-line cytoreductive agents, with the JAK1 and JAK2 inhibitor, ruxolitinib, currently approved for the treatment of patients who are resistant to, or intolerant of, hydroxyurea. Future recommendations might be to treat the majority of patients with these agents as long-term benefits of treatment begin to emerge.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Natural history of PV.
Fig. 2: Pathophysiology of polycythaemia vera.
Fig. 3: Diagnostic criteria for polycythaemia vera.
Fig. 4: Treatment approach for patients with polycythaemia vera.
Fig. 5: Symptoms and quality of life in patients with polycythaemia vera.

Similar content being viewed by others

References

  1. Arber, D. A. et al. International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: integrating morphologic, clinical, and genomic data. Blood 140, 1200–1228 (2022). The 2022 ICC diagnostic criteria for myeloid neoplasms and acute leukaemias.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. James, C. et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 434, 1144–1148 (2005). Credited as the first description of the JAK2V617F mutation.

    Article  PubMed  CAS  Google Scholar 

  3. Jaiswal, S. et al. Age-related clonal hematopoiesis associated with adverse outcomes. N. Engl. J. Med. 371, 2488–2498 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Jaiswal, S. et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N. Engl. J. Med. 377, 111–121 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Pearson, T. C. & Wetherley-Mein, G. Vascular occlusive episodes and venous haematocrit in primary proliferative polycythaemia. Lancet 2, 1219–1222 (1978).

    Article  PubMed  CAS  Google Scholar 

  6. Hultcrantz, M. et al. Risk for arterial and venous thrombosis in patients with myeloproliferative neoplasms: a population-based cohort study. Ann. Intern. Med. 168, 317–325 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ferrari, A. et al. Clinical outcomes under hydroxyurea treatment in polycythemia vera: a systematic review and meta-analysis. Haematologica 104, 2391–2399 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Tefferi, A. & Barbui, T. Polycythemia vera: 2024 update on diagnosis, risk‐stratification, and management. Am. J. Hematol. 98, 1465–1487 (2023).

    Article  PubMed  CAS  Google Scholar 

  9. Barbui, T. et al. Philadelphia chromosome-negative classical myeloproliferative neoplasms: revised management recommendations from European LeukemiaNet. Leukemia 32, 1057–1069 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hultcrantz, M. et al. Patterns of survival among patients with myeloproliferative neoplasms diagnosed in Sweden from 1973 to 2008: a population-based study. J. Clin. Oncol. 30, 2995–3001 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hultcrantz, M. et al. Risk and cause of death in patients diagnosed with myeloproliferative neoplasms in Sweden between 1973 and 2005: a population-based study. J. Clin. Oncol. 33, 2288–2295 (2015).

    Article  PubMed  Google Scholar 

  12. Shallis, R. M. et al. Epidemiology of the classical myeloproliferative neoplasms: the four corners of an expansive and complex map. Blood Rev. 42, 100706 (2020).

    Article  PubMed  Google Scholar 

  13. Verstovsek, S. et al. Changes in the incidence and overall survival of patients with myeloproliferative neoplasms between 2002 and 2016 in the United States. Leuk. Lymphoma 63, 694–702 (2022).

    Article  PubMed  CAS  Google Scholar 

  14. James, C., Ugo, V., Casadevall, N., Constantinescu, S. N. & Vainchenker, W. A JAK2 mutation in myeloproliferative disorders: pathogenesis and therapeutic and scientific prospects. Trends Mol. Med. 11, 546–554 (2005).

    Article  PubMed  CAS  Google Scholar 

  15. Titmarsh, G. J. et al. How common are myeloproliferative neoplasms? A systematic review and meta-analysis. Am. J. Hematol. 89, 581–587 (2014).

    Article  PubMed  Google Scholar 

  16. Moulard, O. et al. Epidemiology of myelofibrosis, essential thrombocythemia, and polycythemia vera in the European Union. Eur. J. Haematol. 92, 289–297 (2014).

    Article  PubMed  Google Scholar 

  17. Hultcrantz, M. et al. Incidence of myeloproliferative neoplasms – trends by subgroup and age in a population-based study in Sweden. J. Intern. Med. 287, 448–454 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Mehta, J., Wang, H., Iqbal, S. U. & Mesa, R. Epidemiology of myeloproliferative neoplasms in the United States. Leuk. Lymphoma 55, 595–600 (2014).

    Article  PubMed  Google Scholar 

  19. Chievitz, E. & Thiede, T. Complications and causes of death in polycythaemia vera. Acta Med. Scand. 172, 513–523 (1962).

    Article  PubMed  CAS  Google Scholar 

  20. Marchioli, R. et al. Vascular and neoplastic risk in a large cohort of patients with polycythemia vera. J. Clin. Oncol. 23, 2224–2232 (2005).

    Article  PubMed  Google Scholar 

  21. Barbui, T. et al. In contemporary patients with polycythemia vera, rates of thrombosis and risk factors delineate a new clinical epidemiology. Blood 124, 3021–3023 (2014).

    Article  PubMed  Google Scholar 

  22. Grinfeld, J. et al. Classification and personalized prognosis in myeloproliferative neoplasms. N. Engl. J. Med. 379, 1416–1430 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Tefferi, A. et al. Mutation-enhanced international prognostic systems for essential thrombocythaemia and polycythaemia vera. Br. J. Haematol. 189, 291–302 (2020).

    Article  PubMed  CAS  Google Scholar 

  24. Luque Paz, D. et al. Leukemic evolution of polycythemia vera and essential thrombocythemia: genomic profiles predict time to transformation. Blood Adv. 4, 4887–4897 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sobas, M. et al. Real-world study of children and young adults with myeloproliferative neoplasms: identifying risks and unmet needs. Blood Adv. 6, 5171–5183 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Goulart, H. et al. Myeloproliferative neoplasms in the adolescent and young adult population: a comprehensive review of the literature. Br. J. Haematol. 205, 48–60 (2024).

    Article  PubMed  CAS  Google Scholar 

  27. Heavner, K. et al. Working environment and myeloproliferative neoplasm: a population–based case-control study following a cluster investigation. Am. J. Ind. Med. 58, 595–604 (2015).

    Article  PubMed  CAS  Google Scholar 

  28. Anderson, L. A. et al. Environmental, lifestyle, and familial/ethnic factors associated with myeloproliferative neoplasms. Am. J. Hematol. 87, 175–182 (2012). A useful summary of the epidemiology of MPNs.

    Article  PubMed  Google Scholar 

  29. Merk, K. et al. The incidence of cancer among blood donors. Int. J. Epidemiol. 19, 505–509 (1990).

    Article  PubMed  CAS  Google Scholar 

  30. Najean, Y., Rain, J. D. & Billotey, C. Epidemiological data in polycythaemia vera: a study of 842 cases. Hematol. Cell Ther. 40, 159–165 (1998).

    PubMed  CAS  Google Scholar 

  31. Edgren, G. et al. Blood donation and risk of polycythemia vera. Transfusion 56, 1622–1627 (2016).

    Article  PubMed  Google Scholar 

  32. Duncombe, A. S. et al. Modifiable lifestyle and medical risk factors associated with myeloproliferative neoplasms. Hemasphere 4, e327 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  33. McMullin, M. F. & Anderson, L. A. Aetiology of myeloproliferative neoplasms. Cancers 12, 1810 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Pedersen, K. M. et al. Smoking is associated with increased risk of myeloproliferative neoplasms: a general population-based cohort study. Cancer Med. 7, 5796–5802 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Balandrán, J. C., Lasry, A. & Aifantis, I. The role of inflammation in the initiation and progression of myeloid neoplasms. Blood Cancer Discov. 4, 254–266 (2023). Important review highlighting the role of inflammation both extrinsic and intrinsic to the mutant clone.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Murphy, F. et al. Body size in relation to incidence of subtypes of haematological malignancy in the prospective Million Women Study. Br. J. Cancer 108, 2390–2398 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Podoltsev, N. A. et al. Diet and risk of myeloproliferative neoplasms in older individuals from the NIH-AARP cohort. Cancer Epidemiol. Biomark. Prev. 29, 2343–2350 (2020).

    Article  CAS  Google Scholar 

  38. Baxter, E. J. et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 365, 1054–1061 (2005).

    Article  PubMed  CAS  Google Scholar 

  39. Levine, R. L. et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 7, 387–397 (2005).

    Article  PubMed  CAS  Google Scholar 

  40. Kralovics, R. et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N. Engl. J. Med. 352, 1779–1790 (2005).

    Article  PubMed  CAS  Google Scholar 

  41. Scott, L. M. et al. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N. Engl. J. Med. 356, 459–468 (2007). Credited as the first description of JAK2 exon 12 mutations.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Leroy, E. & Constantinescu, S. N. Rethinking JAK2 inhibition: towards novel strategies of more specific and versatile janus kinase inhibition. Leukemia 31, 1023–1038 (2017).

    Article  PubMed  CAS  Google Scholar 

  43. Constantinescu, S. N., Vainchenker, W., Levy, G. & Papadopoulos, N. Functional consequences of mutations in myeloproliferative neoplasms. HemaSphere 5, e578 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Wingelhofer, B. et al. Implications of STAT3 and STAT5 signaling on gene regulation and chromatin remodeling in hematopoietic cancer. Leukemia 32, 1713–1726 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Liu, F. et al. JAK2V617F-mediated phosphorylation of PRMT5 downregulates its methyltransferase activity and promotes myeloproliferation. Cancer Cell 19, 283–294 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Dawson, M. A. et al. JAK2 phosphorylates histone H3Y41 and excludes HP1α from chromatin. Nature 461, 819–822 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Bartalucci, N., Guglielmelli, P. & Vannucchi, A. M. Polycythemia vera: the current status of preclinical models and therapeutic targets. Expert. Opin. Ther. Targets 24, 615–628 (2020).

    Article  PubMed  CAS  Google Scholar 

  48. Lundberg, P. et al. Myeloproliferative neoplasms can be initiated from a single hematopoietic stem cell expressing JAK2-V617F. J. Exp. Med. 211, 2213–2230 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Grisouard, J. et al. JAK2 exon 12 mutant mice display isolated erythrocytosis and changes in iron metabolism favoring increased erythropoiesis. Blood 128, 839–851 (2016).

    Article  PubMed  CAS  Google Scholar 

  50. Passamonti, F. et al. Molecular and clinical features of the myeloproliferative neoplasm associated with JAK2 exon 12 mutations. Blood 117, 2813–2816 (2011).

    Article  PubMed  CAS  Google Scholar 

  51. Tefferi, A. et al. JAK2 exon 12 mutated polycythemia vera: Mayo-Careggi MPN Alliance study of 33 consecutive cases and comparison with JAK2V617F mutated disease. Am. J. Hematol. 93, E93–E96 (2018).

    Article  PubMed  Google Scholar 

  52. Spivak, J. L. Myeloproliferative neoplasms. N. Engl. J. Med. 376, 2168–2181 (2017).

    Article  PubMed  CAS  Google Scholar 

  53. Mullally, A. et al. Distinct roles for long-term hematopoietic stem cells and erythroid precursor cells in a murine model of Jak2V617F-mediated polycythemia vera. Blood 120, 166–172 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Spivak, J. L. et al. Thrombopoietin is required for full phenotype expression in a JAK2V617F transgenic mouse model of polycythemia vera. PLoS ONE 15, e0232801 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Moliterno, A. R., Hankins, W. D. & Spivak, J. L. Impaired expression of the thrombopoietin receptor by platelets from patients with polycythemia vera. N. Engl. J. Med. 338, 572–580 (1998).

    Article  PubMed  CAS  Google Scholar 

  56. Tapper, W. et al. Genetic variation at MECOM, TERT, JAK2 and HBS1L-MYB predisposes to myeloproliferative neoplasms. Nat. Commun. 6, 6691 (2015).

    Article  PubMed  CAS  Google Scholar 

  57. Lim, J., Ross, D. M., Brown, A. L., Scott, H. S. & Hahn, C. N. Germline genetic variants that predispose to myeloproliferative neoplasms and hereditary myeloproliferative phenotypes. Leuk. Res. 146, 107566 (2024).

    Article  PubMed  CAS  Google Scholar 

  58. Jones, A. V. et al. JAK2 haplotype is a major risk factor for the development of myeloproliferative neoplasms. Nat. Genet. 41, 446–449 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Olcaydu, D. et al. A common JAK2 haplotype confers susceptibility to myeloproliferative neoplasms. Nat. Genet. 41, 450–454 (2009).

    Article  PubMed  CAS  Google Scholar 

  60. Kilpivaara, O. et al. A germline JAK2 SNP is associated with predisposition to the development of JAK2V617F-positive myeloproliferative neoplasms. Nat. Genet. 41, 455–459 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Li, S. L., Zhang, P. J., Sun, G. X. & Lu, Z. J. The JAK2 46/1 haplotype (GGCC) in myeloproliferative neoplasms and splanchnic vein thrombosis: a pooled analysis of 26 observational studies. Ann. Hematol. 93, 1845–1852 (2014).

    Article  PubMed  CAS  Google Scholar 

  62. Tefferi, A. et al. Targeted deep sequencing in polycythemia vera and essential thrombocythemia. Blood Adv. 1, 21–30 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Ortmann, C. A. et al. Effect of mutation order on myeloproliferative neoplasms. N. Engl. J. Med. 372, 601–612 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Chen, E. et al. Distinct effects of concomitant Jak2V617F expression and Tet2 loss in mice combine to promote disease progression in myeloproliferative neoplasms. Blood 125, 327–335 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Knudsen, T. A. et al. Genomic profiling of a randomized trial of interferon-α vs hydroxyurea in MPN reveals mutation-specific responses. Blood Adv. 6, 2107–2119 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Abu-Zeinah, G., Erdos, K., Lee, N. Jr., Silver, R. T. & Scandura, J. M. DNMT3A mutations do not affect treatment response or outcomes for patients with polycythemia vera treated with interferon alpha [abstract]. Blood 144, 3190 (2024).

    Article  Google Scholar 

  67. Shimizu, T. et al. Loss of Ezh2 synergizes with JAK2-V617F in initiating myeloproliferative neoplasms and promoting myelofibrosis. J. Exp. Med. 213, 1479–1496 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Usart, M. et al. Loss of Dnmt3a increases self-renewal and resistance to pegIFN-α in JAK2-V617F-positive myeloproliferative neoplasms. Blood 143, 2490–2503 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Theocharides, A. et al. Leukemic blasts in transformed JAK2-V617F-positive myeloproliferative disorders are frequently negative for the JAK2-V617F mutation. Blood 110, 375–379 (2007).

    Article  PubMed  CAS  Google Scholar 

  70. Calabresi, L. et al. Clonal dynamics and copy number variants by single‐cell analysis in leukemic evolution of myeloproliferative neoplasms. Am. J. Hematol. 98, 1520–1532 (2023).

    Article  PubMed  CAS  Google Scholar 

  71. Tefferi, A. et al. Survival and prognosis among 1545 patients with contemporary polycythemia vera: an international study. Leukemia 27, 1874–1881 (2013). Contemporary study of mortality of a cohort of patients with PV.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Tang, G. et al. Characteristics and clinical significance of cytogenetic abnormalities in polycythemia vera. Haematologica 102, 1511–1518 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Gangat, N. et al. Cytogenetic studies at diagnosis in polycythemia vera: clinical and JAK2V617F allele burden correlates. Eur. J. Haematol. 80, 197–200 (2008).

    Article  PubMed  Google Scholar 

  74. Fisher, D. A. C., Fowles, J. S., Zhou, A. & Oh, S. T. Inflammatory pathophysiology as a contributor to myeloproliferative neoplasms. Front. Immunol. 12, 683401 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Barbui, T. et al. Inflammation and thrombosis in essential thrombocythemia and polycythemia vera: different role of C-reactive protein and Pentraxin 3. Haematologica 96, 315–318 (2011).

    Article  PubMed  CAS  Google Scholar 

  76. Vaidya, R. et al. Plasma cytokines in polycythemia vera: phenotypic correlates, prognostic relevance, and comparison with myelofibrosis. Am. J. Hematol. 87, 1003–1005 (2012).

    Article  PubMed  CAS  Google Scholar 

  77. Tefferi, A. et al. Circulating interleukin (IL)-8, IL-2R, IL-12, and IL-15 levels are independently prognostic in primary myelofibrosis: a comprehensive cytokine profiling study. J. Clin. Oncol. 29, 1356–1363 (2011).

    Article  PubMed  CAS  Google Scholar 

  78. Laranjeira, A. B. A. et al. In vivo ablation of NFκB cascade effectors alleviates disease burden in myeloproliferative neoplasms. Blood J. 143, 2414–2424 (2024).

    Article  CAS  Google Scholar 

  79. Rai, S. et al. IL-1β promotes MPN disease initiation by favoring early clonal expansion of JAK2-mutant hematopoietic stem cells. Blood Adv. 8, 1234–1249 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Rai, S. et al. Inhibition of interleukin-1β reduces myelofibrosis and osteosclerosis in mice with JAK2-V617F driven myeloproliferative neoplasm. Nat. Commun. 13, 5346 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Verstovsek, S. et al. Safety and efficacy of INCB018424, a JAK1 and JAK2 inhibitor, in myelofibrosis. N. Engl. J. Med. 363, 1117–1127 (2010). First description of the use of ruxolitinib in myelofibrosis.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Verstovsek, S. et al. A phase 2 study of ruxolitinib, an oral JAK1 and JAK2 inhibitor, in patients with advanced polycythemia vera who are refractory or intolerant to hydroxyurea. Cancer 120, 513–520 (2014). First study of ruxolitinib in PV.

    Article  PubMed  CAS  Google Scholar 

  83. Ramanathan, G. et al. Cigarette smoke stimulates clonal expansion of Jak2V617F and Tet2−/− cells. Front. Oncol. 13, 1210528 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Pratt, J. J. & Khan, K. S. Non-anaemic iron deficiency – a disease looking for recognition of diagnosis: a systematic review. Eur. J. Haematol. 96, 618–628 (2016).

    Article  PubMed  CAS  Google Scholar 

  85. Verstovsek, S. et al. Markers of iron deficiency in patients with polycythemia vera receiving ruxolitinib or best available therapy. Leuk. Res. 56, 52–59 (2017).

    Article  PubMed  CAS  Google Scholar 

  86. Song, J., Kim, S. J., Min, G., Lim, Y. & Prchal, J. T. Iron deficiency correction in myeloproliferative neoplasms reduces thrombosis risk via decreased P-selectin. Blood 144, 1758–1758 (2024).

    Article  Google Scholar 

  87. Ganz, T. Anemia of inflammation. N. Engl. J. Med. 381, 1148–1157 (2019).

    Article  PubMed  CAS  Google Scholar 

  88. Kautz, L. et al. Identification of erythroferrone as an erythroid regulator of iron metabolism. Nat. Genet. 46, 678–684 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Handa, S., Ginzburg, Y., Hoffman, R. & Kremyanskaya, M. Hepcidin mimetics in polycythemia vera: resolving the irony of iron deficiency and erythrocytosis. Curr. Opin. Hematol. 30, 45–52 (2023).

    Article  PubMed  CAS  Google Scholar 

  90. Casu, C. et al. Minihepcidin peptides as disease modifiers in mice affected by β-thalassemia and polycythemia vera. Blood 128, 265–276 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Andrikovics, H. et al. HFE C282Y mutation as a genetic modifier influencing disease susceptibility for chronic myeloproliferative disease. Cancer Epidemiol. Biomark. Prev. 18, 929–934 (2009).

    Article  CAS  Google Scholar 

  92. Stetka, J. et al. Iron is a modifier of the phenotypes of JAK2-mutant myeloproliferative neoplasms. Blood 141, 2127–2140 (2023).

    PubMed  CAS  Google Scholar 

  93. van Genderen, P. J. & Michiels, J. J. Erythromelalgia: a pathognomonic microvascular thrombotic complication in essential thrombocythemia and polycythemia vera. Semin. Thromb. Hemost. 23, 357–363 (1997).

    Article  PubMed  Google Scholar 

  94. Kiladjian, J. J. & Cassinat, B. Myeloproliferative neoplasms and splanchnic vein thrombosis: contemporary diagnostic and therapeutic strategies. Am. J. Hematol. 98, 794–800 (2023).

    Article  PubMed  CAS  Google Scholar 

  95. Khoury, J. D. et al. The 5th edition of the World Health Organization classification of haematolymphoid tumours: myeloid and histiocytic/dendritic neoplasms. Leukemia 36, 1703–1719 (2022). The 2022 WHO criteria for diagnosis of haematolymphoid disorders.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Thiele, J. et al. The International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: myeloproliferative neoplasms. Am. J. Hematol. 98, 166–179 (2023).

    Article  PubMed  CAS  Google Scholar 

  97. Maslah, N. et al. Masked polycythemia vera: analysis of a single center cohort of 2480 red cell masses. Haematologica 105, e95–e97 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Galtier, J. et al. Role of red cell mass evaluation in myeloproliferative neoplasms with splanchnic vein thrombosis and normal hemoglobin value: a study of the France Intergroupe des Syndromes myeloproliferatifs. Haematologica 109, 1989–1993 (2024).

    PubMed  PubMed Central  Google Scholar 

  99. Barbui, T. et al. Masked polycythemia Vera (mPV): results of an international study. Am. J. Hematol. 89, 52–54 (2014).

    Article  PubMed  CAS  Google Scholar 

  100. Barbui, T., Thiele, J., Vannucchi, A. M. & Tefferi, A. Rethinking the diagnostic criteria of polycythemia vera. Leukemia 28, 1191–1195 (2014).

    Article  PubMed  CAS  Google Scholar 

  101. Barbui, T. et al. Initial bone marrow reticulin fibrosis in polycythemia vera exerts an impact on clinical outcome. Blood 119, 2239–2241 (2012).

    Article  PubMed  CAS  Google Scholar 

  102. Wilkins, B. S. et al. Bone marrow pathology in essential thrombocythemia: interobserver reliability and utility for identifying disease subtypes. Blood 111, 60–70 (2008).

    Article  PubMed  CAS  Google Scholar 

  103. Madelung, A. B. et al. WHO-defined classification of myeloproliferative neoplasms: morphological reproducibility and clinical correlations – the Danish experience. Am. J. Hematol. 88, 1012–1016 (2013).

    Article  PubMed  Google Scholar 

  104. Ryou, H. et al. Continuous Indexing of Fibrosis (CIF): improving the assessment and classification of MPN patients. Leukemia 37, 348–358 (2023).

    Article  PubMed  CAS  Google Scholar 

  105. Scott, L. M. et al. The V617F JAK2 mutation is uncommon in cancers and in myeloid malignancies other than the classic myeloproliferative disorders. Blood 106, 2920–2921 (2005).

    Article  PubMed  CAS  Google Scholar 

  106. Ma, W. et al. Mutation profile of JAK2 transcripts in patients with chronic myeloproliferative neoplasias. J. Mol. Diagn. 11, 49–53 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. McMullin, M. F. & Cario, H. LNK mutations and myeloproliferative disorders. Am. J. Hematol. 91, 248–251 (2016).

    Article  PubMed  CAS  Google Scholar 

  108. Milosevic Feenstra, J. D. et al. Whole-exome sequencing identifies novel MPL and JAK2 mutations in triple-negative myeloproliferative neoplasms. Blood 127, 325–332 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Williams, N. et al. Life histories of myeloproliferative neoplasms inferred from phylogenies. Nature 602, 162–168 (2022). Use of mathematical modelling to illustrate that a driver JAK2 mutation could arise several decades before the onset of disease.

    Article  PubMed  CAS  Google Scholar 

  110. How, J., Garcia, J. S. & Mullally, A. Biology and therapeutic targeting of molecular mechanisms in MPNs. Blood 141, 1922–1933 (2023).

    Article  PubMed  CAS  Google Scholar 

  111. Vannucchi, A. M. et al. Clinical profile of homozygous JAK2 617V>F mutation in patients with polycythemia vera or essential thrombocythemia. Blood 110, 840–846 (2007).

    Article  PubMed  CAS  Google Scholar 

  112. Passamonti, F. et al. A prospective study of 338 patients with polycythemia vera: the impact of JAK2 (V617F) allele burden and leukocytosis on fibrotic or leukemic disease transformation and vascular complications. Leukemia 24, 1574–1579 (2010).

    Article  PubMed  CAS  Google Scholar 

  113. Gisslinger, H. et al. Ropeginterferon alfa-2b versus standard therapy for polycythaemia vera (PROUD-PV and CONTINUATION-PV): a randomised, non-inferiority, phase 3 trial and its extension study. Lancet Haematol. 7, e196–e208 (2020). An important study (PROUD-PV) comparing ropeginterferon alfa-2b with hydroxycarbamide.

    Article  PubMed  Google Scholar 

  114. Kiladjian, J. J. et al. Pegylated interferon-alfa-2a induces complete hematological and molecular responses with low toxicity in polycythemia vera. Blood 112, 3065–3072 (2008).

    Article  PubMed  CAS  Google Scholar 

  115. Kiladjian, J. J. et al. Long-term efficacy and safety of ruxolitinib versus best available therapy in polycythaemia vera (RESPONSE): 5-year follow up of a phase 3 study. Lancet Haematol. 7, e226–e237 (2020). Long-term follow-up of the RESPONSE study in PV.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Harrison, C. N. et al. Ruxolitinib versus best available therapy for polycythemia vera intolerant or resistant to hydroxycarbamide in a randomized trial. J. Clin. Oncol. 41, 3534–3544 (2023). MAJIC-PV demonstrating the long-term benefit for ruxolitinib compared with best available therapy with improved event-free survival in patients treated with ruxolitinib, control of blood count and 50% reduction in JAK2V617F variant allele frequency.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Guglielmelli, P. et al. Clinical impact of mutated JAK2 allele burden reduction in polycythemia vera and essential thrombocythemia. Am. J. Hematol. 99, 1550–1559 (2024). Study demonstrating that reduction of JAK2V617F variant allele frequency correlates with lower risk of post-PV myelofibrosis.

    Article  PubMed  CAS  Google Scholar 

  118. Delhommeau, F. et al. Oncogenic mechanisms in myeloproliferative disorders. Cell Mol. Life Sci. 63, 2939–2953 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Pasquer, H. et al. Distinct clinico-molecular arterial and venous thrombosis scores for myeloproliferative neoplasms risk stratification. Leukemia 38, 326–339 (2024).

    Article  PubMed  Google Scholar 

  120. Santos, F. P. S. et al. Prognostic impact of RAS-pathway mutations in patients with myelofibrosis. Leukemia 34, 799–810 (2020).

    Article  PubMed  CAS  Google Scholar 

  121. O’Sullivan, J. M. et al. RAS-pathway mutations are common in patients with ruxolitinib refractory/intolerant myelofibrosis: molecular analysis of the PAC203 cohort. Leukemia 37, 2497–2501 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Quintás-Cardama, A. et al. Molecular analysis of patients with polycythemia vera or essential thrombocythemia receiving pegylated interferon alpha-2a. Blood 122, 893–901 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Bewersdorf, J. P. et al. Moving toward disease modification in polycythemia vera. Blood 142, 1859–1870 (2023).

    Article  PubMed  CAS  Google Scholar 

  124. McMullin, M. F. & Harrison, C. N. How I treat low-risk polycythemia vera patients who require cytoreduction. Blood https://doi.org/10.1182/blood.2023022418 (2024).

  125. Gerds, A. T. et al. Myeloproliferative neoplasms, version 3.2022, NCCN clinical practice guidelines in oncology. J. Natl Compr. Cancer Netw. 20, 1033–1062 (2022).

    Article  CAS  Google Scholar 

  126. Marchetti, M. et al. Appropriate management of polycythaemia vera with cytoreductive drug therapy: European LeukemiaNet 2021 recommendations. Lancet Haematol. 9, e301–e311 (2022).

    Article  PubMed  CAS  Google Scholar 

  127. Landolfi, R. et al. Leukocytosis as a major thrombotic risk factor in patients with polycythemia vera. Blood 109, 2446–2452 (2007).

    Article  PubMed  CAS  Google Scholar 

  128. Barbui, T. et al. White blood cell counts and thrombosis in polycythemia vera: a subanalysis of the CYTO-PV study. Blood 126, 560–561 (2015).

    Article  PubMed  CAS  Google Scholar 

  129. Ronner, L. et al. Persistent leukocytosis in polycythemia vera is associated with disease evolution but not thrombosis. Blood 135, 1696–1703 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Gerds, A. T. et al. Association between elevated white blood cell counts and thrombotic events in polycythemia vera: analysis from REVEAL. Blood 143, 1646–1655 (2024).

    Article  PubMed  CAS  Google Scholar 

  131. Carobbio, A. et al. Neutrophil-to-lymphocyte ratio is a novel predictor of venous thrombosis in polycythemia vera. Blood Cancer J. 12, 28 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Larsen, M. K. et al. Neutrophil-to-lymphocyte ratio and all-cause mortality with and without myeloproliferative neoplasms – a Danish longitudinal study. Blood Cancer J. 14, 28 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Moliterno, A. R., Kaizer, H. & Reeves, B. N. JAK2V617F allele burden in polycythemia vera: burden of proof. Blood 141, 1934–1942 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Vannucchi, A. M. et al. Prospective identification of high-risk polycythemia vera patients based on JAK2V617F allele burden. Leukemia 21, 1952–1959 (2007).

    Article  PubMed  CAS  Google Scholar 

  135. Guglielmelli, P. et al. JAK2V617F variant allele frequency >50% identifies patients with polycythemia vera at high risk for venous thrombosis. Blood Cancer J. 11, 199 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Marchioli, R. et al. Cardiovascular events and intensity of treatment in polycythemia vera. N. Engl. J. Med. 368, 22–33 (2013).

    Article  PubMed  CAS  Google Scholar 

  137. Landolfi, R. et al. Efficacy and safety of low-dose aspirin in polycythemia vera. N. Engl. J. Med. 350, 114–124 (2004).

    Article  PubMed  CAS  Google Scholar 

  138. Barbui, T. et al. A reappraisal of the benefit-risk profile of Hydroxyurea in polycythemia vera: a propensity-matched study. Am. J. Hematol. 92, 1131–1136 (2017).

    Article  PubMed  CAS  Google Scholar 

  139. Podoltsev, N. A. et al. The impact of phlebotomy and hydroxyurea on survival and risk of thrombosis among older patients with polycythemia vera. Blood Adv. 2, 2681–2690 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Barbui, T. et al. No correlation of intensity of phlebotomy regimen with risk of thrombosis in polycythemia vera: evidence from ECLAP and CYTO-PV clinical trials. Haematologica 102, e219–e221 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Alvarez-Larran, A. et al. Risk of thrombosis according to need of phlebotomies in patients with polycythemia vera treated with hydroxyurea. Haematologica 102, 103–109 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Finazzi, G. et al. Acute leukemia in polycythemia vera: an analysis of 1638 patients enrolled in a prospective observational study. Blood 105, 2664–2670 (2005).

    Article  PubMed  CAS  Google Scholar 

  143. Kiladjian, J.-J., Chevret, S., Dosquet, C., Chomienne, C. & Rain, J.-D. Treatment of polycythemia vera with hydroxyurea and pipobroman: final results of a randomized trial initiated in 1980. J. Clin. Oncol. 29, 3907–3913 (2011).

    Article  PubMed  Google Scholar 

  144. Landtblom, A. R. et al. Second malignancies in patients with myeloproliferative neoplasms: a population-based cohort study of 9379 patients. Leukemia 32, 2203–2210 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Barbui, T. et al. Second cancer in Philadelphia negative myeloproliferative neoplasms (MPN-K). A nested case-control study. Leukemia 33, 1996–2005 (2019).

    Article  PubMed  CAS  Google Scholar 

  146. Vachhani, P. et al. Interferons in the treatment of myeloproliferative neoplasms. Ther. Adv. Hematol. 15, 20406207241229588 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Gisslinger, H. et al. Event-free survival in patients with polycythemia vera treated with ropeginterferon alfa-2b versus best available treatment. Leukemia 37, 2129–2132 (2023). Demonstration that interferons lead to superior event-free survival in PV.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Barbui, T. et al. Ropeginterferon alfa-2b versus phlebotomy in low-risk patients with polycythaemia vera (Low-PV study): a multicentre, randomised phase 2 trial. Lancet Haematol. 8, e175–e184 (2021). The first study specifically evaluating interferon in low-risk patients with PV.

    Article  PubMed  CAS  Google Scholar 

  149. Barbui, T. et al. Ropeginterferon phase 2 randomized study in low-risk polycythemia vera: 5-year drug survival and efficacy outcomes. Ann. Hematol. 103, 437–442 (2024).

    Article  PubMed  CAS  Google Scholar 

  150. Mascarenhas, J. et al. A randomized phase 3 trial of interferon-α vs hydroxyurea in polycythemia vera and essential thrombocythemia. Blood 139, 2931–2941 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Abu-Zeinah, G. et al. Interferon-alpha for treating polycythemia vera yields improved myelofibrosis-free and overall survival. Leukemia 35, 2592–2601 (2021). Long-term study demonstrating benefits of interferon on myelofibrosis-free survival.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Kiladjian, J. J. et al. Clonal analysis of erythroid progenitors suggests that pegylated interferon α-2a treatment targets JAK2V617F clones without affecting TET2 mutant cells. Leukemia 24, 1519–1523 (2010).

    Article  PubMed  CAS  Google Scholar 

  153. Daltro De Oliveira, R. et al. Interferon-alpha (IFN) therapy discontinuation is feasible in myeloproliferative neoplasm (MPN) patients with complete hematological remission [abstract]. Blood 136, 35–36 (2020). Important demonstration that interferon can be discontinued in a proportion of patients with PV.

    Article  Google Scholar 

  154. Masarova, L. et al. Pegylated interferon alfa-2a in patients with essential thrombocythaemia or polycythaemia vera: a post-hoc, median 83 month follow-up of an open-label, phase 2 trial. Lancet Haematol. 4, e165–e175 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Kiladjian, J. J. et al. Long-term outcomes of polycythemia vera patients treated with ropeginterferon alfa-2b. Leukemia 36, 1408–1411 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Barosi, G. et al. A unified definition of clinical resistance and intolerance to hydroxycarbamide in polycythaemia vera and primary myelofibrosis: results of a European LeukemiaNet (ELN) consensus process. Br. J. Haematol. 148, 961–963 (2010).

    Article  PubMed  Google Scholar 

  157. Alvarez-Larran, A. et al. Assessment and prognostic value of the European LeukemiaNet criteria for clinicohematologic response, resistance, and intolerance to hydroxyurea in polycythemia vera. Blood 119, 1363–1369 (2012).

    Article  PubMed  CAS  Google Scholar 

  158. Vannucchi, A. M. et al. Ruxolitinib versus standard therapy for the treatment of polycythemia vera. N. Engl. J. Med. 372, 426–435 (2015). Seminal study leading to the approval of ruxolitinib for the treatment of PV (the RESPONSE trial).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Passamonti, F. et al. Ruxolitinib for the treatment of inadequately controlled polycythaemia vera without splenomegaly (RESPONSE-2): a randomised, open-label, phase 3b study. Lancet Oncol. 18, 88–99 (2017). Second registration trial of ruxolitinib in the treatment of PV.

    Article  PubMed  CAS  Google Scholar 

  160. Masciulli, A., Ferrari, A., Carobbio, A., Ghirardi, A. & Barbui, T. Ruxolitinib for the prevention of thrombosis in polycythemia vera: a systematic review and meta-analysis. Blood Adv. 4, 380–386 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Vannucchi, A. M. et al. Ruxolitinib reduces JAK2 p.V617F allele burden in patients with polycythemia vera enrolled in the RESPONSE study. Ann. Hematol. 96, 1113–1120 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Koschmieder, S. et al. Firstline treatment with ruxolitinib versus best available therapy in patients with polycythemia vera: pre-specified interim analysis of the randomized phase 2b Ruxobeat clinical trial of the German Study Group for Myeloproliferative Neoplasms (GSG-MPN) [abstract]. Blood 142, 619 (2023).

    Article  Google Scholar 

  163. Passamonti, F. et al. Ruxolitinib versus best available therapy in inadequately controlled polycythaemia vera without splenomegaly (RESPONSE-2): 5-year follow up of a randomised, phase 3b study. Lancet Haematol. 9, e480–e492 (2022).

    Article  PubMed  CAS  Google Scholar 

  164. Ginzburg, Y. Z. et al. Dysregulated iron metabolism in polycythemia vera: etiology and consequences. Leukemia 32, 2105–2116 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Casu, C., Nemeth, E. & Rivella, S. Hepcidin agonists as therapeutic tools. Blood 131, 1790–1794 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Kremyanskaya, M. et al. Rusfertide, a hepcidin mimetic, for control of erythrocytosis in polycythemia vera. N. Engl. J. Med. 390, 723–735 (2024). First description of the use of rusfertide, a hepcidin mimetic, in the management of PV.

    Article  PubMed  CAS  Google Scholar 

  167. Guerini, V. et al. The histone deacetylase inhibitor ITF2357 selectively targets cells bearing mutated JAK2V617F. Leukemia 22, 740–747 (2008).

    Article  PubMed  CAS  Google Scholar 

  168. Rambaldi, A. et al. A pilot study of the histone-deacetylase inhibitor givinostat in patients with JAK2V617F positive chronic myeloproliferative neoplasms. Br. J. Haematol. 150, 446–455 (2010).

    Article  PubMed  CAS  Google Scholar 

  169. Rambaldi, A. et al. Safety and efficacy of the maximum tolerated dose of givinostat in polycythemia vera: a two-part phase Ib/II study. Leukemia 34, 2234–2237 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Finazzi, G. et al. A phase II study of givinostat in combination with hydroxycarbamide in patients with polycythaemia vera unresponsive to hydroxycarbamide monotherapy. Br. J. Haematol. 161, 688–694 (2013).

    Article  PubMed  CAS  Google Scholar 

  171. Rambaldi, A. et al. Long-term safety and efficacy of givinostat in polycythemia vera: 4-year mean follow up of three phase 1/2 studies and a compassionate use program. Blood Cancer J. 11, 53 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Mesa, R. A. et al. The burden of fatigue and quality of life in myeloproliferative disorders (MPDs): an international Internet-based survey of 1179 MPD patients. Cancer 109, 68–76 (2007).

    Article  PubMed  Google Scholar 

  173. Mesa, R. A. et al. The Myelofibrosis Symptom Assessment Form (MFSAF): an evidence-based brief inventory to measure quality of life and symptomatic response to treatment in myelofibrosis. Leuk. Res. 33, 1199–1203 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Scherber, R. et al. The myeloproliferative neoplasm symptom assessment form (MPN-SAF): international prospective validation and reliability trial in 402 patients. Blood 118, 401–408 (2011). The development and validation of an international tool to measure patient symptoms.

    Article  PubMed  CAS  Google Scholar 

  175. Mesa, R. A. et al. NCCN guidelines insights: myeloproliferative neoplasms, version 2.2018. J. Natl Compr. Cancer Netw. 15, 1193–1207 (2017).

    Article  Google Scholar 

  176. Mazza, G. L. et al. Symptom burden and quality of life in patients with high-risk essential thrombocythaemia and polycythaemia vera receiving hydroxyurea or pegylated interferon alfa-2a: a post-hoc analysis of the MPN-RC 111 and 112 trials. Lancet Haematol. 9, e38–e48 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Sørensen, A. L. et al. Combination therapy with ruxolitinib and pegylated interferon alfa-2a in newly diagnosed patients with polycythemia vera. Blood Adv. 8, 5416–5425 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Hansen, I. D. et al. Statins enhance the efficacy of pegylated interferon-alpha2 in patients with pH-negative chronic myeloproliferative neoplasms. results from a Danish single-institution cohort study [abstract]. Blood 144, 3184 (2024).

    Article  Google Scholar 

  179. Dameshek, W. Some speculations on the myeloproliferative syndromes. Blood 6, 372–375 (1951). Seminal description by Dameshek of the family of disorders where he first used the term myeloproliferative.

    Article  PubMed  CAS  Google Scholar 

  180. Prchal, J. F. & Axelrad, A. A. Letter: bone-marrow responses in polycythemia vera. N. Engl. J. Med. 290, 1382 (1974).

    Article  PubMed  CAS  Google Scholar 

  181. Adamson, J. W., Fialkow, P. J., Murphy, S., Prchal, J. F. & Steinmann, L. Polycythemia vera: stem-cell and probable clonal origin of the disease. N. Engl. J. Med. 295, 913–916 (1976). Demonstration of clonal origin of PV using X-chromosome inactivation patterns.

    Article  PubMed  CAS  Google Scholar 

  182. Barbui, T. et al. Philadelphia-negative classical myeloproliferative neoplasms: critical concepts and management recommendations from European LeukemiaNet. J. Clin. Oncol. 29, 761–770 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Gu, W. et al. Prediction of thrombosis in polycythemia vera: development and validation of a multiple factor-based prognostic score system. Res. Pract. Thromb. Haemost. 7, 100132 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Yacoub, A. et al. Pegylated interferon alfa-2a for polycythemia vera or essential thrombocythemia resistant or intolerant to hydroxyurea. Blood 134, 1498–1509 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Samuelsson, J. et al. A phase II trial of pegylated interferon alpha-2b therapy for polycythemia vera and essential thrombocythemia: feasibility, clinical and biologic effects, and impact on quality of life. Cancer 106, 2397–2405 (2006).

    Article  PubMed  CAS  Google Scholar 

  186. Knudsen, T. A. Three-year analysis of the DALIAH trial – a randomized controlled phase III clinical trial comparing recombinant interferon alpha-2 vs. hydroxyurea in patients with myeloproliferative neoplasms [abstract S1609]. Hemasphere 3, 741–742 (2019).

    Article  Google Scholar 

  187. Gisslinger, H. et al. Ropeginterferon alfa-2b, a novel IFNα-2b, induces high response rates with low toxicity in patients with polycythemia vera. Blood 126, 1762–1769 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Barbui, T. et al. Ropeginterferon versus standard therapy for low-risk patients with polycythemia vera. NEJM Evid. 2, EVIDoa2200335 (2023).

    Article  PubMed  Google Scholar 

  189. Robinson, S., Ragheb, M. & Harrison, C. How I treat myeloproliferative neoplasms in pregnancy. Blood 143, 777–785 (2024).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Introduction (T.B.); Epidemiology (M.F.M.); Mechanisms/pathophysiology (A.M.V.); Diagnosis, screening and prevention (J.-J.K.); Management (P.B. and J.M.); Quality of life (R.M.); Outlook (C.N.H.); overview of the Primer (C.N.H. and A.M.V.).

Corresponding author

Correspondence to Claire N. Harrison.

Ethics declarations

Competing interests

C.N.H. discloses research support from Celgene (BMS), Constellation, GSK and Novartis; and honoraria/consulting fees from Abbvie, AOP, BMS, CTI, IMAGO, Incyte, Novartis, Galacteo, Geron, GSK, Janssen, Keros, MSD, SOBI and Morphosys. T.B. discloses research support ftom GSK and AOP; and honoraria/consulting fees from AOP, Italfarmaco, Ionis and Novartis. P.B. discloses research support from Incyte, BMS, CTI, Morphosys, Sumitomo, Karyopharm, Kartos, Telios, Ionis, Disc, Ajax, Geron, Janssen, Blueprint and Cogent; and honoraria/consulting fees from Incyte, BMS, CTI, GSK, Abbvie, Morphosys, Sumitomo, Karyopharm, Ionis, Disc, Geron, Keros, Pharma Essentia, Jubilant, Morphic, Novartis, Blueprint, Ono, Raythera and Cogent. J.-J.K. discloses honoraria/consulting fees from Novartis, GSK, Abbvie, BMS, Incyte, AOP Health and PharmaEssentia. J.M. discloses research funding from Incyte, Novartis, BMS, CTI/SOBI, Abbvie, Geron, Kartos, Karyopharm AJAX, Italfarmaco Spa, Disc and PharmaEssentia; and consulting fees from Incyte, Novartis, BMS, Geron, Karyopharm, Kartos, GSK, PharmaEssentia, Italfarmaco Spa, Abbvie, Roche, Merck, Pfizer, Galecto, MorphoSys, Disc, Keros and Sumitomo. M.F.M. discloses research support from BMS and AOP; and honorarium/consulting fees from Novartis, GSK, Incyte, BMS and AOP. R.M. discloses research support from Abbvie, Blueprint, BMS, CTI, Genentech, Incyte, Morphosys and Sierra; and honoraria/consulting fees from Abbvie, Blueprint, BMS, CTI, Genentech, Geron, GSK, Incyte, Novartis, Sierra, Sierra Oncology and Telios. A.M.V. discloses honoraria/consulting fees from Incyte, Novartis, AOP, Italfarmaco, BMS, GSK, Abbvie, Blueprint and Ionis Disc.

Peer review

Peer review information

Nature Reviews Disease Primers thanks H. Hasselbalch; N. Komatsu, who co-reviewed with Y. Edahiro; H. L. Pahl; and J. Prchal, who co-reviewed with J. Song, for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harrison, C.N., Barbui, T., Bose, P. et al. Polycythaemia vera. Nat Rev Dis Primers 11, 26 (2025). https://doi.org/10.1038/s41572-025-00608-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-025-00608-3

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research