Abstract
Leptospirosis is a zoonotic bacterial infection that is prevalent across all continents and is caused by pathogenic spirochaetes of the genus Leptospira. Although infection can be asymptomatic, symptomatic disease can vary in severity from mild to severe illness, the latter characterized by icterus and/or multi-organ dysfunction and potentially death. An estimated one million cases of leptospirosis occur globally each year, resulting in ~60,000 deaths. The pathogenesis of severe leptospirosis is poorly understood but is believed to involve an interplay between genetic predisposition, pathogen virulence and dysregulated immune responses that trigger a cytokine storm with associated immunoparesis. Leptospira are susceptible to several low-cost antibiotics, including benzyl penicillin, doxycycline, cephalosporins and macrolides, when used in the early phase of infection. Late disease with organ dysfunction is treated with supportive care, and the benefit of antibiotics during late disease is doubtful. Very few countries have licensed a vaccine for human leptospirosis, and available vaccines only protect against rodent-associated serogroups. Exposure control by behavioural modifications and personal protective measures are the major preventative measures in leptospirosis, and the efficacy of prophylactic antibiotics has not been confirmed in clinical trials. Future research is needed to accurately estimate leptospirosis disease burden across the globe, to understand the pathophysiology of severe leptospirosis to inform the design of targeted immunotherapies and vaccines, and to develop cost-effective and accurate point-of-care diagnostics.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 1 digital issues and online access to articles
$119.00 per year
only $119.00 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
References
European Centre for Disease Prevention and Control. Factsheet about leptospirosis. ECDC https://www.ecdc.europa.eu/en/leptospirosis/factsheet#:~:Text=Leptospirosis%20is%20the%20most%20widespread,Mediterranean%20and%20East%20European%20regions (2017).
Haake, D. A. & Levett, P. N. Leptospirosis in humans. Curr. Top. Microbiol. Immunol. 387, 65–97 (2015).
Bolin, C. A. & Koellner, P. Human-to-human transmission of Leptospira interrogans by milk. J. Infect. Dis. 158, 246–247 (1988).
Carles, G., Montoya, E., Joly, F. & Peneau, C. Leptospirosis and pregnancy. Eleven cases in French Guyana. J. Gynecol. Obstet. Biol. Reprod. 24, 418–421 (1995).
Evangelista, K. V. & Coburn, J. Leptospira as an emerging pathogen: a review of its biology, pathogenesis and host immune responses. Future Microbiol. 5, 1413–1425 (2010).
Raddi, G. et al. Three-dimensional structures of pathogenic and saprophytic leptospira species revealed by cryo-electron tomography. J. Bacteriol. 194, 1299–1306 (2012).
Vincent, A. T. et al. Revisiting the taxonomy and evolution of pathogenicity of the genus Leptospira through the prism of genomics. PLoS Negl. Trop. Dis. 13, e0007270 (2019).
Kędzierska-Mieszkowska, S. Sigma factors of RNA polymerase in the pathogenic spirochaete Leptospira interrogans, the causative agent of leptospirosis. FASEB J. 37, e23163 (2023).
Guglielmini, J. et al. Genus-wide Leptospira core genome multilocus sequence typing for strain taxonomy and global surveillance. PLoS Negl. Trop. Dis. 13, e0007374 (2019).
Costa, F. et al. Global morbidity and mortality of leptospirosis: a systematic review. PLoS Negl. Trop. Dis. 9, e0003898 (2015).
Weil, A. Ueber einer eigenhuemliche, mit milztumor, icterus un nephritis einhergehende, acute infektionskrankheit. Deutsch Arch. Klin. Med. 109, 209–232 (1886).
Clemente, B. M., Pineda-Cortel, M. R. & Villaflores, O. Evaluating immunochromatographic test kits for diagnosis of acute human leptospirosis: a systematic review. Heliyon 8, e11829 (2022).
Limmathurotsakul, D. et al. Fool’s gold: why imperfect reference tests are undermining the evaluation of novel diagnostics: a reevaluation of 5 diagnostic tests for leptospirosis. Clin. Infect. Dis. 55, 322–331 (2012).
Rajapakse, S., Rodrigo, C., Handunnetti, S. M. & Fernando, S. D. Current immunological and molecular tools for leptospirosis: diagnostics, vaccine design, and biomarkers for predicting severity. Ann. Clin. Microbiol. Antimicrob. 14, 2 (2015).
Boss, J. et al. Antimicrobial susceptibility testing of leptospira spp. in the Lao People’s Democratic Republic using disk diffusion. Am. J. Trop. Med. Hyg. 100, 1073–1078 (2019).
Chawla, V., Trivedi, T. H. & Yeolekar, M. E. Epidemic of leptospirosis: an ICU experience. J. Assoc. Physicians India 52, 619–622 (2004).
Levett, P. N. Leptospirosis. Clin. Microbiol. Rev. 14, 296–326 (2001).
Bharti, A. R. et al. Leptospirosis: a zoonotic disease of global importance. Lancet Infect. Dis. 3, 757–771 (2003).
Munoz-Zanzi, C. et al. A systematic literature review of leptospirosis outbreaks worldwide, 1970–2012. Rev. Panam. Salud Publica 44, e78 (2020).
Zeng, Z., Zhan, J., Chen, L., Chen, H. & Cheng, S. Global, regional, and national dengue burden from 1990 to 2017: a systematic analysis based on the global burden of disease study 2017. eClinicalMedicine https://doi.org/10.1016/j.eclinm.2020.100712 (2021).
Allan, K. J. et al. Epidemiology of leptospirosis in Africa: a systematic review of a neglected zoonosis and a paradigm for ‘One Health’ in Africa. PLoS Negl. Trop. Dis. 9, e0003899 (2015).
Gizamba, J. M. & Mugisha, L. Leptospirosis in humans and selected animals in sub-Saharan Africa, 2014–2022: a systematic review and meta-analysis. BMC Infect. Dis. 23, 649 (2023).
Beauté, J. et al. Epidemiology of reported cases of leptospirosis in the EU/EEA, 2010 to 2021. Euro Surveill. https://doi.org/10.2807/1560-7917.Es.2024.29.7.2300266 (2024).
Lau, C. L., Smythe, L. D., Craig, S. B. & Weinstein, P. Climate change, flooding, urbanisation and leptospirosis: fuelling the fire? Trans. R. Soc. Trop. Med. Hyg. 104, 631–638 (2010).
Cann, K. F., Thomas, D. R., Salmon, R. L., Wyn-Jones, A. P. & Kay, D. Extreme water-related weather events and waterborne disease. Epidemiol. Infect. 141, 671–686 (2013).
Baharom, M. et al. Environmental and occupational factors associated with leptospirosis: a systematic review. Heliyon 10, e23473 (2024).
Mwachui, M. A., Crump, L., Hartskeerl, R., Zinsstag, J. & Hattendorf, J. Environmental and behavioural determinants of leptospirosis transmission: a systematic review. PLoS Negl. Trop. Dis. 9, e0003843 (2015).
Hartskeerl, R. A., Collares-Pereira, M. & Ellis, W. A. Emergence, control and re-emerging leptospirosis: dynamics of infection in the changing world. Clin. Microbiol. Infect. 17, 494–501 (2011).
Hagedoorn, N. N. et al. Global distribution of Leptospira serovar isolations and detections from animal host species: a systematic review and online database. Trop. Med. Int. Health 29, 161–172 (2024).
Allan, K. J. et al. Assessment of animal hosts of pathogenic Leptospira in northern Tanzania. PLoS Negl. Trop. Dis. 12, e0006444 (2018).
Chadsuthi, S. et al. Investigation on predominant Leptospira serovars and its distribution in humans and livestock in Thailand, 2010–2015. PLoS Negl. Trop. Dis. 11, e0005228 (2017).
Casanovas-Massana, A. et al. Genetic evidence for a potential environmental pathway to spillover infection of rat-borne leptospirosis. J. Infect. Dis. 225, 130–134 (2022).
Faine, S., Adler, B., Bolin, C. & Perolat, P. Leptospira and Leptospirosis Vol. 2 (MediSci, 1999).
Adler, B. & de la Pena Moctezuma, A. Leptospira and leptospirosis. Vet. Microbiol. 140, 287–296 (2010).
Bierque, E., Thibeaux, R., Girault, D., Soupé-Gilbert, M.-E. & Goarant, C. A systematic review of Leptospira in water and soil environments. PLoS ONE 15, e0227055 (2020).
Thibeaux, R. et al. Seeking the environmental source of Leptospirosis reveals durable bacterial viability in river soils. PLoS Negl. Trop. Dis. 11, e0005414 (2017).
Hacker, K. P. et al. Influence of rainfall on leptospira infection and disease in a tropical urban setting, Brazil. Emerg. Infect. Dis. 26, 311–314 (2020).
Rodríguez-Rodríguez, V. et al. Acute human leptospirosis in a Caribbean region of Colombia: from classic to emerging risk factors. Zoonoses Public Health 71, 107–119 (2024).
Susanna, D., Nova, R. I. T. & Rozek, L. Community behaviors that affect the incidence of leptospirosis in West Jakarta, Indonesia. Vector Borne Zoonotic Dis. 23, 29–34 (2023).
Amilasan, A. S. et al. Outbreak of leptospirosis after flood, the Philippines, 2009. Emerg. Infect. Dis. 18, 91–94 (2012).
Sanders, E. J. et al. Increase of leptospirosis in dengue-negative patients after a hurricane in Puerto Rico in 1996 (correction of 1966). Am. J. Trop. Med. Hyg. 61, 399–404 (1999).
Dreesman, J. et al. Investigation and response to a large outbreak of leptospirosis in field workers in Lower Saxony, Germany. Zoonoses Public Health 70, 315–326 (2023).
Dreyfus, A. et al. Risk factors for new infection with Leptospira in meat workers in New Zealand. Occup. Environ. Med. 72, 219–225 (2015).
Pagès, F. et al. Investigation of a leptospirosis outbreak in triathlon participants, Réunion Island, 2013. Epidemiol. Infect. 144, 661–669 (2016).
Bradley, E. A. & Lockaby, G. Leptospirosis and the environment: a review and future directions. Pathogens https://doi.org/10.3390/pathogens12091167 (2023).
Magalhães, A. R. et al. Neglected tropical diseases risk correlates with poverty and early ecosystem destruction. Infect. Dis. Poverty 12, 32 (2023).
Jeffree, M. S. et al. High incidence of asymptomatic leptospirosis among urban sanitation workers from Kota Kinabalu, Sabah, Malaysian Borneo. Sci. Rep. 10, 19442 (2020).
Khalil, H. et al. Poverty, sanitation, and Leptospira transmission pathways in residents from four Brazilian slums. PLoS Negl. Trop. Dis. 15, e0009256 (2021).
Reis, R. B. et al. Impact of environment and social gradient on Leptospira infection in urban slums. PLoS Negl. Trop. Dis. 2, e228 (2008).
Antima & Banerjee, S. Modeling the dynamics of leptospirosis in India. Sci. Rep. 13, 19791 (2023).
Lingappa, J. et al. HLA-DQ6 and ingestion of contaminated water: possible gene–environment interaction in an outbreak of Leptospirosis. Genes Immun. 5, 197–202 (2004).
Agampodi, S. B., Matthias, M. A., Moreno, A. C. & Vinetz, J. M. Utility of quantitative polymerase chain reaction in leptospirosis diagnosis: association of level of leptospiremia and clinical manifestations in Sri Lanka. Clin. Infect. Dis. 54, 1249–1255 (2012).
Cagliero, J., Villanueva, S. & Matsui, M. Leptospirosis pathophysiology: into the storm of cytokines. Front. Cell. Infect. Microbiol. 8, 204 (2018).
Nicodemo, A. C. et al. Lung lesions in human leptospirosis: microscopic, immunohistochemical, and ultrastructural features related to thrombocytopenia. Am. J. Trop. Med. Hyg. 56, 181–187 (1997).
Chierakul, W. et al. Activation of the coagulation cascade in patients with leptospirosis. Clin. Infect. Dis. 46, 254–260 (2008).
Yücel Koçak, S., Kudu, A., Kayalar, A., Yilmaz, M. & Apaydin, S. Leptospirosis with acute renal failure and vasculitis: a case report. Arch. Rheumatol. 34, 229–232 (2019).
De Brito, T., Silva, A. & Abreu, P. A. E. Pathology and pathogenesis of human leptospirosis: a commented review. Rev. Inst. Med. Trop. Sao Paulo 60, e23 (2018).
Shintaku, M., Itoh, H. & Tsutsumi, Y. Weil’s disease (leptospirosis) manifesting as fulminant hepatic failure: report of an autopsy case. Pathol. Res. Pract. 210, 1134–1137 (2014).
Arean, V. M. The pathologic anatomy and pathogenesis of fatal human leptospirosis (Weil’s disease). Am. J. Pathol. 40, 393–423 (1962).
Sitprija, V. & Evans, H. The kidney in human leptospirosis. Am. J. Med. 49, 780–788 (1970).
Abdulkader, R. C. & Silva, M. V. The kidney in leptospirosis. Pediatr. Nephrol. 23, 2111–2120 (2008).
Dolhnikoff, M., Mauad, T., Bethlem, E. P. & Carvalho, C. R. Pathology and pathophysiology of pulmonary manifestations in leptospirosis. Braz. J. Infect. Dis. 11, 142–148 (2007).
Fernando, T. et al. Electrocardiographic and echocardiographic manifestations of cardiac involvement in leptospirosis. Trans. R. Soc. Trop. Med. Hyg. 107, 457–459 (2013).
Swarath, S. et al. Leptospirosis-induced myocarditis and arrhythmias. J. Investig. Med. High. Impact Case Rep. 11, 23247096231179450 (2023).
Silva, J. J. et al. Clinicopathological and immunohistochemical features of the severe pulmonary form of leptospirosis. Rev. Soc. Bras. Med. Trop. 35, 395–399 (2002).
Cédola, M. et al. Association of Toll-like receptor 2 Arg753Gln and Toll-like receptor 1 Ile602Ser single-nucleotide polymorphisms with leptospirosis in an Argentine population. Acta Trop. 146, 73–80 (2015).
Viriyakosol, S., Matthias, M. A., Swancutt, M. A., Kirkland, T. N. & Vinetz, J. M. Toll-like receptor 4 protects against lethal Leptospira interrogans serovar icterohaemorrhagiae infection and contributes to in vivo control of leptospiral burden. Infect. Immun. 74, 887–895 (2006).
Haake, D. A. & Zückert, W. R. Spirochetal lipoproteins in pathogenesis and immunity. Curr. Top. Microbiol. Immunol. 415, 239–271 (2018).
Li, D. & Wu, M. Pattern recognition receptors in health and diseases. Signal. Transduct. Target. Ther. 6, 291 (2021).
Senavirathna, I., Rathish, D. & Agampodi, S. Cytokine response in human leptospirosis with different clinical outcomes: a systematic review. BMC Infect. Dis. 20, 268 (2020).
Wang, H. et al. Leptospiral hemolysins induce proinflammatory cytokines through Toll-like receptor 2-and 4-mediated JNK and NF-κB signaling pathways. PLoS ONE 7, e42266 (2012).
Reis, E. A. et al. Cytokine response signatures in disease progression and development of severe clinical outcomes for leptospirosis. PLoS Negl. Trop. Dis. 7, e2457 (2013).
Nisansala, T. et al. Contributing role of TNF, IL-10, sTNFR1 and TNF gene polymorphisms in disease severity of leptospirosis. Med. Microbiol. Immunol. 210, 211–219 (2021).
Hsu, S. H. et al. Peptidoglycan mediates Leptospira outer membrane protein Loa22 to toll-like receptor 2 for inflammatory interaction: a novel innate immune recognition. Sci. Rep. 11, 1064 (2021).
Schuler, E. J. A., Patel, D. T. & Marconi, R. T. The leptospiral OmpA-like protein (Loa22) is a surface-exposed antigen that elicits bactericidal antibody against heterologous Leptospira. Vaccine X 15, 100382 (2023).
Wang, B., Sullivan, J. A., Sullivan, G. W. & Mandell, G. L. Role of specific antibody in interaction of leptospires with human monocytes and monocyte-derived macrophages. Infect. Immun. 46, 809–813 (1984).
Li, S. et al. Replication or death: distinct fates of pathogenic Leptospira strain Lai within macrophages of human or mouse origin. Innate Immun. 16, 80–92 (2010).
Eshghi, A. et al. Leptospira interrogans catalase is required for resistance to H2O2 and for virulence. Infect. Immun. 80, 3892–3899 (2012).
Fernando, N. et al. Protein carbonyl as a biomarker of oxidative stress in severe leptospirosis, and its usefulness in differentiating leptospirosis from dengue infections. PLoS ONE 11, e0156085 (2016).
Wang, B., Sullivan, J., Sullivan, G. W. & Mandell, G. L. Interaction of leptospires with human polymorphonuclear neutrophils. Infect. Immun. 44, 459–464 (1984).
Vieira, M. L. et al. Leptospira interrogans outer membrane protein LipL21 is a potent inhibitor of neutrophil myeloperoxidase. Virulence 9, 414–425 (2018).
Aratani, Y. Myeloperoxidase: its role for host defense, inflammation, and neutrophil function. Arch. Biochem. Biophys. 640, 47–52 (2018).
Jost, B. H., Adler, B., Vinh, T. & Faine, S. A monoclonal antibody reacting with a determinant on leptospiral lipopolysaccharide protects guinea pigs against leptospirosis. J. Med. Microbiol. 22, 269–275 (1986).
Rees, E. M. et al. Estimating the duration of antibody positivity and likely time of Leptospira infection using data from a cross-sectional serological study in Fiji. PLoS Negl. Trop. Dis. 16, e0010506 (2022).
Grillová, L. et al. Circulating genotypes of Leptospira in French Polynesia: an 9-year molecular epidemiology surveillance follow-up study. PLoS Negl. Trop. Dis. 14, e0008662 (2020).
Klimpel, G. R., Matthias, M. A. & Vinetz, J. M. Leptospira interrogans activation of human peripheral blood mononuclear cells: preferential expansion of TCR gamma delta+ T cells vs TCR alpha beta+ T cells. J. Immunol. 171, 1447–1455 (2003).
Krangvichian, P. et al. Impaired functions of human monocyte-derived dendritic cells and induction of regulatory T cells by pathogenic Leptospira. PLoS Negl. Trop. Dis. 17, e0011781 (2023).
Sumaiya, K. & Natarajaseenivasan, K. Macrophage migration inhibitory factor gene promoter polymorphism (−173G/C SNP) determines host susceptibility and severity of leptospirosis. Microb. Pathog. 164, 105445 (2022).
Esteves, L. M. et al. Human leptospirosis: seroreactivity and genetic susceptibility in the population of São Miguel Island (Azores, Portugal). PLoS ONE 9, e108534 (2014).
Fialho, R. N. et al. Role of human leukocyte antigen, killer-cell immunoglobulin-like receptors, and cytokine gene polymorphisms in leptospirosis. Hum. Immunol. 70, 915–920 (2009).
Charon, N. W., Greenberg, E. P., Koopman, M. B. & Limberger, R. J. Spirochete chemotaxis, motility, and the structure of the spirochetal periplasmic flagella. Res. Microbiol. 143, 597–603 (1992).
Vieira, D. S., Chaurasia, R. & Vinetz, J. M. Comparison of the PF07598-encoded virulence-modifying proteins of L. interrogans and L. borgpetersenii. Trop. Med. Infect. Dis. 8, 14 (2023).
Chaurasia, R. & Vinetz, J. M. In silico prediction of molecular mechanisms of toxicity mediated by the leptospiral PF07598 gene family-encoded virulence-modifying proteins. Front. Mol. Biosci. 9, 1092197 (2022).
Safiee, A. W. et al. Putative pathogenic genes of Leptospira interrogans and Leptospira weilii isolated from patients with acute febrile illness. Trop. Med. Infect. Dis. 7, 284 (2022).
Pinne, M., Choy, H. A. & Haake, D. A. The OmpL37 surface-exposed protein is expressed by pathogenic leptospira during infection and binds skin and vascular elastin. PLoS Negl. Trop. Dis. 4, e815 (2010).
Barbosa, A. S. & Isaac, L. Strategies used by Leptospira spirochetes to evade the host complement system. FEBS Lett. 594, 2633–2644 (2020).
Fraga, T. R., Barbosa, A. S. & Isaac, L. Leptospirosis: aspects of innate immunity, immunopathogenesis and immune evasion from the complement system. Scand. J. Immunol. 73, 408–419 (2011).
Ren, S. X. et al. Unique physiological and pathogenic features of Leptospira interrogans revealed by whole-genome sequencing. Nature 422, 888–893 (2003).
Carvalho, E. et al. Leptospiral TlyC is an extracellular matrix-binding protein and does not present hemolysin activity. FEBS Lett. 583, 1381–1385 (2009).
Segers, R. P., van Gestel, J. A., van Eys, G. J., van der Zeijst, B. A. & Gaastra, W. Presence of putative sphingomyelinase genes among members of the family Leptospiraceae. Infect. Immun. 60, 1707–1710 (1992).
Narayanavari, S. A., Sritharan, M., Haake, D. A. & Matsunaga, J. Multiple leptospiral sphingomyelinases (or are there?). Microbiology 158, 1137–1146 (2012).
Chacko, C. S. et al. A short review on leptospirosis: clinical manifestations, diagnosis and treatment. Clin. Epidemiol. Glob. Health 11, 100741 (2021).
Centers for Disease Control and Prevention. Leptospirosis. CDC https://www.cdc.gov/leptospirosis/ (2023).
Ganoza, C. A. et al. Asymptomatic renal colonization of humans in the peruvian Amazon by Leptospira. PLoS Negl. Trop. Dis. 4, e612 (2010).
Ashford, D. A. et al. Asymptomatic infection and risk factors for leptospirosis in Nicaragua. Am. J. Trop. Med. Hyg. 63, 249–254 (2000).
Rajapakse, S. et al. Seroprevalence of leptospirosis in an endemic mixed urban and semi-urban setting — a community-based study in the district of Colombo, Sri Lanka. PLoS Negl. Trop. Dis. 14, e0008309 (2020).
Almeida, D. S. et al. Investigation of chronic infection by Leptospira spp. in asymptomatic sheep slaughtered in slaughterhouse. PLoS ONE 14, e0217391 (2019).
Boey, K., Shiokawa, K. & Rajeev, S. Leptospira infection in rats: a literature review of global prevalence and distribution. PLoS Negl. Trop. Dis. 13, e0007499 (2019).
Sant’Anna da Costa, R. et al. Persistent high leptospiral shedding by asymptomatic dogs in endemic areas triggers a serious public health concern. Animals https://doi.org/10.3390/ani11040937 (2021).
Ko, A. I., Goarant, C. & Picardeau, M. Leptospira: the dawn of the molecular genetics era for an emerging zoonotic pathogen. Nat. Rev. Microbiol. 7, 736–747 (2009).
Rajapakse, S. Leptospirosis: clinical aspects. Clin. Med. 22, 14–17 (2022).
Araujo, E. R. et al. Acute kidney injury in human leptospirosis: an immunohistochemical study with pathophysiological correlation. Virchows Arch. 456, 367–375 (2010).
Yang, C. W. Leptospirosis renal disease: understanding the initiation by Toll-like receptors. Kidney Int. 72, 918–925 (2007).
Rajapakse, S. et al. Clinical and laboratory associations of severity in a Sri Lankan cohort of patients with serologically confirmed leptospirosis: a prospective study. Trans. R. Soc. Trop. Med. Hyg. 109, 710–716 (2015).
Nicodemo, A. C. & Duarte-Neto, A. N. Pathogenesis of pulmonary hemorrhagic syndrome in human leptospirosis. Am. J. Trop. Med. Hyg. 104, 1970–1972 (2021).
Taylor, A. J., Paris, D. H. & Newton, P. N. A systematic review of the mortality from untreated leptospirosis. PLoS Negl. Trop. Dis. 9, e0003866 (2015).
Rajapakse, S., Rodrigo, C. & Haniffa, R. Developing a clinically relevant classification to predict mortality in severe leptospirosis. J. Emerg. Trauma Shock. 3, 213–219 (2010).
Bhatia, M., Umapathy, B. L. & Navaneeth, B. V. An evaluation of dark field microscopy, culture and commercial serological kits in the diagnosis of leptospirosis. Indian J. Med. Microbiol. 33, 416–421 (2015).
Guedes, I. B. et al. Leptospira transport medium (LTM): a practical tool for leptospires isolation. J. Microbiol. Methods 175, 105995 (2020).
Goarant, C., Girault, D., Thibeaux, R. & Soupé-Gilbert, M. E. Isolation and culture of leptospira from clinical and environmental samples. Methods Mol. Biol. 2134, 1–9 (2020).
Goris, M. G. & Hartskeerl, R. A. Leptospirosis serodiagnosis by the microscopic agglutination test. Curr. Protoc. Microbiol. 32, 12E.15 (2014).
Guernier, V., Goarant, C., Benschop, J. & Lau, C. L. A systematic review of human and animal leptospirosis in the Pacific Islands reveals pathogen and reservoir diversity. PLoS Negl. Trop. Dis. 12, e0006503 (2018).
Signorini, M. L., Lottersberger, J., Tarabla, H. D. & Vanasco, N. B. Enzyme-linked immunosorbent assay to diagnose human leptospirosis: a meta-analysis of the published literature. Epidemiol. Infect. 141, 22–32 (2013).
Rosa, M. I. et al. IgM ELISA for leptospirosis diagnosis: a systematic review and meta-analysis. Cien. Saude Colet. 22, 4001–4012 (2017).
Sreevalsan, T. V. & Chandra, R. Relevance of polymerase chain reaction in early diagnosis of leptospirosis. Indian J. Crit. Care Med. 28, 290–293 (2024).
Croda, J. et al. Leptospira immunoglobulin-like proteins as a serodiagnostic marker for acute leptospirosis. J. Clin. Microbiol. 45, 1528–1534 (2007).
Picardeau, M. Diagnosis and epidemiology of leptospirosis. Med. Mal. Infect. 43, 1–9 (2013).
Levett, P. N. Usefulness of serologic analysis as a predictor of the infecting serovar in patients with severe leptospirosis. Clin. Infect. Dis. 36, 447–452 (2003).
Eugene, E. J. et al. Evaluation of two immunodiagnostic tests for early rapid diagnosis of leptospirosis in Sri Lanka: a preliminary study. BMC Infect. Dis. 15, 319 (2015).
Goris, M. G. et al. Prospective evaluation of three rapid diagnostic tests for diagnosis of human leptospirosis. PLoS Negl. Trop. Dis. 7, e2290 (2013).
Behera, S. K. et al. Diagnosis of human leptospirosis: comparison of microscopic agglutination test with recombinant LigA/B antigen-based in-house IgM dot ELISA dipstick test and latex agglutination test using bayesian latent class model and MAT as gold standard. Diagnostics 12, 1455 (2022).
Suwancharoen, D., Sittiwicheanwong, B. & Wiratsudakul, A. Evaluation of loop-mediated isothermal amplification method (LAMP) for pathogenic Leptospira spp. detection with leptospires isolation and real-time PCR. J. Vet. Med. Sci. 78, 1299–1302 (2016).
Podgoršek, D. et al. Evaluation of real-time PCR targeting the lipL32 gene for diagnosis of Leptospira infection. BMC Microbiol. 20, 59 (2020).
Castro-Wallace, S. L. et al. Nanopore DNA sequencing and genome assembly on the international space station. Sci. Rep. 7, 18022 (2017).
Chiu, C. Y. & Miller, S. A. Clinical metagenomics. Nat. Rev. Genet. 20, 341–355 (2019).
Allicock, O. M. et al. BacCapSeq: a platform for diagnosis and characterization of bacterial infections. mBio https://doi.org/10.1128/mBio.02007-18 (2018).
Rajapakse, S. et al. A diagnostic scoring model for leptospirosis in resource limited settings. PLoS Negl. Trop. Dis. 10, e0004513 (2016).
Sigera, P. C. et al. Risk prediction for severe disease and better diagnostic accuracy in early dengue infection; the Colombo dengue study. BMC Infect. Dis. 19, 680 (2019).
Lau, C. L. & DePasquale, J. M. Leptospirosis, diagnostic challenges, American Samoa. Emerg. Infect. Dis. 18, 2079–2081 (2012).
De Silva, N. L. et al. Changes in full blood count parameters in leptospirosis: a prospective study. Int. Arch. Med. 7, 31 (2014).
de Silva, N. L. et al. Can findings on peripheral blood smear differentiate leptospirosis from other infections? A preliminary comparative study. Trans. R. Soc. Trop. Med. Hyg. 112, 94–96 (2018).
Sukmark, T. et al. Thai-Lepto-on-admission probability (THAI-LEPTO) score as an early tool for initial diagnosis of leptospirosis: result from Thai-Lepto AKI study group. PLoS Negl. Trop. Dis. 12, e0006319 (2018).
Temeiam, N., Jareinpituk, S., Phinyo, P., Patumanond, J. & Srisawat, N. Development and validation of a simple score for diagnosis of Leptospirosis at outpatient departments. PLoS Negl. Trop. Dis. 14, e0007977 (2020).
Al Hariri, Y. K., Sulaiman, S. A. S., Khan, A. H., Adnan, A. S. & Al Ebrahem, S. Q. Mortality of leptospirosis associated acute kidney injury (LAKI) & predictors for its development in adults: a systematic review. J. Infect. public. health 12, 751–759 (2019).
Smith, S. et al. A simple score to predict severe leptospirosis. PLoS Negl. Trop. Dis. 13, e0007205 (2019).
Galdino, G. S. et al. Development and validation of a simple machine learning tool to predict mortality in leptospirosis. Sci. Rep. 13, 4506 (2023).
Marotto, P. C. et al. Early identification of leptospirosis-associated pulmonary hemorrhage syndrome by use of a validated prediction model. J. Infect. 60, 218–223 (2010).
Pongpan, S., Thanatrakolsri, P., Vittaporn, S., Khamnuan, P. & Daraswang, P. Prognostic factors for leptospirosis infection severity. Trop. Med. Infect. Dis. https://doi.org/10.3390/tropicalmed8020112 (2023).
So, R. A. Y. et al. A scoring tool to predict pulmonary complications in severe leptospirosis with kidney failure. Trop. Med. Infect. Dis. https://doi.org/10.3390/tropicalmed7010007 (2022).
Ajjimarungsi, A., Bhurayanontachai, R. & Chusri, S. Clinical characteristics, outcomes, and predictors of leptospirosis in patients admitted to the medical intensive care unit: a retrospective analysis. J. Infect. Public Health 13, 2055–2061 (2020).
Guernier, V., Allan, K. J. & Goarant, C. Advances and challenges in barcoding pathogenic and environmental Leptospira. Parasitology 145, 595–607 (2018).
Goarant, C. Leptospirosis: risk factors and management challenges in developing countries. Res. Rep. Trop. Med. 7, 49–62 (2016).
World Health Organization. Human Leptospirosis: Guidance for Diagnosis, Surveillance and Control (WHO, 2003).
Hancock, G. A., Wilks, C. R., Kotiw, M. & Allen, J. D. The long term efficacy of a hardjo-pomona vaccine in preventing leptospiruria in cattle exposed to natural challenge with Leptospira interrogans serovar hardjo. Aust. Vet. J. 61, 54–56 (1984).
Rinehart, C. L., Zimmerman, A. D., Buterbaugh, R. E., Jolie, R. A. & Chase, C. C. Efficacy of vaccination of cattle with the Leptospira interrogans serovar hardjo type hardjoprajitno component of a pentavalent Leptospira bacterin against experimental challenge with Leptospira borgpetersenii serovar hardjo type hardjo-bovis. Am. J. Vet. Res. 73, 735–740 (2012).
Nisa, S. et al. Diverse epidemiology of leptospira serovars notified in New Zealand, 1999–2017. Pathogens https://doi.org/10.3390/pathogens9100841 (2020).
Win, T. Z. et al. Antibiotic prophylaxis for leptospirosis. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD014959.pub2 (2024).
Alikhani, A. et al. Comparison of azithromycin vs doxycycline prophylaxis in leptospirosis, a randomized double blind placebo-controlled trial. J. Infect. Dev. Ctries 12, 991–995 (2018).
Gonsalez, C. R. et al. Use of doxycycline for leptospirosis after high-risk exposure in São Paulo, Brazil. Rev. Inst. Med. Trop. Sao Paulo 40, 59–61 (1998).
Illangasekera, V. L., Kularatne, S. A., Kumarasiri, P. V., Pussepitiya, D. & Premaratne, M. D. Is oral penicillin an effective chemoprophylaxis against leptospirosis? A placebo controlled field study in the Kandy District, Sri Lanka. Southeast. Asian J. Trop. Med. Public Health 39, 882–884 (2008).
Sehgal, S. C., Sugunan, A. P., Murhekar, M. V., Sharma, S. & Vijayachari, P. Randomized controlled trial of doxycycline prophylaxis against leptospirosis in an endemic area. Int. J. Antimicrob. Agents 13, 249–255 (2000).
Takafuji, E. T. et al. An efficacy trial of doxycycline chemoprophylaxis against leptospirosis. N. Engl. J. Med. 310, 497–500 (1984).
Brett-Major, D. M. & Lipnick, R. J. Antibiotic prophylaxis for leptospirosis. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD007342.pub2 (2009).
Yanagihara, Y., Villanueva, S. Y., Yoshida, S., Okamoto, Y. & Masuzawa, T. Current status of leptospirosis in Japan and Philippines. Comp. Immunol. Microbiol. Infect. Dis. 30, 399–413 (2007).
Martínez, R. et al. Efficacy and safety of a vaccine against human leptospirosis in Cuba. Rev. Panam. Salud Publica 15, 249–255 (2004).
Laurichesse, H. et al. Safety and immunogenicity of subcutaneous or intramuscular administration of a monovalent inactivated vaccine against Leptospira interrogans serogroup Icterohaemorrhagiae in healthy volunteers. Clin. Microbiol. Infect. 13, 395–403 (2007).
Yan, Y. et al. An evaluation of the serological and epidemiological effects of the outer envelope vaccine to leptospira. J. Chin. Med. Assoc. 66, 224–230 (2003).
Koizumi, N. & Watanabe, H. Leptospirosis vaccines: past, present, and future. J. Postgrad. Med. 51, 210–214 (2005).
Wunder, E. A. et al. A live attenuated-vaccine model confers cross-protective immunity against different species of the Leptospira genus. eLife 10, e64166 (2021).
Silveira, M. M. et al. DNA vaccines against leptospirosis: a literature review. Vaccine 35, 5559–5567 (2017).
Barazzone, G. C. et al. Revisiting the development of vaccines against pathogenic leptospira: innovative approaches, present challenges, and future perspectives. Front. Immunol. 12, 760291 (2021).
Lin, M. H. et al. LipL41, a hemin binding protein from Leptospira santarosai serovar Shermani. PLoS ONE 8, e83246 (2013).
Dellagostin, O. A. et al. Recombinant vaccines against leptospirosis. Hum. Vaccin. 7, 1215–1224 (2011).
Haake, D. A. et al. Characterization of leptospiral outer membrane lipoprotein LipL36: downregulation associated with late-log-phase growth and mammalian infection. Infect. Immun. 66, 1579–1587 (1998).
Vijayachari, P. et al. Immunogenicity of a novel enhanced consensus DNA vaccine encoding the leptospiral protein LipL45. Hum. Vaccin. Immunother. 11, 1945–1953 (2015).
Buaklin, A. et al. Optimization of the immunogenicity of a DNA vaccine encoding a bacterial outer membrane lipoprotein. Mol. Biotechnol. 56, 903–910 (2014).
Faisal, S. M. et al. Evaluation of protective immunity of Leptospira immunoglobulin like protein A (LigA) DNA vaccine against challenge in hamsters. Vaccine 26, 277–287 (2008).
Feng, C. Y. et al. Immune strategies using single-component LipL32 and multi-component recombinant LipL32-41-OmpL1 vaccines against leptospira. Braz. J. Med. Biol. Res. 42, 796–803 (2009).
Umthong, S. et al. Immunogenicity of a DNA and recombinant protein vaccine combining LipL32 and Loa22 for leptospirosis using chitosan as a delivery system. J. Microbiol. Biotechnol. 25, 526–536 (2015).
Kumar, P., Lata, S., Shankar, U. N. & Akif, M. Immunoinformatics-based designing of a multi-epitope chimeric vaccine from multi-domain outer surface antigens of leptospira. Front. Immunol. https://doi.org/10.3389/fimmu.2021.735373 (2021).
Validi, M., Karkhah, A., Prajapati, V. K. & Nouri, H. R. Immuno-informatics based approaches to design a novel multi epitope-based vaccine for immune response reinforcement against Leptospirosis. Mol. Immunol. 104, 128–138 (2018).
Techawiwattanaboon, T. et al. Designing adjuvant formulations to promote immunogenicity and protective efficacy of leptospira immunoglobulin-like protein a subunit vaccine. Front. Cell. Infect. Microbiol. https://doi.org/10.3389/fcimb.2022.918629 (2022).
Varma, V. P., Kadivella, M., Kumar, A., Kavela, S. & Faisal, S. M. LigA formulated in AS04 or montanide ISA720VG induced superior immune response compared to alum, which correlated to protective efficacy in a hamster model of leptospirosis. Front. Immunol. https://doi.org/10.3389/fimmu.2022.985802 (2022).
Yang, H. L. et al. In silico and microarray-based genomic approaches to identifying potential vaccine candidates against Leptospira interrogans. BMC Genomics https://doi.org/10.1186/1471-2164-7-293 (2006).
Techawiwattanaboon, T. et al. Proteomic profile of naturally released extracellular vesicles secreted from leptospira interrogans serovar pomona in response to temperature and osmotic stresses. Sci. Rep.https://doi.org/10.1038/s41598-023-45863-0 (2023).
Trott, D. J., Abraham, S. & Adler, B. Antimicrobial resistance in Leptospira, Brucella, and other rarely investigated veterinary and zoonotic pathogens. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.ARBA-0029-2017 (2018).
Charan, J., Saxena, D., Mulla, S. & Yadav, P. Antibiotics for the treatment of leptospirosis: systematic review and meta-analysis of controlled trials. Int. J. Prev. Med. 4, 501–510 (2013).
Suputtamongkol, Y. et al. An open, randomized, controlled trial of penicillin, doxycycline, and cefotaxime for patients with severe leptospirosis. Clin. Infect. Dis. 39, 1417–1424 (2004).
Selvarajah, S., Ran, S., Roberts, N. W. & Nair, M. Leptospirosis in pregnancy: a systematic review. PLoS Negl. Trop. Dis. 15, e0009747 (2021).
Win, T. Z. et al. Antibiotics for treatment of leptospirosis. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD014960.pub2 (2024).
Fernando, N. et al. Effect of antimicrobial agents on inflammatory cytokines in acute leptospirosis. Antimicrob. Agents Chemother. https://doi.org/10.1128/aac.02312-17 (2018).
Zhang, W. et al. Doxycycline attenuates leptospira-induced IL-1β by suppressing nlrp3 inflammasome priming. Front. Immunol. 8, 857 (2017).
Guerrier, G. & D’Ortenzio, E. The Jarisch–Herxheimer reaction in leptospirosis: a systematic review. PLoS ONE 8, e59266 (2013).
Takamizawa, S. et al. Leptospirosis and Jarisch–Herxheimer reaction. QJM 108, 967–968 (2015).
Guerrier, G., Lefèvre, P., Chouvin, C. & D’Ortenzio, E. Jarisch–Herxheimer reaction among patients with leptospirosis: incidence and risk factors. Am. J. Trop. Med. Hyg. 96, 791–794 (2017).
Smith, S. et al. Severe leptospirosis in tropical Australia: optimising intensive care unit management to reduce mortality. PLoS Negl. Trop. Dis. 13, e0007929 (2019).
Rodrigo, C. et al. High dose corticosteroids in severe leptospirosis: a systematic review. Trans. R. Soc. Trop. Med. Hyg. 108, 743–750 (2014).
Davoodi, L. et al. Evaluation of the effectiveness of N-acetylcysteine on accelerating the recovery of renal failure in patients with leptospirosis, a randomized clinical trial study. Ann. Med. Surg. 67, 102518 (2021).
Herath, N. et al. Sequel and therapeutic modalities of leptospirosis associated severe pulmonary haemorrhagic syndrome (SPHS); a Sri Lankan experience. BMC Infect. Dis. 19, 451 (2019).
Trivedi, S. V. et al. Plasma exchange with immunosuppression in pulmonary alveolar haemorrhage due to leptospirosis. Indian J. Med. Res. 131, 429–433 (2010).
Fonseka, C. L. & Lekamwasam, S. Role of plasmapheresis and extracorporeal membrane oxygenation in the treatment of leptospirosis complicated with pulmonary hemorrhages. J. Trop. Med. 2018, 4520185 (2018).
Biggs, H. M. et al. Leptospirosis among hospitalized febrile patients in Northern Tanzania. Am. J. Trop. Med. Hyg. 85, 275–281 (2011).
Ismail, T. F. et al. Retrospective serosurvey of leptospirosis among patients with acute febrile illness and hepatitis in Egypt. Am. J. Trop. Med. Hyg. 75, 1085–1089 (2006).
Crump, J. A. et al. Etiology of severe non-malaria febrile illness in Northern Tanzania: a prospective cohort study. PLoS Negl. Trop. Dis. 7, e2324 (2013).
Torgerson, P. R. et al. Global burden of leptospirosis: estimated in terms of disability adjusted life years. PLoS Negl. Trop. Dis. 9, e0004122 (2015).
Ellis, W. A. in Leptospira and Leptospirosis (ed. Adler, B.) 99–137 (Springer, 2015).
Engida, H. A., Theuri, D. M., Gathungu, D. K. & Gachohi, J. Optimal control and cost-effectiveness analysis for leptospirosis epidemic. J. Biol. Dyn. 17, 2248178 (2023).
Sanhueza, J. M. et al. Estimation of the burden of leptospirosis in New Zealand. Zoonoses Public Health 67, 167–176 (2020).
Galloway, R. L., Levett, P. N., Tumeh, J. W. & Flowers, C. R. Assessing cost effectiveness of empirical and prophylactic therapy for managing leptospirosis outbreaks. Epidemiol. Infect. 137, 1323–1332 (2009).
Agampodi, S., Gunarathna, S., Lee, J. S. & Excler, J. L. Global, regional, and country-level cost of leptospirosis due to loss of productivity in humans. PLoS Negl. Trop. Dis. 17, e0011291 (2023).
Goris, M. G. et al. Towards the burden of human leptospirosis: duration of acute illness and occurrence of post-leptospirosis symptoms of patients in the Netherlands. PLoS ONE 8, e76549 (2013).
Cvejic, E. et al. Contribution of individual psychological and psychosocial factors to symptom severity and time-to-recovery after naturally-occurring acute infective illness: the Dubbo Infection Outcomes Study (DIOS). Brain Behav. Immun. 82, 76–83 (2019).
Chang, C. H. et al. Long-term outcome of leptospirosis infection with acute kidney injury. Biomedicines https://doi.org/10.3390/biomedicines10102338 (2022).
Phannajit, J. et al. Long-term kidney outcomes after leptospirosis: a prospective multicentre cohort study in Thailand. Nephrol. Dial. Transpl. 38, 2182–2191 (2023).
Premarathne, S. S. et al. Leptospirosis: a potential culprit for chronic kidney disease of uncertain etiology. Nephron 147, 510–520 (2023).
Carrillo-Larco, R. M., Altez-Fernandez, C., Acevedo-Rodriguez, J. G., Ortiz-Acha, K. & Ugarte-Gil, C. Leptospirosis as a risk factor for chronic kidney disease: a systematic review of observational studies. PLoS Negl. Trop. Dis. 13, e0007458 (2019).
Prado, L. G. & Barbosa, A. S. Understanding the renal fibrotic process in leptospirosis. Int. J. Mol. Sci. https://doi.org/10.3390/ijms221910779 (2021).
Hotez, P. J., Aksoy, S., Brindley, P. J. & Kamhawi, S. What constitutes a neglected tropical disease? PLoS Negl. Trop. Dis. 14, e0008001 (2020).
Hotez, P. J., Woc-Colburn, L. & Bottazzi, M. E. Neglected tropical diseases in Central America and Panama: review of their prevalence, populations at risk and impact on regional development. Int. J. Parasitol. 44, 597–603 (2014).
Karpagam, K. B. & Ganesh, B. Leptospirosis: a neglected tropical zoonotic infection of public health importance — an updated review. Eur. J. Clin. Microbiol. Infect. Dis. 39, 835–846 (2020).
Costa, E. et al. Penicillin at the late stage of leptospirosis: a randomized controlled trial. Rev. Inst. Med. Trop. Sao Paulo 45, 141–145 (2003).
Daher, E. F. & Nogueira, C. B. Evaluation of penicillin therapy in patients with leptospirosis and acute renal failure. Rev. Inst. Med. Trop. Sao Paulo 42, 327–332 (2000).
Edwards, C. N., Nicholson, G. D., Hassell, T. A., Everard, C. O. & Callender, J. Penicillin therapy in icteric leptospirosis. Am. J. Trop. Med. Hyg. 39, 388–390 (1988).
Fairburn, A. C. & Semple, S. J. Chloramphenicol and penicillin in the treatment of leptospirosis among British troops in Malaya. Lancet 270, 13–16 (1956).
McClain, J. B., Ballou, W. R., Harrison, S. M. & Steinweg, D. L. Doxycycline therapy for leptospirosis. Ann. Intern. Med. 100, 696–698 (1984).
Panaphut, T., Domrongkitchaiporn, S., Vibhagool, A., Thinkamrop, B. & Susaengrat, W. Ceftriaxone compared with sodium penicillin g for treatment of severe leptospirosis. Clin. Infect. Dis. 36, 1507–1513 (2003).
Phimda, K. et al. Doxycycline versus azithromycin for treatment of leptospirosis and scrub typhus. Antimicrob. Agents Chemother. 51, 3259–3263 (2007).
Watt, G. et al. Placebo-controlled trial of intravenous penicillin for severe and late leptospirosis. Lancet 1, 433–435 (1988).
Russell, R. W. Treatment of leptospirosis with oxytetracycline. Lancet 2, 1143–1145 (1958).
Rajapakse, S., Rodrigo, C., Balaji, K. & Fernando, S. D. Atypical manifestations of leptospirosis. Trans. R. Soc. Trop. Med. Hyg. 109, 294–302 (2015).
Vilaichone, R. K., Mahachai, V. & Wilde, H. Acute acalculous cholecystitis in leptospirosis. J. Clin. Gastroenterol. 29, 280–283 (1999).
Ranawaka, N., Jeevagan, V., Karunanayake, P. & Jayasinghe, S. Pancreatitis and myocarditis followed by pulmonary hemorrhage, a rare presentation of leptospirosis — a case report and literature survey. BMC Infect. Dis. 13, 38 (2013).
Solmazgul, E. et al. A case of Weil’s syndrome developing steroid resistant immune haemolytic anaemia. Scand. J. Infect. Dis. 37, 700–702 (2005).
Hanvanich, M., Moollaor, P., Suwangool, P. & Sitprija, V. Hemolytic uremic syndrome in leptospirosis bataviae. Nephron 40, 230–231 (1985).
Laing, R. W., Teh, C. & Toh, C. H. Thrombotic thrombocytopenic purpura (TTP) complicating leptospirosis: a previously undescribed association. J. Clin. Pathol. 43, 961–962 (1990).
Panicker, J. N., Mammachan, R. & Jayakumar, R. V. Primary neuroleptospirosis. Postgrad. Med. J. 77, 589–590 (2001).
Chandra, S. R. et al. Acute disseminated encephalomyelitis following leptospirosis. J. Assoc. Physicians India 52, 327–329 (2004).
Sakellaridis, N., Panagopoulos, D. & Androulis, A. Neuroleptospirosis with hydrocephalus and very elevated cerebrospinal fluid protein. South. Med. J. 102, 549–550 (2009).
Dimopoulou, I. et al. Leptospirosis presenting with encephalitis-induced coma. Intensive Care Med. 28, 1682 (2002).
Kavitha, S. & Shastry, B. A. Leptospirosis with transverse myelitis. J. Assoc. Physicians India 53, 159–160 (2005).
Bal, A. M., Bharadwaj, R. S., Gita, N., Joshi, S. A. & Thakare, J. P. Guillain–Barre syndrome in a pediatric patient following infection due to Leptospira. Jpn J. Infect. Dis. 56, 29–31 (2003).
Hancox, R. J., Karalus, N. & Singh, V. Mononeuritis multiplex in leptospirosis. Scand. J. Infect. Dis. 23, 395–396 (1991).
Turhan, V. et al. Cerebral venous thrombosis as a complication of leptospirosis. J. Infect. 53, e247–e249 (2006).
Chu, K. M., Rathinam, R., Namperumalsamy, P. & Dean, D. Identification of Leptospira species in the pathogenesis of uveitis and determination of clinical ocular characteristics in south India. J. Infect. Dis. 177, 1314–1321 (1998).
Levin, N. et al. Panuveitis with papillitis in leptospirosis. Am. J. Ophthalmol. 117, 118–119 (1994).
Faine, S., Adler, B., Christopher, W. & Valentine, R. Fatal congenital human leptospirosis. Zentralbl. Bakteriol. Mikrobiol. Hyg. A 257, 548 (1984).
Sharma, K. K., Madhvilatha, P., Kalawat, U. & Sivakumar, V. Leptospirosis-induced still birth and postpartum sepsis. Indian J. Pathol. Microbiol. 54, 426–427 (2011).
Shaked, Y., Shpilberg, O., Samra, D. & Samra, Y. Leptospirosis in pregnancy and its effect on the fetus: case report and review. Clin. Infect. Dis. 17, 241–243 (1993).
Tramoni, G., Clément, H. J., Lopez, F. & Viale, J. P. An unusual case of post partum haemorrhage: leptospirosis infection [French]. Ann. Fr. Anesth. Reanim. 22, 363–365 (2003).
Acknowledgements
The authors are grateful to P. Ruwanpathirana for providing the clinical photographs used in Fig. 4.
Author information
Authors and Affiliations
Contributions
Introduction (S.R., N.F. and C.R.); Epidemiology (A.D., S.R., N.F. and C.R.); Mechanisms/pathophysiology (S.R., N.F. and C.R.); Diagnosis, screening and prevention (S.R., N.F. A.D., C.S. and C.R.); Management (S.R., C.S. and C.R.); Quality of life (S.R.); Outlook (S.R., N.F., A.D. and C.R.); overview of the Primer (S.R., N.F. and C.R.).
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Disease Primers thanks Suneth Agampodi, Natarajaseenivasan Kalimuthusamy, Paluru Vijayachari and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Informed consent
The authors affirm that human research participants provided informed consent for publication of the images in Fig. 4.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Rajapakse, S., Fernando, N., Dreyfus, A. et al. Leptospirosis. Nat Rev Dis Primers 11, 32 (2025). https://doi.org/10.1038/s41572-025-00614-5
Accepted:
Published:
DOI: https://doi.org/10.1038/s41572-025-00614-5
This article is cited by
-
Antibiotic therapy for severe bacterial infections
Intensive Care Medicine (2025)