Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Psoriasis

Abstract

Plaque psoriasis is a chronic, immune-mediated inflammatory skin disease that has considerable effects on patients’ physical, psychological and social well-being. It is strongly influenced by genetic predisposition, with HLA-C*06:02 showing the strongest association, particularly in those with early-onset disease. Additional susceptibility loci, including IL23A, IL12B and IL17RA, are linked to dysregulation of the IL-23–T helper 17 axis, which contributes to chronic inflammation and keratinocyte hyperproliferation. Plaque psoriasis is frequently associated with psoriatic arthritis and other comorbidities, such as cardiovascular disease, metabolic syndrome and psychiatric disorders, all of which contribute to increased morbidity and mortality. Management strategies are tailored to disease severity and the presence of comorbidities. For mild disease, topical therapies remain the first-line treatment, including corticosteroids, vitamin D analogues and topical calcineurin inhibitors. New non-steroidal agents, such as topical PDE4 and aryl hydrocarbon receptor agonists, offer additional options. In moderate-to-severe disease, oral systemic therapies, such as methotrexate, ciclosporin, acitretin, apremilast and deucravacitinib, provide a range of immunomodulatory effects. Biologic therapies targeting TNF, IL-17, IL-23 and IL-12/23 have demonstrated high efficacy in improving both cutaneous and systemic inflammation. Current research on systemic therapies is focused on the development of additional inhibitors of the Tyk2 pathway and inhibitors to IL-23 receptor, IL-17, and TNF. Early screening for psoriatic arthritis, proactive cardiovascular risk reduction and multidisciplinary care are crucial to optimizing long-term outcomes. Ongoing research continues to advance precision medicine approaches, with the goal of enhancing treatment durability and improving quality of life for individuals living with psoriasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Global prevalence of psoriasis.
Fig. 2: Psoriasis pathogenesis and feedforward inflammation.
Fig. 3: Clinical manifestations of psoriasis subtypes.
Fig. 4: Key conditions to consider in the differential diagnosis of psoriasis.
Fig. 5: Histopathology of psoriatic lesional skin.
Fig. 6: Possible psoriasis treatment algorithm.

Similar content being viewed by others

References

  1. Armstrong, A. W. & Read, C. Pathophysiology, clinical presentation, and treatment of psoriasis: a review. JAMA 323, 1945–1960 (2020). This comprehensive review details the pathogenesis, clinical presentation and diagnostic approach, comorbidities and risk factors, and treatment approach for psoriasis.

    Article  CAS  PubMed  Google Scholar 

  2. Armstrong, A. W. et al. Patient perspectives on psoriatic disease burden: results from the Global Psoriasis and Beyond Survey. Dermatology 239, 621–634 (2023).

    Article  PubMed  Google Scholar 

  3. Armstrong, A. W. et al. Psoriasis prevalence in adults in the United States. JAMA Dermatol. 157, 940–946 (2021).

    Article  PubMed  Google Scholar 

  4. Parisi, R. et al. National, regional, and worldwide epidemiology of psoriasis: systematic analysis and modelling study. BMJ 369, m1590 (2020). This systematic review and meta-analysis applies modelling to generate global, regional and country-specific prevalence estimates for psoriasis.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Pérez-Chada, L. M. et al. Patient-reported outcome measures for health-related quality of life in patients with psoriasis: a systematic review. JAMA Dermatol. 160, 550–563 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Telfer, N. R. The role of streptococcal infection in the initiation of guttate psoriasis. Arch. Dermatol. 128, 39 (1992).

    Article  CAS  PubMed  Google Scholar 

  7. Mallbris, L. et al. Psoriasis phenotype at disease onset: clinical characterization of 400 adult cases. J. Invest. Dermatol. 124, 499–504 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Ko, H. C., Jwa, S. W., Song, M., Kim, M. B. & Kwon, K. S. Clinical course of guttate psoriasis: long-term follow-up study. J. Dermatol. 37, 894–899 (2010).

    Article  PubMed  Google Scholar 

  9. Sbidian, E. et al. Respiratory virus infection triggers acute psoriasis flares across different clinical subtypes and genetic backgrounds. Br. J. Dermatol. 181, 1304–1306 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Navarini, A. A. et al. European consensus statement on phenotypes of pustular psoriasis. J. Eur. Acad. Dermatol. Venereol. 31, 1792–1799 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Choon, S. E. et al. International consensus definition and diagnostic criteria for generalized pustular psoriasis from the International Psoriasis Council. JAMA Dermatol. 160, 758–768 (2024).

    Article  PubMed  Google Scholar 

  12. Boyd, A. S. & Menter, A. Erythrodermic psoriasis. J. Am. Acad. Dermatol. 21, 985–991 (1989).

    Article  CAS  PubMed  Google Scholar 

  13. Gupta, R., Debbaneh, M. G. & Liao, W. Genetic epidemiology of psoriasis. Curr. Dermatol. Rep. 3, 61–78 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Feng, B. J. et al. Multiple loci within the major histocompatibility complex confer risk of psoriasis. PLoS Genet. 5, e1000606 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Johnston, A. et al. Susceptibility-associated genetic variation at IL12B enhances Th1 polarization in psoriasis. Hum. Mol. Genet. 22, 1807–1815 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gudjonsson, J. E. & Johnston, A. Current understanding of the genetic basis of psoriasis. Expert. Rev. Clin. Immunol. 5, 433–443 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Dand, N. et al. Psoriasis and genetics. Acta Derm. Venereol. 100, 55–65 (2020).

    Article  Google Scholar 

  18. Dand, N. et al. GWAS meta-analysis of psoriasis identifies new susceptibility alleles impacting disease mechanisms and therapeutic targets. Nat. Commun. 16, 2051 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yan, D., Ahn, R., Leslie, S. & Liao, W. Clinical and genetic risk factors associated with psoriatic arthritis among patients with psoriasis. Dermatol. Ther. 8, 593–604 (2018).

    Article  Google Scholar 

  20. Griffiths, C. E. M., Armstrong, A. W., Gudjonsson, J. E. & Barker, J. Psoriasis. Lancet 397, 1301–1315 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. Mrowietz, U., Lauffer, F., Sondermann, W., Gerdes, S. & Sewerin, P. Psoriasis as a systemic disease. Dtsch. Arztebl. Int. 121, 467–472 (2024).

    PubMed  PubMed Central  Google Scholar 

  22. World Health Organization. Global report on psoriasis. WHO www.who.int/publications/i/item/global-report-on-psoriasis (2016).

  23. Mease, P. & Goffe, B. S. Diagnosis and treatment of psoriatic arthritis. J. Am. Acad. Dermatol. 52, 1–19 (2005).

    Article  PubMed  Google Scholar 

  24. Yeung, H. et al. Psoriasis severity and the prevalence of major medical comorbidity: a population-based study. JAMA Dermatol. 149, 1173–1179 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Armstrong, A. W., Harskamp, C. T., Ledo, L., Rogers, J. H. & Armstrong, E. J. Coronary artery disease in patients with psoriasis referred for coronary angiography. Am. J. Cardiol. 109, 976–980 (2012).

    Article  PubMed  Google Scholar 

  26. Armstrong, A. W. et al. Psoriasis and risk of diabetes-associated microvascular and macrovascular complications. J. Am. Acad. Dermatol. 72, 968–977.e2 (2015).

    Article  PubMed  Google Scholar 

  27. Armstrong, A. W., Harskamp, C. T. & Armstrong, E. J. The association between psoriasis and obesity: a systematic review and meta-analysis of observational studies. Nutr. Diabetes 2, e54 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Armstrong, A. W., Harskamp, C. T. & Armstrong, E. J. Psoriasis and metabolic syndrome: a systematic review and meta-analysis of observational studies. J. Am. Acad. Dermatol. 68, 654–662 (2013).

    Article  PubMed  Google Scholar 

  29. Gelfand, J. M. et al. Risk of myocardial infarction in patients with psoriasis. JAMA 296, 1735–1741 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Singh, S., Taylor, C., Kornmehl, H. & Armstrong, A. W. Psoriasis and suicidality: a systematic review and meta-analysis. J. Am. Acad. Dermatol. 77, 425–440.e2 (2017).

    Article  PubMed  Google Scholar 

  31. Dowlatshahi, E. A., Wakkee, M., Arends, L. R. & Nijsten, T. The prevalence and odds of depressive symptoms and clinical depression in psoriasis patients: a systematic review and meta-analysis. J. Invest. Dermatol. 134, 1542–1551 (2014).

    Article  PubMed  Google Scholar 

  32. Mansouri, B. et al. Comparison of coronary artery calcium scores between patients with psoriasis and type 2 diabetes. JAMA Dermatol. 152, 1244–1253 (2016).

    Article  PubMed  Google Scholar 

  33. Gelfand, J. M. et al. The risk of stroke in patients with psoriasis. J. Invest. Dermatol. 129, 2411–2418 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mehta, N. N. et al. Patients with severe psoriasis are at increased risk of cardiovascular mortality: cohort study using the general practice research database. Eur. Heart J. 31, 1000–1006 (2010).

    Article  PubMed  Google Scholar 

  35. Armstrong, E. J., Harskamp, C. T. & Armstrong, A. W. Psoriasis and major adverse cardiovascular events: a systematic review and meta-analysis of observational studies. J. Am. Heart Assoc. 2, e000062 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Li, Q. et al. RNA editing underlies genetic risk of common inflammatory diseases. Nature 608, 569–577 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Parisi, R., Symmons, D. P., Griffiths, C. E. & Ashcroft, D. M. Global epidemiology of psoriasis: a systematic review of incidence and prevalence. J. Invest. Dermatol. 133, 377–385 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Payne, K. et al. Prevalence of multiple long-term conditions with psoriasis in England: a cohort study using the Clinical Practice Research Datalink. JEADV Clin. Pract. 3, 117–127 (2024).

    Article  Google Scholar 

  39. Springate, D. A. et al. Incidence, prevalence and mortality of patients with psoriasis: a U.K. population-based cohort study. Br. J. Dermatol. 176, 650–658 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. Leder, R. O. & Farber, M. M. The variable incidence of psoriasis in sub-Saharan Africa. Int. J. Dermatol. 36, 911–919 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. Iskandar, I. Y. K. et al. Incidence, prevalence, and mortality of people with psoriasis and psoriatic arthritis in Taiwan: a nationwide cohort study. Acta Derm. Venereol. 102, adv00807 (2022).

    Article  PubMed  Google Scholar 

  42. Wang, K., Zhao, Y. & Cao, X. Global burden and future trends in psoriasis epidemiology: insights from the Global Burden of Disease Study 2019 and predictions to 2030. Arch. Dermatol. Res. 316, 114 (2024).

    Article  PubMed  Google Scholar 

  43. Grjibovski, A. M., Olsen, A. O., Magnus, P. & Harris, J. R. Psoriasis in Norwegian twins: contribution of genetic and environmental effects. J. Eur. Acad. Dermatol. Venereol. 21, 1337–1343 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Yan, D. et al. New frontiers in psoriatic disease research, part I: genetics, environmental triggers, immunology, pathophysiology, and precision medicine. J. Investig. Dermatol. 141, 2112–2122.e3 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. Jordan, C. T. et al. PSORS2 is due to mutations in CARD14. Am. J. Hum. Genet. 90, 784–795 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jordan, C. T. et al. Rare and common variants in CARD14, encoding an epidermal regulator of NF-κB, in psoriasis. Am. J. Hum. Genet. 90, 796–808 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rutsch, F. et al. A specific IFIH1 gain-of-function mutation causes Singleton–Merten syndrome. Am. J. Hum. Genet. 96, 275–282 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ferreira, C. R. et al. DDX58 and classic Singleton–Merten syndrome. J. Clin. Immunol. 39, 75–80 (2019).

    Article  PubMed  Google Scholar 

  49. Zou, Y. et al. Prevalence, outcomes and associated factors of SARS-CoV-2 infection in psoriasis patients of Southwest China: a cross-sectional survey. Sci. Rep. 14, 6331 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Morar, N., Willis-Owen, S. A., Maurer, T. & Bunker, C. B. HIV-associated psoriasis: pathogenesis, clinical features, and management. Lancet Infect. Dis. 10, 470–478 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Setty, A. R., Curhan, G. & Choi, H. K. Obesity, waist circumference, weight change, and the risk of psoriasis in women: Nurses’ Health Study II. Arch. Intern. Med. 167, 1670–1675 (2007).

    Article  PubMed  Google Scholar 

  52. Aune, D. et al. Body mass index, abdominal fatness, weight gain and the risk of psoriasis: a systematic review and dose-response meta-analysis of prospective studies. Eur. J. Epidemiol. 33, 1163–1178 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Carrascosa, J. M. et al. Obesity and psoriasis: inflammatory nature of obesity, relationship between psoriasis and obesity, and therapeutic implications. Actas Dermosifiliogr. 105, 31–44 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Guzik, T. J., Mangalat, D. & Korbut, R. Adipocytokines – novel link between inflammation and vascular function? J. Physiol. Pharmacol. 57, 505–528 (2006).

    CAS  PubMed  Google Scholar 

  55. Davidovici, B. B. et al. Psoriasis and systemic inflammatory diseases: potential mechanistic links between skin disease and co-morbid conditions. J. Invest. Dermatol. 130, 1785–1796 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Maglio, C., Peltonen, M., Rudin, A. & Carlsson, L. M. S. Bariatric surgery and the incidence of psoriasis and psoriatic arthritis in the Swedish Obese Subjects study. Obesity 25, 2068–2073 (2017).

    Article  PubMed  Google Scholar 

  57. Egeberg, A., Sørensen, J. A., Gislason, G. H., Knop, F. K. & Skov, L. Incidence and prognosis of psoriasis and psoriatic arthritis in patients undergoing bariatric surgery. JAMA Surg. 152, 344–349 (2017).

    Article  PubMed  Google Scholar 

  58. Phan, K., Lee, G. & Fischer, G. Pediatric psoriasis and association with cardiovascular and metabolic comorbidities: systematic review and meta-analysis. Pediatr. Dermatol. 37, 661–669 (2020).

    Article  PubMed  Google Scholar 

  59. Armstrong, A. W., Harskamp, C. T., Dhillon, J. S. & Armstrong, E. J. Psoriasis and smoking: a systematic review and meta-analysis. Br. J. Dermatol. 170, 304–314 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. Fortes, C. et al. Relationship between smoking and the clinical severity of psoriasis. Arch. Dermatol. 141, 1580–1584 (2005).

    Article  PubMed  Google Scholar 

  61. Brenaut, E. et al. Alcohol consumption and psoriasis: a systematic literature review. J. Eur. Acad. Dermatol. Venereol. 27, 30–35 (2013).

    Article  PubMed  Google Scholar 

  62. Choi, J. et al. Dose-response analysis between alcohol consumption and psoriasis: a systematic review and meta-analysis. J. Dtsch. Dermatol. Ges. 22, 641–652 (2024).

    PubMed  Google Scholar 

  63. Hall, J. M. et al. Psychological stress and the cutaneous immune response: roles of the HPA axis and the sympathetic nervous system in atopic dermatitis and psoriasis. Dermatol. Res. Pract. 2012, 403908 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Mrowietz, U. et al. ActiPso: definition of activity types for psoriatic disease: a novel marker for an advanced disease classification. J. Eur. Acad. Dermatol. Venereol. 35, 2027–2033 (2021).

    Article  CAS  PubMed  Google Scholar 

  65. Kowalewska, B., Krajewska-Kulak, E. & Sobolewski, M. The impact of stress-coping strategies and the severity of psoriasis on self-esteem, illness acceptance and life satisfaction. Dermatol. Ther. 12, 529–543 (2022).

    Article  Google Scholar 

  66. Li, Y. et al. Assessing causal relationships between gut microbiota and psoriasis: evidence from two sample Mendelian randomization analysis. Sci. Rep. 14, 8831 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chen, L. et al. Skin and gut microbiome in psoriasis: gaining insight into the pathophysiology of it and finding novel therapeutic strategies. Front. Microbiol. 11, 589726 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Wu, R. et al. Psoriasis and gut microbiota: a Mendelian randomization study. J. Cell Mol. Med. 28, e18023 (2024).

    Article  CAS  PubMed  Google Scholar 

  69. Danlos, F. X. et al. Safety and efficacy of anti-programmed death 1 antibodies in patients with cancer and pre-existing autoimmune or inflammatory disease. Eur. J. Cancer 91, 21–29 (2018).

    Article  CAS  PubMed  Google Scholar 

  70. Ritchlin, C. T., Colbert, R. A. & Gladman, D. D. Psoriatic arthritis. N. Engl. J. Med. 376, 957–970 (2017).

    Article  PubMed  Google Scholar 

  71. Mody, E., Husni, M. E., Schur, P. & Qureshi, A. A. Multidisciplinary evaluation of patients with psoriasis presenting with musculoskeletal pain: a dermatology: rheumatology clinic experience. Br. J. Dermatol. 157, 1050–1051 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Dowlatshahi, E. A. et al. Psoriasis is not associated with atherosclerosis and incident cardiovascular events: the Rotterdam study. J. Invest. Dermatol. 133, 2347–2354 (2013).

    Article  CAS  PubMed  Google Scholar 

  73. Gao, N. et al. The association between psoriasis and risk of cardiovascular disease: a Mendelian randomization analysis. Front. Immunol. 13, 918224 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Patrick, M. T. et al. Shared genetic risk factors and causal association between psoriasis and coronary artery disease. Nat. Commun. 13, 6565 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gelfand, J. M. et al. The risk of mortality in patients with psoriasis: results from a population-based study. Arch. Dermatol. 143, 1493–1499 (2007).

    Article  PubMed  Google Scholar 

  76. Samarasekera, E. J., Neilson, J. M., Warren, R. B., Parnham, J. & Smith, C. H. Incidence of cardiovascular disease in individuals with psoriasis: a systematic review and meta-analysis. J. Invest. Dermatol. 133, 2340–2346 (2013).

    Article  PubMed  Google Scholar 

  77. Ma, C., Schupp, C. W., Armstrong, E. J. & Armstrong, A. W. Psoriasis and dyslipidemia: a population-based study analyzing the National Health and Nutrition Examination Survey (NHANES). J. Eur. Acad. Dermatol. Venereol. 28, 1109–1112 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. Ruan, Z. et al. Association between psoriasis and nonalcoholic fatty liver disease among outpatient US adults. JAMA Dermatol. 158, 745–753 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Belinchon-Romero, I. et al. Non-alcoholic fatty liver disease is associated with bacterial translocation and a higher inflammation response in psoriatic patients. Sci. Rep. 11, 8593 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Rinella, M. E. et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. J. Hepatol. 79, 1542–1556 (2023).

    Article  CAS  PubMed  Google Scholar 

  81. Wu, K. K. & Armstrong, A. W. Suicidality among psoriasis patients: a critical evidence synthesis. G. Ital. Dermatol. Venereol. 154, 56–63 (2019).

    Article  PubMed  Google Scholar 

  82. Mrowietz, U., Sumbul, M. & Gerdes, S. Depression, a major comorbidity of psoriatic disease, is caused by metabolic inflammation. J. Eur. Acad. Dermatol. Venereol. 37, 1731–1738 (2023).

    Article  CAS  PubMed  Google Scholar 

  83. Korman, A. M., Dane, H., Ali, A. & Feldman, S. R. Impact and management of depression in psoriasis patients. Expert. Opin. Pharmacother. 17, 147–152 (2016).

    Article  PubMed  Google Scholar 

  84. Wan, J. et al. Risk of moderate to advanced kidney disease in patients with psoriasis: population based cohort study. BMJ 347, f5961 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Chi, C. C. et al. Risk of incident chronic kidney disease and end-stage renal disease in patients with psoriasis: a nationwide population-based cohort study. J. Dermatol. Sci. 78, 232–238 (2015).

    Article  PubMed  Google Scholar 

  86. Fu, Y., Lee, C. H. & Chi, C. C. Association of psoriasis with inflammatory bowel disease: a systematic review and meta-analysis. JAMA Dermatol. 154, 1417–1423 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Fitch, E., Harper, E., Skorcheva, I., Kurtz, S. E. & Blauvelt, A. Pathophysiology of psoriasis: recent advances on IL-23 and Th17 cytokines. Curr. Rheumatol. Rep. 9, 461–467 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Di Cesare, A., Di Meglio, P. & Nestle, F. O. The IL-23/Th17 axis in the immunopathogenesis of psoriasis. J. Investig. Dermatol. 129, 1339–1350 (2009). This is the key review describing the importance of the IL-23–TH17 pathway in psoraisis pathogenesis.

    Article  PubMed  Google Scholar 

  89. Hawkes, J. E., Yan, B. Y., Chan, T. C. & Krueger, J. G. Discovery of the IL-23/IL-17 signaling pathway and the treatment of psoriasis. J. Immunol. 201, 1605–1613 (2018).

    Article  CAS  PubMed  Google Scholar 

  90. Arakawa, A. et al. Melanocyte antigen triggers autoimmunity in human psoriasis. J. Exp. Med. 212, 2203–2212 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Girolomoni, G. et al. The role of IL-23 and the IL-23/TH17 immune axis in the pathogenesis and treatment of psoriasis. J. Eur. Acad. Dermatol. Venereol. 31, 1616–1626 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Fries, A. et al. Differentiation of IL-26+ TH17 intermediates into IL-17A producers via epithelial crosstalk in psoriasis. Nat. Commun. 14, 3878 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ma, F. et al. Single cell and spatial sequencing define processes by which keratinocytes and fibroblasts amplify inflammatory responses in psoriasis. Nat. Commun. 14, 3455 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Francis, L. et al. Single-cell analysis of psoriasis resolution demonstrates an inflammatory fibroblast state targeted by IL-23 blockade. Nat. Commun. 15, 913 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wu, D. et al. A single-cell atlas of IL-23 inhibition in cutaneous psoriasis distinguishes clinical response. Sci. Immunol. 9, eadi2848 (2024).

    Article  CAS  PubMed  Google Scholar 

  96. Van Der Fits, L., Van Der Wel, L. I., Laman, J. D., Prens, E. P. & Verschuren, M. C. M. In psoriasis lesional skin the type I interferon signaling pathway is activated, whereas interferon-α sensitivity is unaltered. J. Investig. Dermatol. 122, 51–60 (2004).

    Article  PubMed  Google Scholar 

  97. Shallev, L. et al. Decreased A-to-I RNA editing as a source of keratinocytes’ dsRNA in psoriasis. RNA 24, 828–840 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Funk, J., Langeland, T., Schrumpf, E. & Hanssen, L. E. Psoriasis induced by interferon-α. Br. J. Dermatol. 125, 463–465 (1991).

    Article  CAS  PubMed  Google Scholar 

  99. Patel, U., Mark, N. M., Machler, B. C. & Levine, V. J. Imiquimod 5% cream induced psoriasis: a case report, summary of the literature and mechanism: Correspondence. Br. J. Dermatol. 164, 670–672 (2011).

    CAS  PubMed  Google Scholar 

  100. Ragimbeau, J. et al. The tyrosine kinase Tyk2 controls IFNAR1 cell surface expression. EMBO J. 22, 537–547 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Strober, B. et al. Deucravacitinib versus placebo and apremilast in moderate to severe plaque psoriasis: efficacy and safety results from the 52-week, randomized, double-blinded, phase 3 Program fOr evaluation of TYK2 inhibitor psoriasis second trial. J. Am. Acad. Dermatol. 88, 40–51 (2023).

    Article  CAS  PubMed  Google Scholar 

  102. Hollox, E. J. et al. Psoriasis is associated with increased β-defensin genomic copy number. Nat. Genet. 40, 23–25 (2008).

    Article  CAS  PubMed  Google Scholar 

  103. Lande, R. et al. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature 449, 564–569 (2007).

    Article  CAS  PubMed  Google Scholar 

  104. Lande, R. et al. The antimicrobial peptide LL37 is a T-cell autoantigen in psoriasis. Nat. Commun. 5, 5621 (2014).

    Article  CAS  PubMed  Google Scholar 

  105. Zaba, L. C., Krueger, J. G. & Lowes, M. A. Resident and “inflammatory” dendritic cells in human skin. J. Investig. Dermatol. 129, 302–308 (2009).

    Article  CAS  PubMed  Google Scholar 

  106. Hänsel, A. et al. Human slan (6-sulfo LacNAc) dendritic cells are inflammatory dermal dendritic cells in psoriasis and drive strong TH17/TH1 T-cell responses. J. Allergy Clin. Immunol. 127, 787–794.e9 (2011).

    Article  PubMed  Google Scholar 

  107. Mehta, H. et al. Differential changes in inflammatory mononuclear phagocyte and T-cell profiles within psoriatic skin during treatment with guselkumab vs. secukinumab. J. Investig. Dermatol. 141, 1707–1718.e9 (2021).

    Article  CAS  PubMed  Google Scholar 

  108. Blauvelt, A. & Chiricozzi, A. The immunologic role of IL-17 in psoriasis and psoriatic arthritis pathogenesis. Clin. Rev. Allergy Immunol. 55, 379–390 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Cheuk, S. et al. Epidermal Th22 and Tc17 cells form a localized disease memory in clinically healed psoriasis. J. Immunol. 192, 3111–3120 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Blauvelt, A. Resident memory T cells in psoriasis: key to a cure? J. Psoriasis Psoriatic Arthritis 7, 157–159 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Whitley, S. K. et al. Local IL-23 is required for proliferation and retention of skin-resident memory TH17 cells. Sci. Immunol. 7, eabq3254 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Lin, A. M. et al. Mast cells and neutrophils release IL-17 through extracellular trap formation in psoriasis. J. Immunol. 187, 490–500 (2011).

    Article  CAS  PubMed  Google Scholar 

  113. Zenobia, C. & Hajishengallis, G. Basic biology and role of interleukin‐17 in immunity and inflammation. Periodontol. 2000 69, 142–159 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Chiricozzi, A. et al. Integrative responses to IL-17 and TNF-α in human keratinocytes account for key inflammatory pathogenic circuits in psoriasis. J. Investig. Dermatol. 131, 677–687 (2011).

    Article  CAS  PubMed  Google Scholar 

  115. Harper, E. G. et al. Th17 cytokines stimulate CCL20 expression in keratinocytes in vitro and in vivo: implications for psoriasis pathogenesis. J. Investig. Dermatol. 129, 2175–2183 (2009).

    Article  CAS  PubMed  Google Scholar 

  116. Miossec, P. & Kolls, J. K. Targeting IL-17 and TH17 cells in chronic inflammation. Nat. Rev. Drug. Dis. 11, 763–776 (2012).

    Article  CAS  Google Scholar 

  117. Zhang, P. et al. Analysis of Th1/Th2 response pattern for erythrodermic psoriasis. J. Huazhong Univ. Sci. Technol. Med. Sci. 34, 596–601 (2014).

    Article  Google Scholar 

  118. Xing, X. et al. IL-17 responses are the dominant inflammatory signal linking inverse, erythrodermic, and chronic plaque psoriasis. J. Invest. Dermatol. 136, 2498–2501 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Tauber, M. et al. IL36RN mutations affect protein expression and function: a basis for genotype-phenotype correlation in pustular diseases. J. Invest. Dermatol. 136, 1811–1819 (2016).

    Article  CAS  PubMed  Google Scholar 

  120. Zhu, T., Jin, H., Shu, D., Li, F. & Wu, C. Association of IL36RN mutations with clinical features, therapeutic response to acitretin, and frequency of recurrence in patients with generalized pustular psoriasis. Eur. J. Dermatol. 28, 217–224 (2018).

    Article  CAS  PubMed  Google Scholar 

  121. Johnston, A. et al. IL-1 and IL-36 are dominant cytokines in generalized pustular psoriasis. J. Allergy Clin. Immunol. 140, 109–120 (2017).

    Article  CAS  PubMed  Google Scholar 

  122. Wang, T. S. et al. Correlation of IL36RN mutation with different clinical features of pustular psoriasis in Chinese patients. Arch. Dermatol. Res. 308, 55–63 (2016).

    Article  CAS  PubMed  Google Scholar 

  123. Takahashi, T., Fujimoto, N., Kabuto, M., Nakanishi, T. & Tanaka, T. Mutation analysis of IL36RN gene in Japanese patients with palmoplantar pustulosis. J. Dermatol. 44, 80–83 (2017).

    Article  CAS  PubMed  Google Scholar 

  124. Misiak-Galazka, M., Zozula, J. & Rudnicka, L. Palmoplantar pustulosis: recent advances in etiopathogenesis and emerging treatments. Am. J. Clin. Dermatol. 21, 355–370 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Bachelez, H. et al. Trial of spesolimab for generalized pustular psoriasis. N. Engl. J. Med. 385, 2431–2440 (2021).

    Article  CAS  PubMed  Google Scholar 

  126. Burden, A. D. et al. Spesolimab efficacy and safety in patients with moderate-to-severe palmoplantar pustulosis: a multicentre, double-blind, randomised, placebo-controlled, phase IIb, dose-finding study. Dermatol. Ther. 13, 2279–2297 (2023).

    Article  Google Scholar 

  127. Mrowietz, U. et al. Spesolimab, an anti-interleukin-36 receptor antibody, in patients with palmoplantar pustulosis: results of a phase IIa, multicenter, double-blind, randomized, placebo-controlled pilot study. Dermatol. Ther. 11, 571–585 (2021).

    Article  Google Scholar 

  128. Gkini, M. A. et al. Psoriasis in people with skin of color: an evidence-based update. Int. J. Dermatol. 64, 667–677 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Hong, J. J. et al. Genital and inverse/intertriginous psoriasis: an updated review of therapies and recommendations for practical management. Dermatol. Ther. 11, 833–844 (2021).

    Article  Google Scholar 

  130. Jiaravuthisan, M. M., Sasseville, D., Vender, R. B., Murphy, F. & Muhn, C. Y. Psoriasis of the nail: anatomy, pathology, clinical presentation, and a review of the literature on therapy. J. Am. Acad. Dermatol. 57, 1–27 (2007).

    Article  PubMed  Google Scholar 

  131. Farley, E., Masrour, S., McKey, J. & Menter, A. Palmoplantar psoriasis: a phenotypical and clinical review with introduction of a new quality-of-life assessment tool. J. Am. Acad. Dermatol. 60, 1024–1031 (2009).

    Article  PubMed  Google Scholar 

  132. Piaserico, S. et al. Comparative effectiveness of biologics for patients with moderate-to-severe psoriasis and special area involvement: week 12 results from the observational Psoriasis Study of Health Outcomes (PSoHO). Front. Med. 10, 1185523 (2023).

    Article  Google Scholar 

  133. Huang, I. H., Wu, P. C., Chiu, H. Y. & Huang, Y. H. Small-molecule inhibitors and biologics for palmoplantar psoriasis and palmoplantar pustulosis: a systematic review and network meta-analysis. Am. J. Clin. Dermatol. 25, 347–358 (2024).

    Article  PubMed  Google Scholar 

  134. Duffin, K. C., Hwang, S. T. & Krueger, J. G. Advances and controversies in our understanding of guttate and plaque psoriasis. J. Rheumatol. 50, 4–7 (2023).

    Article  PubMed  Google Scholar 

  135. Munera-Campos, M., Ballesca, F. & Carrascosa, J. M. Paradoxical reactions to biologic therapy in psoriasis: a review of the literature. Actas Dermosifiliogr. 109, 791–800 (2018).

    Article  CAS  PubMed  Google Scholar 

  136. Bhutani, T. & Farberg, A. S. Clinical and disease burden of patients with generalized pustular psoriasis: a review of real-world evidence. Dermatol. Ther. 14, 341–360 (2024).

    Article  Google Scholar 

  137. Li, L. et al. Variants of CARD14 are predisposing factors for generalized pustular psoriasis (GPP) with psoriasis vulgaris but not for GPP alone in a Chinese population. Br. J. Dermatol. 180, 425–426 (2019).

    Article  CAS  PubMed  Google Scholar 

  138. Mossner, R. et al. The genetic basis for most patients with pustular skin disease remains elusive. Br. J. Dermatol. 178, 740–748 (2018).

    Article  CAS  PubMed  Google Scholar 

  139. Brunasso, A. M. et al. Clinical and epidemiological comparison of patients affected by palmoplantar plaque psoriasis and palmoplantar pustulosis: a case series study. Br. J. Dermatol. 168, 1243–1251 (2013).

    Article  CAS  PubMed  Google Scholar 

  140. Smith, M. P. et al. Acrodermatitis continua of Hallopeau: clinical perspectives. Psoriasis 9, 65–72 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Singh, R. K. et al. Erythrodermic psoriasis: pathophysiology and current treatment perspectives. Psoriasis 6, 93–104 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Jackson, J. M., Alexis, A., Zirwas, M. & Taylor, S. Unmet needs for patients with seborrheic dermatitis. J. Am. Acad. Dermatol. 90, 597–604 (2024).

    Article  CAS  PubMed  Google Scholar 

  143. Joshi, T. P. & Duvic, M. Pityriasis rubra pilaris: an updated review of clinical presentation, etiopathogenesis, and treatment options. Am. J. Clin. Dermatol. 25, 243–259 (2024).

    Article  PubMed  Google Scholar 

  144. Craiglow, B. G. et al. CARD14-associated papulosquamous eruption: a spectrum including features of psoriasis and pityriasis rubra pilaris. J. Am. Acad. Dermatol. 79, 487–494 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Kimmel, G. W. & Lebwohl, M. in Evidence-Based Psoriasis: Diagnosis and Treatment (eds T. Bhutani, T., Liao, W. & M. Nakamura, M.) 1–16 (Springer, 2018).

  146. Choon, S. E., Navarini, A. A. & Pinter, A. Clinical course and characteristics of generalized pustular psoriasis. Am. J. Clin. Dermatol. 23, 21–29 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Menter, A. et al. Joint AAD-NPF guidelines of care for the management and treatment of psoriasis with biologics. J. Am. Acad. Dermatol. 80, 1029–1072 (2019).

    Article  PubMed  Google Scholar 

  148. Murphy, M., Kerr, P. & Grant-Kels, J. M. The histopathologic spectrum of psoriasis. Clin. Dermatol. 25, 524–528 (2007).

    Article  PubMed  Google Scholar 

  149. Golinska, J., Sar-Pomian, M. & Rudnicka, L. Dermoscopic features of psoriasis of the skin, scalp and nails – a systematic review. J. Eur. Acad. Dermatol. Venereol. 33, 648–660 (2019).

    Article  CAS  PubMed  Google Scholar 

  150. Robinson, A., Kardos, M. & Kimball, A. B. Physician Global Assessment (PGA) and Psoriasis Area and Severity Index (PASI): why do both? A systematic analysis of randomized controlled trials of biologic agents for moderate to severe plaque psoriasis. J. Am. Acad. Dermatol. 66, 369–375 (2012).

    Article  PubMed  Google Scholar 

  151. Langley, R. G., Feldman, S. R., Nyirady, J., van de Kerkhof, P. & Papavassilis, C. The 5-point investigator’s global assessment (IGA) scale: a modified tool for evaluating plaque psoriasis severity in clinical trials. J. Dermatol. Treat. 26, 23–31 (2015).

    Article  CAS  Google Scholar 

  152. Cappelleri, J. C. & Bushmakin, A. G. Interpretation of patient-reported outcomes. Stat. Methods Med. Res. 23, 460–483 (2014).

    Article  PubMed  Google Scholar 

  153. Strober, B. et al. Recategorization of psoriasis severity: Delphi consensus from the International Psoriasis Council. J. Am. Acad. Dermatol. 82, 117–122 (2020). This consensus statement from the International Psoriasis Council proposes categorization of psoriasis disease severity based on body surface area, special areas affected and topical treatment response or failure following a modified Delphi approach to develop consensus.

    Article  PubMed  Google Scholar 

  154. Dauden, E. et al. Position statement for the management of comorbidities in psoriasis. J. Eur. Acad. Dermatol. Venereol. 32, 2058–2073 (2018).

    Article  CAS  PubMed  Google Scholar 

  155. Elmets, C. A. et al. Joint AAD-NPF guidelines of care for the management and treatment of psoriasis with awareness and attention to comorbidities. J. Am. Acad. Dermatol. 80, 1073–1113 (2019). These comprehensive guidelines from the American Academy of Dermatologists and the National Psoriasis Foundation provide guidance on the management of extracutaneous manifestations of psoriasis and other psoriasis-associated medical comorbidities.

    Article  PubMed  Google Scholar 

  156. Khraishi, M. et al. High prevalence of psoriatic arthritis in a cohort of patients with psoriasis seen in a dermatology practice. J. Cutan. Med. Surg. 16, 122–127 (2012).

    Article  PubMed  Google Scholar 

  157. Ibrahim, G., Waxman, R. & Helliwell, P. S. The prevalence of psoriatic arthritis in people with psoriasis. Arthritis Care Res. 61, 1373–1378 (2009).

    Article  CAS  Google Scholar 

  158. Helliwell, P. S. Psoriasis Epidemiology Screening Tool (PEST): a report from the GRAPPA 2009 annual meeting. J. Rheumatol. 38, 551–552 (2011).

    Article  PubMed  Google Scholar 

  159. Husni, M. E., Meyer, K. H., Cohen, D. S., Mody, E. & Qureshi, A. A. The PASE questionnaire: pilot-testing a Psoriatic Arthritis Screening and Evaluation tool. J. Am. Acad. Dermatol. 57, 581–587 (2007).

    Article  PubMed  Google Scholar 

  160. Gladman, D. D. et al. Development and initial validation of a screening questionnaire for psoriatic arthritis: the Toronto Psoriatic Arthritis Screen (ToPAS). Ann. Rheum. Dis. 68, 497–501 (2009).

    Article  CAS  PubMed  Google Scholar 

  161. Khraishi, M., Landells, I. & Mugford, G. The self-administered Psoriasis and Arthritis Screening Questionnaire (PASQ): a sensitive and specific tool for the diagnosis of early and established psoriatic arthritis. Psoriasis Forum 16a, 9–16 (2010).

    Article  Google Scholar 

  162. Tinazzi, I. et al. The early psoriatic arthritis screening questionnaire: a simple and fast method for the identification of arthritis in patients with psoriasis. Rheumatology 51, 2058–2063 (2012).

    Article  PubMed  Google Scholar 

  163. Salaffi, F. et al. A validation study of the Simple Psoriatic Arthritis Screening (SiPAS) questionnaire to screen psoriasis patients for psoriatic arthritis. Clin. Exp. Rheumatol. 36, 127–135 (2018).

    PubMed  Google Scholar 

  164. Audureau, E. et al. Psoriatic arthritis screening by the dermatologist: development and first validation of the ‘PURE-4 scale’. J. Eur. Acad. Dermatol. Venereol. 32, 1950–1953 (2018).

    Article  CAS  PubMed  Google Scholar 

  165. Belinchón, I. et al. Dermatologists’ role in the early diagnosis of psoriatic arthritis: expert recommendations. Actas Dermosifiliogr. 111, 835–846 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Haroon, M., Gallagher, P. & FitzGerald, O. Diagnostic delay of more than 6 months contributes to poor radiographic and functional outcome in psoriatic arthritis. Ann. Rheum. Dis. 74, 1045–1050 (2015).

    Article  CAS  PubMed  Google Scholar 

  167. Taylor, W. et al. Classification criteria for psoriatic arthritis: development of new criteria from a large international study. Arthritis Rheumatism 54, 2665–2673 (2006).

    Article  PubMed  Google Scholar 

  168. Mrowietz, U. et al. Definition of treatment goals for moderate to severe psoriasis: a European consensus. Arch. Dermatol. Res. 303, 1–10 (2011).

    Article  CAS  PubMed  Google Scholar 

  169. Nast, A. et al. EuroGuiDerm guideline on the systemic treatment of psoriasis vulgaris – part 1: treatment and monitoring recommendations. J. Eur. Acad. Dermatol. Venereol. 34, 2461–2498 (2020).

    Article  CAS  PubMed  Google Scholar 

  170. Nast, A. et al. EuroGuiDerm guideline on the systemic treatment of psoriasis vulgaris – part 2: specific clinical and comorbid situations. J. Eur. Acad. Dermatol. Venereol. 35, 281–317 (2021). These EuroGuiDerm guidelines on approaching systemic treatment of psoriasis in the setting of special clinical scenarios include guidance on when to upgrade psoriasis severity classification from mild to moderate-to-severe.

    Article  CAS  PubMed  Google Scholar 

  171. Garshick, M. S., Ward, N. L., Krueger, J. G. & Berger, J. S. Cardiovascular risk in patients with psoriasis: JACC review topic of the week. J. Am. Coll. Cardiol. 77, 1670–1680 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Song, W. B., Soffer, D. E. & Gelfand, J. M. Using guidelines of care to lower cardiovascular risk in patients with psoriasis. Dermatol. Clin. 42, 417–428 (2024).

    Article  CAS  PubMed  Google Scholar 

  173. Berna-Rico, E. et al. Cardiovascular screening practices and statin prescription habits in patients with psoriasis among dermatologists, rheumatologists and primary care physicians. Acta Derm. Venereol. 103, adv5087 (2023).

    Article  PubMed  Google Scholar 

  174. Kroenke, K., Spitzer, R. L. & Williams, J. B. The Patient Health Questionnaire-2: validity of a two-item depression screener. Med. Care 41, 1284–1292 (2003).

    Article  PubMed  Google Scholar 

  175. Kromer, C. et al. Screening for depression in psoriasis patients during a dermatological consultation: a first step towards treatment. J. Dtsch. Dermatol. Ges. 19, 1451–1461 (2021).

    PubMed  Google Scholar 

  176. Schakel, K. et al. Early disease intervention with guselkumab in psoriasis leads to a higher rate of stable complete skin clearance (‘clinical super response’): week 28 results from the ongoing phase IIIb randomized, double-blind, parallel-group, GUIDE study. J. Eur. Acad. Dermatol. Venereol. 37, 2016–2027 (2023).

    Article  CAS  PubMed  Google Scholar 

  177. Elmets, C. A. et al. Joint AAD-NPF guidelines of care for the management and treatment of psoriasis with topical therapy and alternative medicine modalities for psoriasis severity measures. J. Am. Acad. Dermatol. 84, 432–470 (2021).

    Article  PubMed  Google Scholar 

  178. Lé, A. M. & Torres, T. New topical therapies for psoriasis. Am. J. Clin. Dermatol. 23, 13–24 (2022).

    Article  PubMed  Google Scholar 

  179. Guenther, L., Lynde, C. & Poulin, Y. Off-label use of topical calcineurin inhibitors in dermatologic disorders. J. Cutan. Med. Surg. 23, 27S–34S (2019).

    Article  CAS  PubMed  Google Scholar 

  180. Lebwohl, M. G. et al. Phase 3 trials of tapinarof cream for plaque psoriasis. N. Engl. J. Med. 385, 2219–2229 (2021).

    Article  CAS  PubMed  Google Scholar 

  181. Yelamos, O. et al. Non-invasive clinical and microscopic evaluation of the response to treatment with clobetasol cream vs. calcipotriol/betamethasone dipropionate foam in mild to moderate plaque psoriasis: an investigator-initiated, phase IV, unicentric, open, randomized clinical trial. J. Eur. Acad. Dermatol. Venereol. 35, 143–149 (2021).

    Article  CAS  PubMed  Google Scholar 

  182. Patel, N. U., Felix, K., Reimer, D. & Feldman, S. R. Calcipotriene/betamethasone dipropionate for the treatment of psoriasis vulgaris: an evidence-based review. Clin. Cosmet. Investig. Dermatol. 10, 385–391 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Pinter, A. et al. Randomized phase 3 trial demonstrating high efficacy, favourable safety and convenience of a novel calcipotriol and betamethasone dipropionate cream for the treatment of psoriasis. J. Eur. Acad. Dermatol. Venereol. 37, 2327–2335 (2023).

    Article  CAS  PubMed  Google Scholar 

  184. Nogueira, M., Puig, L. & Torres, T. JAK inhibitors for treatment of psoriasis: focus on selective TYK2 inhibitors. Drugs 80, 341–352 (2020).

    Article  CAS  PubMed  Google Scholar 

  185. Catlett, I. M. et al. Molecular and clinical effects of selective tyrosine kinase 2 inhibition with deucravacitinib in psoriasis. J. Allergy Clin. Immunol. 149, 2010–2020.e8 (2022).

    Article  CAS  PubMed  Google Scholar 

  186. Schafer, P. Apremilast mechanism of action and application to psoriasis and psoriatic arthritis. Biochem. Pharmacol. 83, 1583–1590 (2012).

    Article  CAS  PubMed  Google Scholar 

  187. Papp, K. et al. Apremilast, an oral phosphodiesterase 4 (PDE4) inhibitor, in patients with moderate to severe plaque psoriasis: results of a phase III, randomized, controlled trial (Efficacy and Safety Trial Evaluating the Effects of Apremilast in Psoriasis [ESTEEM] 1). J. Am. Acad. Dermatol. 73, 37–49 (2015).

    Article  CAS  PubMed  Google Scholar 

  188. Terui, T. et al. Efficacy and safety of apremilast for the treatment of Japanese patients with palmoplantar pustulosis: results from a phase 2, randomized, placebo-controlled study. Am. J. Clin. Dermatol. 24, 837–847 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Paul, C. et al. Efficacy and safety of apremilast, an oral phosphodiesterase 4 inhibitor, in patients with moderate-to-severe plaque psoriasis over 52 weeks: a phase III, randomized controlled trial (ESTEEM 2). Br. J. Dermatol. 173, 1387–1399 (2015).

    Article  CAS  PubMed  Google Scholar 

  190. Rich, P. et al. Apremilast, an oral phosphodiesterase 4 inhibitor, in patients with difficult-to-treat nail and scalp psoriasis: results of 2 phase III randomized, controlled trials (ESTEEM 1 and ESTEEM 2). J. Am. Acad. Dermatol. 74, 134–142 (2016).

    Article  CAS  PubMed  Google Scholar 

  191. Amor, K. T., Ryan, C. & Menter, A. The use of cyclosporine in dermatology: part I. J. Am. Acad. Dermatol. 63, 925–946 (2010).

    Article  CAS  PubMed  Google Scholar 

  192. Maza, A. et al. Oral cyclosporin in psoriasis: a systematic review on treatment modalities, risk of kidney toxicity and evidence for use in non‐plaque psoriasis. J. Eur. Acad. Dermatol. Venereol. 25, 19–27 (2011).

    Article  CAS  PubMed  Google Scholar 

  193. Menter, A. et al. Joint American Academy of Dermatology–National Psoriasis Foundation guidelines of care for the management of psoriasis with systemic nonbiologic therapies. J. Am. Acad. Dermatol. 82, 1445–1486 (2020).

    Article  CAS  PubMed  Google Scholar 

  194. Chen, L. et al. Circulating microRNA profile unveils mechanisms of action of acitretin for psoriasis vulgaris. Bioengineered 12, 1838–1850 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Lebwohl, M. et al. Consensus conference: acitretin in combination with UVB or PUVA in the treatment of psoriasis. J. Am. Acad. Dermatol. 45, 544–553 (2001).

    Article  CAS  PubMed  Google Scholar 

  196. van de Kerkhof, P. C. & de Rooij, M. J. Multiple squamous cell carcinomas in a psoriatic patient following high-dose photochemotherapy and cyclosporin treatment: response to long-term acitretin maintenance. Br. J. Dermatol. 136, 275–278 (1997).

    Article  PubMed  Google Scholar 

  197. Yan, K. et al. Methotrexate restores the function of peripheral blood regulatory T cells in psoriasis vulgaris via the CD73/AMPK/mTOR pathway. Br. J. Dermatol. 179, 896–905 (2018).

    Article  CAS  PubMed  Google Scholar 

  198. Thomas, S. et al. Methotrexate is a JAK/STAT pathway inhibitor. PLoS ONE 10, e0130078 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  199. West, J., Ogston, S. & Foerster, J. Safety and efficacy of methotrexate in psoriasis: a meta-analysis of published trials. PLoS ONE 11, e0153740 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Dos Santos Pereira, M. et al. Evaluation of liver fibrosis by transient elastography in Brazilian patients with psoriasis using methotrexate. J. Eur. Acad. Dermatol. Venereol. https://doi.org/10.1111/jdv.20654 (2025).

    Article  PubMed  Google Scholar 

  201. van Huizen, A. M., Sikkel, R., Caron, A. G. M., Menting, S. P. & Spuls, P. I. Methotrexate dosing regimen for plaque-type psoriasis: an update of a systematic review. J. Dermatol. Treat. 33, 3104–3118 (2022).

    Article  Google Scholar 

  202. Ghoreschi, K. et al. Fumarates improve psoriasis and multiple sclerosis by inducing type II dendritic cells. J. Exp. Med. 208, 2291–2303 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Atwan, A. et al. Oral fumaric acid esters for psoriasis. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD010497.pub2 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Bolognia, J. L., Jorizzo, J. L. & Schaffer, J. V. Dermatology 3rd edn (Elsevier, 2012).

  205. Tran, B. N. et al. Higher order structures of adalimumab, infliximab and their complexes with TNFα revealed by electron microscopy. Protein Sci. 26, 2392–2398 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Cessak, G. et al. TNF inhibitors – mechanisms of action, approved and off-label indications. Pharmacol. Rep. 66, 836–844 (2014).

    Article  CAS  PubMed  Google Scholar 

  207. Jadon, D. R. et al. Management of concomitant inflammatory bowel disease or uveitis in patients with psoriatic arthritis: an updated review informing the 2021 GRAPPA treatment recommendations. J. Rheumatol. 50, 438–450 (2023).

    CAS  PubMed  Google Scholar 

  208. Gelfand, J. M. & Garshick, M. TNF inhibitors and cardiovascular risk: friend or foe? J. Eur. Acad. Dermatol. Venereol. 38, 995–996 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Gonzalez-Cantero, A. et al. Impact of biological agents on imaging and biomarkers of cardiovascular disease in patients with psoriasis: a systematic review and meta-analysis of randomized placebo-controlled trials. J. Invest. Dermatol. 141, 2402–2411 (2021).

    Article  CAS  PubMed  Google Scholar 

  210. Mantravadi, S., Ogdie, A. & Kraft, W. K. Tumor necrosis factor inhibitors in psoriatic arthritis. Expert. Rev. Clin. Pharmacol. 10, 899–910 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Gisondi, P., Bellinato, F., Targher, G., Idolazzi, L. & Girolomoni, G. Biological disease-modifying antirheumatic drugs may mitigate the risk of psoriatic arthritis in patients with chronic plaque psoriasis. Ann. Rheum. Dis. 81, 68–73 (2022).

    Article  CAS  PubMed  Google Scholar 

  212. Acosta Felquer, M. L. et al. Treating the skin with biologics in patients with psoriasis decreases the incidence of psoriatic arthritis. Ann. Rheum. Dis. 81, 74–79 (2022).

    Article  PubMed  Google Scholar 

  213. Rosenthal, Y. S., Schwartz, N., Sagy, I. & Pavlovsky, L. Incidence of psoriatic arthritis among patients receiving biologic treatments for psoriasis: a nested case-control study. Arthritis Rheumatol. 74, 237–243 (2022).

    Article  PubMed  Google Scholar 

  214. Semble, A. L., Davis, S. A. & Feldman, S. R. Safety and tolerability of tumor necrosis factor-α inhibitors in psoriasis: a narrative review. Am. J. Clin. Dermatol. 15, 37–43 (2014).

    Article  PubMed  Google Scholar 

  215. Davila-Seijo, P. et al. Infections in moderate to severe psoriasis patients treated with biological drugs compared to classic systemic drugs: findings from the BIOBADADERM registry. J. Invest. Dermatol. 137, 313–321 (2017).

    Article  CAS  PubMed  Google Scholar 

  216. Fouache, D. et al. Paradoxical adverse events of anti-tumour necrosis factor therapy for spondyloarthropathies: a retrospective study. Rheumatology 48, 761–764 (2009).

    Article  CAS  PubMed  Google Scholar 

  217. Ko, J. M., Gottlieb, A. B. & Kerbleski, J. F. Induction and exacerbation of psoriasis with TNF-blockade therapy: a review and analysis of 127 cases. J. Dermatol. Treat. 20, 100–108 (2009).

    Article  CAS  Google Scholar 

  218. Adams, R. et al. Bimekizumab, a novel humanized IgG1 antibody that neutralizes both IL-17A and IL-17F. Front. Immunol. 11, 1894 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Langley, R. G. et al. Secukinumab in plaque psoriasis – results of two phase 3 trials. N. Engl. J. Med. 371, 326–338 (2014).

    Article  PubMed  Google Scholar 

  220. Gordon, K. B. et al. Phase 3 trials of ixekizumab in moderate-to-severe plaque psoriasis. N. Engl. J. Med. 375, 345–356 (2016).

    Article  CAS  PubMed  Google Scholar 

  221. Targan, S. R. et al. A randomized, double-blind, placebo-controlled phase 2 study of brodalumab in patients with moderate-to-severe Crohn’s disease. Am. J. Gastroenterol. 111, 1599–1607 (2016).

    Article  CAS  PubMed  Google Scholar 

  222. Elewski, B. E. et al. Psoriasis patients with Psoriasis Area and Severity Index (PASI) 90 response achieve greater health-related quality-of-life improvements than those with PASI 75-89 response: results from two phase 3 studies of secukinumab. J. Dermatol. Treat. 28, 492–499 (2017).

    Article  Google Scholar 

  223. Griffiths, C. E. M. et al. Comparison of ixekizumab with etanercept or placebo in moderate-to-severe psoriasis (UNCOVER-2 and UNCOVER-3): results from two phase 3 randomised trials. Lancet 386, 541–551 (2015).

    Article  CAS  PubMed  Google Scholar 

  224. Gordon, K. B. et al. Bimekizumab efficacy and safety in moderate to severe plaque psoriasis (BE READY): a multicentre, double-blind, placebo-controlled, randomised withdrawal phase 3 trial. Lancet 397, 475–486 (2021).

    Article  CAS  PubMed  Google Scholar 

  225. Merola, J. F. et al. AB1089 Bimekizumab efficacy in high-impact areas for patients with moderate to severe plaque psoriasis: pooled results through two years from the Be Sure and Be Radiant phase 3 trials [abstract]. Ann. Rheum. Dis. 82, 1766–1767 (2023).

    Google Scholar 

  226. McInnes, I. B. et al. Secukinumab, a human anti-interleukin-17A monoclonal antibody, in patients with psoriatic arthritis (FUTURE 2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 386, 1137–1146 (2015).

    Article  CAS  PubMed  Google Scholar 

  227. Mease, P. J. et al. Ixekizumab, an interleukin-17A specific monoclonal antibody, for the treatment of biologic-naive patients with active psoriatic arthritis: results from the 24-week randomised, double-blind, placebo-controlled and active (adalimumab)-controlled period of the phase III trial SPIRIT-P1. Ann. Rheum. Dis. 76, 79–87 (2017).

    Article  CAS  PubMed  Google Scholar 

  228. Baraliakos, X. et al. Secukinumab in patients with psoriatic arthritis and axial manifestations: results from the double-blind, randomised, phase 3 MAXIMISE trial. Ann. Rheum. Dis. 80, 582–590 (2021).

    Article  CAS  PubMed  Google Scholar 

  229. Langley, R. G. et al. Long‐term efficacy and safety of ustekinumab, with and without dosing adjustment, in patients with moderate‐to‐severe psoriasis: results from the PHOENIX 2 study through 5 years of follow‐up. Br. J. Dermatol. 172, 1371–1383 (2015).

    Article  CAS  PubMed  Google Scholar 

  230. Papp, K. A. et al. Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 52-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 2). Lancet 371, 1675–1684 (2008).

    Article  CAS  PubMed  Google Scholar 

  231. Poizeau, F. et al. Association between early severe cardiovascular events and the initiation of treatment with the anti-interleukin 12/23p40 antibody ustekinumab. JAMA Dermatol. 156, 1208–1215 (2020).

    Article  PubMed  Google Scholar 

  232. Blauvelt, A. et al. Efficacy and safety of guselkumab, an anti-interleukin-23 monoclonal antibody, compared with adalimumab for the continuous treatment of patients with moderate to severe psoriasis: results from the phase III, double-blinded, placebo- and active comparator-controlled VOYAGE 1 trial. J. Am. Acad. Dermatol. 76, 405–417 (2017).

    Article  CAS  PubMed  Google Scholar 

  233. Gordon, K. B. et al. Efficacy of guselkumab in subpopulations of patients with moderate-to-severe plaque psoriasis: a pooled analysis of the phase III VOYAGE 1 and VOYAGE 2 studies. Br. J. Dermatol. 178, 132–139 (2018).

    Article  CAS  PubMed  Google Scholar 

  234. Reich, K. et al. Maintenance of clinical response and consistent safety profile with up to 3 years of continuous treatment with guselkumab: Results from the VOYAGE 1 and VOYAGE 2 trials. J. Am. Acad. Dermatol. 82, 936–945 (2020).

    Article  CAS  PubMed  Google Scholar 

  235. Reich, K. et al. Guselkumab versus secukinumab for the treatment of moderate-to-severe psoriasis (ECLIPSE): results from a phase 3, randomised controlled trial. Lancet 394, 831–839 (2019).

    Article  CAS  PubMed  Google Scholar 

  236. Gordon, K. B. et al. Efficacy and safety of risankizumab in moderate-to-severe plaque psoriasis (UltIMMa-1 and UltIMMa-2): results from two double-blind, randomised, placebo-controlled and ustekinumab-controlled phase 3 trials. Lancet 392, 650–661 (2018).

    Article  CAS  PubMed  Google Scholar 

  237. Strober, B. et al. Efficacy of long-term risankizumab treatment for moderate-to-severe plaque psoriasis: subgroup analyses by baseline characteristics and psoriatic disease manifestations through 256 weeks (LIMMitless trial). J. Eur. Acad. Dermatol. Venereol. 38, 864–872 (2024).

    Article  CAS  PubMed  Google Scholar 

  238. Reich, K. et al. Tildrakizumab versus placebo or etanercept for chronic plaque psoriasis (reSURFACE 1 and reSURFACE 2): results from two randomised controlled, phase 3 trials. Lancet 390, 276–288 (2017).

    Article  CAS  PubMed  Google Scholar 

  239. Cameron, H. et al. A randomized, observer‐blinded trial of twice vs. three times weekly narrowband ultraviolet B phototherapy for chronic plaque psoriasis. Br. J. Dermatol. 147, 973–978 (2002).

    Article  CAS  PubMed  Google Scholar 

  240. Tartar, D., Bhutani, T., Huynh, M., Berger, T. & Koo, J. Update on the immunological mechanism of action behind phototherapy. J. Drugs Dermatol. 13, 564–568 (2014).

    CAS  PubMed  Google Scholar 

  241. Ye, J. et al. NB-UVB irradiation attenuates inflammatory response in psoriasis. Dermatol. Ther. 33, e13626 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Wan, J. et al. Dermatologist preferences for first-line therapy of moderate to severe psoriasis in healthy adult patients. J. Am. Acad. Dermatol. 66, 376–386 (2012).

    Article  PubMed  Google Scholar 

  243. Koo, J. & Lebwohl, M. Duration of remission of psoriasis therapies. J. Am. Acad. Dermatol. 41, 51–59 (1999).

    Article  CAS  PubMed  Google Scholar 

  244. McCoy, T. et al. Systematic review and estimated cost-efficacy of biologics compared with narrowband ultraviolet B light for the treatment of moderate to severe psoriasis and atopic dermatitis. Int. J. Dermatol. 62, 986–999 (2023).

    Article  PubMed  Google Scholar 

  245. Almutawa, F. et al. Efficacy of localized phototherapy and photodynamic therapy for psoriasis: a systematic review and meta-analysis. Photodermatol. Photoimmunol. Photomed. 31, 5–14 (2015).

    Article  PubMed  Google Scholar 

  246. Mehta, N. N. et al. Effect of 2 psoriasis treatments on vascular inflammation and novel inflammatory cardiovascular biomarkers: a randomized placebo-controlled trial. Circ. Cardiovasc. Imaging 11, e007394 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  247. Lim, J. L. & Stern, R. S. High levels of ultraviolet B exposure increase the risk of non-melanoma skin cancer in psoralen and ultraviolet A-treated patients. J. Investig. Dermatol. 124, 505–513 (2005).

    Article  CAS  PubMed  Google Scholar 

  248. Elmets, C. A. et al. Joint American Academy of Dermatology–National Psoriasis Foundation guidelines of care for the management and treatment of psoriasis with phototherapy. J. Am. Acad. Dermatol. 81, 775–804 (2019). These guidelines from the American Academy of Dermatologists and the National Psoriasis Foundation provide comprehensive guidance on the management of psoriasis with phototherapy.

    Article  PubMed  Google Scholar 

  249. Thatiparthi, A., Martin, A., Liu, J. & Wu, J. J. Risk of skin cancer with phototherapy in moderate-to-severe psoriasis: an updated systematic review. J. Clin. Aesthet. Dermatol. 15, 68–75 (2022).

    PubMed  PubMed Central  Google Scholar 

  250. Maruani, A. et al. Non-antistreptococcal interventions for acute guttate psoriasis or an acute guttate flare of chronic psoriasis. Cochrane Database Syst. Rev. 4, CD011541 (2019).

    PubMed  Google Scholar 

  251. Fernandez-Guarino, M. et al. Phototherapy with narrow-band UVB in adult guttate psoriasis: results and patient assessment. Dermatology 232, 626–632 (2016).

    Article  PubMed  Google Scholar 

  252. Puig, L. et al. Generalized pustular psoriasis: a global Delphi consensus on clinical course, diagnosis, treatment goals and disease management. J. Eur. Acad. Dermatol. Venereol. 37, 737–752 (2023).

    Article  PubMed  Google Scholar 

  253. Rosenbach, M. et al. Treatment of erythrodermic psoriasis: from the medical board of the National Psoriasis Foundation. J. Am. Acad. Dermatol. 62, 655–662 (2010).

    Article  CAS  PubMed  Google Scholar 

  254. Carrasquillo, O. Y. et al. Treatment of erythrodermic psoriasis with biologics: a systematic review. J. Am. Acad. Dermatol. 83, 151–158 (2020).

    Article  CAS  PubMed  Google Scholar 

  255. Grimsrud, K. N. et al. Special population considerations and regulatory affairs for clinical research. Clin. Res. Regulatory Aff. 32, 45–54 (2015).

    Article  Google Scholar 

  256. Murase, J. E., Chan, K. K., Garite, T. J., Cooper, D. M. & Weinstein, G. D. Hormonal effect on psoriasis in pregnancy and post partum. Arch. Dermatol. 141, 601–606 (2005).

    Article  CAS  PubMed  Google Scholar 

  257. Bobotsis, R., Gulliver, W. P., Monaghan, K., Lynde, C. & Fleming, P. Psoriasis and adverse pregnancy outcomes: a systematic review of observational studies. Br. J. Dermatol. 175, 464–472 (2016).

    Article  CAS  PubMed  Google Scholar 

  258. Smith, C. H. et al. British Association of Dermatologists guidelines for biologic therapy for psoriasis 2020: a rapid update. Br. J. Dermatol. 183, 628–637 (2020).

    Article  CAS  PubMed  Google Scholar 

  259. Murase, J. E., Heller, M. M. & Butler, D. C. Safety of dermatologic medications in pregnancy and lactation. J. Am. Acad. Dermatol. 70, 401.e1–401.e14 (2014).

    Article  CAS  PubMed  Google Scholar 

  260. Shavit, E. & Shear, N. H. An update on the safety of apremilast for the treatment of plaque psoriasis. Expert. Opin. Drug. Saf. 19, 403–408 (2020).

    Article  CAS  PubMed  Google Scholar 

  261. Grunnet, E., Nyfors, A. & Hansen, B. Studies on human semen in topical corticosteroid-treated and in methotrexate-treated psoriatics. Dermatology 154, 78–84 (1977).

    Article  CAS  Google Scholar 

  262. Weber-Schoendorfer, C., Hoeltzenbein, M., Wacker, E., Meister, R. & Schaefer, C. No evidence for an increased risk of adverse pregnancy outcome after paternal low-dose methotrexate: an observational cohort study. Rheumatology 53, 757–763 (2014).

    Article  CAS  PubMed  Google Scholar 

  263. Brown, S. M., Aljefri, K., Waas, R. & Hampton, P. Systemic medications used in treatment of common dermatological conditions: safety profile with respect to pregnancy, breast feeding and content in seminal fluid. J. Dermatol. Treat. 30, 2–18 (2019).

    Article  Google Scholar 

  264. Esteve-Solé, A. et al. Immunological changes in blood of newborns exposed to anti-TNF-α during pregnancy. Front. Immunol. 8, 1123 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  265. European Medicines Agency. Summary of product characteristics: Cimzia (certolizumab pegol), solution for injection. EMA www.ema.europa.eu/en/documents/product-information/cimzia-epar-product-information_en.pdf (2014).

  266. Food and Drug Administration. Highlights of prescribing information: Cimzia (certolizumab pegol), solution for subcutaneous injection. FDA www.accessdata.fda.gov/drugsatfda_docs/label/2008/125160s000lbl.pdf (2008).

  267. Owczarek, W. et al. The use of biological drugs in psoriasis patients prior to pregnancy, during pregnancy and lactation: a review of current clinical guidelines. Adv. Dermatol. Allergol. 37, 821–830 (2020).

    Article  Google Scholar 

  268. McMullan, P. et al. Safety of dermatologic medications in pregnancy and lactation: an update – part I: pregnancy. J. Am. Acad. Dermatol. 91, 619–648 (2024).

    Article  CAS  PubMed  Google Scholar 

  269. Mahé, E. Childhood psoriasis. Eur. J. Dermatol. 26, 537–548 (2016).

    Article  PubMed  Google Scholar 

  270. Cordoro, K. M. et al. Skin-infiltrating, interleukin-22-producing T cells differentiate pediatric psoriasis from adult psoriasis. J. Am. Acad. Dermatol. 77, 417–424 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Kim, J., Kim, S., Soh, B. & Lee, E. Comparison of cytokine expression in paediatric and adult psoriatic skin. Acta Derm. Venereol. 100, adv00058 (2020).

    CAS  PubMed  Google Scholar 

  272. Bronckers, I. et al. Safety of systemic agents for the treatment of pediatric psoriasis. JAMA Dermatol. 153, 1147–1157 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  273. Menter, A. et al. Joint American Academy of Dermatology–National Psoriasis Foundation guidelines of care for the management and treatment of psoriasis in pediatric patients. J. Am. Acad. Dermatol. 82, 161–201 (2020). These guidelines from the American Academy of Dermatologists and the National Psoriasis Foundation provide comprehensive guidance on the management of psoriasis specifically in paediatric patients.

    Article  PubMed  Google Scholar 

  274. Ergun, T. et al. Efficacy, safety and drug survival of conventional agents in pediatric psoriasis: a multicenter, cohort study. J. Dermatol. 44, 630–634 (2017).

    Article  CAS  PubMed  Google Scholar 

  275. Hebert, A. A. et al. Managing pediatric psoriasis: update on treatments and challenges – a review. J. Dermatol. Treat. 33, 2433–2442 (2022).

    Article  CAS  Google Scholar 

  276. Popadic, S. & Nikolic, M. Pustular psoriasis in childhood and adolescence: a 20-year single-center experience. Pediatr. Dermatol. 31, 575–579 (2014).

    Article  PubMed  Google Scholar 

  277. Halverstam, C. P., Zeichner, J. & Lebwohl, M. Lack of significant skeletal changes after long-term, low-dose retinoid therapy: case report and review of the literature. J. Cutan. Med. Surg. 10, 291–299 (2006).

    Article  PubMed  Google Scholar 

  278. Caruso, C. et al. Mechanisms of immunosenescence. Immun. Ageing 6, 10 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  279. Myers, B. et al. Biologic treatment of 4 HIV-positive patients: a case series and literature review. J. Psoriasis Psoriatic Arthritis 6, 19–26 (2021).

    Article  PubMed  Google Scholar 

  280. Montes-Torres, A. et al. Safety and effectiveness of conventional systemic therapy and biological drugs in patients with moderate to severe psoriasis and HIV infection: a retrospective multicenter study. J. Dermatol. Treat. 30, 461–465 (2019).

    Article  CAS  Google Scholar 

  281. Lambert, J. L. W. et al. Practical recommendations for systemic treatment in psoriasis in case of coexisting inflammatory, neurologic, infectious or malignant disorders (BETA‐PSO: Belgian evidence‐based treatment advice in psoriasis; part 2). J. Eur. Acad. Dermatol. Venereol. 34, 1914–1923 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Papp, K. A. et al. Use of systemic therapies for treatment of psoriasis in patients with a history of treated solid tumours: inference-based guidance from a multidisciplinary expert panel. Dermatol. Ther. 13, 867–889 (2023).

    Article  Google Scholar 

  283. Waldman, A. & Schmults, C. Cutaneous squamous cell carcinoma. Hematol. Oncol. Clin. North. Am. 33, 1–12 (2019).

    Article  PubMed  Google Scholar 

  284. Rapp, S. R., Feldman, S. R., Exum, M. L., Fleischer, A. B. Jr. & Reboussin, D. M. Psoriasis causes as much disability as other major medical diseases. J. Am. Acad. Dermatol. 41, 401–407 (1999).

    Article  CAS  PubMed  Google Scholar 

  285. Gelfand, J. M. et al. Determinants of quality of life in patients with psoriasis: a study from the US population. J. Am. Acad. Dermatol. 51, 704–708 (2004).

    Article  PubMed  Google Scholar 

  286. Maul, J. T. et al. Correlation between Dermatology Life Quality Index and Psoriasis Area and Severity Index in patients with psoriasis: a cross-sectional global healthcare study on psoriasis. Acta Derm. Venereol. 104, adv20329 (2024).

    Article  PubMed  Google Scholar 

  287. Bewley, A., Burrage, D. M., Ersser, S. J., Hansen, M. & Ward, C. Identifying individual psychosocial and adherence support needs in patients with psoriasis: a multinational two-stage qualitative and quantitative study. J. Eur. Acad. Dermatol. Venereol. 28, 763–770 (2014).

    Article  CAS  PubMed  Google Scholar 

  288. Fried, R. G. et al. Trivial or terrible? The psychosocial impact of psoriasis. Int. J. Dermatol. 34, 101–105 (1995).

    Article  CAS  PubMed  Google Scholar 

  289. Fortune, D. G., Richards, H. L. & Griffiths, C. E. Psychologic factors in psoriasis: consequences, mechanisms, and interventions. Dermatol. Clin. 23, 681–694 (2005).

    Article  CAS  PubMed  Google Scholar 

  290. Devrimci-Ozguven, H., Kundakci, T. N., Kumbasar, H. & Boyvat, A. The depression, anxiety, life satisfaction and affective expression levels in psoriasis patients. J. Eur. Acad. Dermatol. Venereol. 14, 267–271 (2000).

    Article  CAS  PubMed  Google Scholar 

  291. Krueger, G. et al. The impact of psoriasis on quality of life: results of a 1998 National Psoriasis Foundation patient-membership survey. Arch. Dermatol. 137, 280–284 (2001).

    CAS  PubMed  Google Scholar 

  292. Choi, J. & Koo, J. Y. Quality of life issues in psoriasis. J. Am. Acad. Dermatol. 49, S57–S61 (2003).

    Article  PubMed  Google Scholar 

  293. Luck-Sikorski, C. et al. Assessment of stigma related to visible skin diseases: a systematic review and evaluation of patient-reported outcome measures. J. Eur. Acad. Dermatol. Venereol. 36, 499–525 (2022).

    Article  CAS  PubMed  Google Scholar 

  294. Halioua, B. et al. Extent of misconceptions, negative prejudices and discriminatory behaviour to psoriasis patients in France. J. Eur. Acad. Dermatol. Venereol. 30, 650–654 (2016).

    Article  CAS  PubMed  Google Scholar 

  295. Pearce, D. J. et al. The negative impact of psoriasis on the workplace. J. Dermatol. Treat. 17, 24–28 (2006).

    Article  Google Scholar 

  296. Finlay, A. Y. & Coles, E. C. The effect of severe psoriasis on the quality of life of 369 patients. Br. J. Dermatol. 132, 236–244 (1995).

    Article  CAS  PubMed  Google Scholar 

  297. Feldman, S. R. et al. The economic impact of psoriasis increases with psoriasis severity. J. Am. Acad. Dermatol. 37, 564–569 (1997).

    Article  CAS  PubMed  Google Scholar 

  298. Vanderpuye-Orgle, J. et al. Evaluating the economic burden of psoriasis in the United States. J. Am. Acad. Dermatol. 72, 961–967.e5 (2015).

    Article  PubMed  Google Scholar 

  299. Warren, R. B., Kleyn, C. E. & Gulliver, W. P. Cumulative life course impairment in psoriasis: patient perception of disease-related impairment throughout the life course. Br. J. Dermatol. 164, 1–14 (2011).

    Article  PubMed  Google Scholar 

  300. Ros, S., Puig, L. & Carrascosa, J. M. Cumulative life course impairment: the imprint of psoriasis on the patient’s life. Actas Dermosifiliogr. 105, 128–134 (2014).

    Article  CAS  PubMed  Google Scholar 

  301. Armstrong, A. W. et al. Comparison of biologics and oral treatments for plaque psoriasis: a meta-analysis. JAMA Dermatol. 156, 258–269 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  302. Schmitt, J. et al. Efficacy and safety of systemic treatments for moderate-to-severe psoriasis: meta-analysis of randomized controlled trials. Br. J. Dermatol. 170, 274–303 (2014).

    Article  CAS  PubMed  Google Scholar 

  303. de Ruiter, C. C. & Rustemeyer, T. Biologics can significantly improve dermatology life quality index (DLQI) in psoriatic patients: a systematic review. Psoriasis 12, 99–112 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  304. Puig, L., Thom, H., Mollon, P., Tian, H. & Ramakrishna, G. S. Clear or almost clear skin improves the quality of life in patients with moderate-to-severe psoriasis: a systematic review and meta-analysis. J. Eur. Acad. Dermatol. Venereol. 31, 213–220 (2017).

    Article  CAS  PubMed  Google Scholar 

  305. Revicki, D. A. et al. Relationship between clinical response to therapy and health-related quality of life outcomes in patients with moderate to severe plaque psoriasis. Dermatology 216, 260–270 (2008).

    Article  PubMed  Google Scholar 

  306. Ghoreschi, K., Balato, A., Enerback, C. & Sabat, R. Therapeutics targeting the IL-23 and IL-17 pathway in psoriasis. Lancet 397, 754–766 (2021).

    Article  CAS  PubMed  Google Scholar 

  307. Gisondi, P. et al. Risk of developing psoriatic arthritis in patients with psoriasis initiating treatment with different classes of biologics. Ann. Rheum. Dis. 84, 435–441 (2025).

    Article  PubMed  Google Scholar 

  308. Dand, N. et al. HLA-C*06:02 genotype is a predictive biomarker of biologic treatment response in psoriasis. J. Allergy Clin. Immunol. 143, 2120–2130 (2019).

    Article  CAS  PubMed  Google Scholar 

  309. Batalla, A. et al. IL17RA gene variants and anti-TNF response among psoriasis patients. Pharmacogenomics J. 18, 76–80 (2018).

    Article  CAS  PubMed  Google Scholar 

  310. Coto-Segura, P. et al. Common and rare CARD14 gene variants affect the antitumour necrosis factor response among patients with psoriasis. Br. J. Dermatol. 175, 134–141 (2016).

    Article  CAS  PubMed  Google Scholar 

  311. Menter, A. et al. Adalimumab therapy for moderate to severe psoriasis: a randomized, controlled phase III trial. J. Am. Acad. Dermatol. 58, 106–115 (2008).

    Article  PubMed  Google Scholar 

  312. Leonardi, C. L. et al. Etanercept as monotherapy in patients with psoriasis. N. Engl. J. Med. 349, 2014–2022 (2003).

    Article  CAS  PubMed  Google Scholar 

  313. Gottlieb, A. B. et al. Certolizumab pegol for the treatment of chronic plaque psoriasis: results through 48 weeks from 2 phase 3, multicenter, randomized, double-blinded, placebo-controlled studies (CIMPASI-1 and CIMPASI-2). J. Am. Acad. Dermatol. 79, 302–314.e6 (2018).

    Article  CAS  PubMed  Google Scholar 

  314. Chaudhari, U. et al. Efficacy and safety of infliximab monotherapy for plaque-type psoriasis: a randomised trial. Lancet 357, 1842–1847 (2001).

    Article  CAS  PubMed  Google Scholar 

  315. Gottlieb, A. B. et al. Infliximab induction therapy for patients with severe plaque-type psoriasis: a randomized, double-blind, placebo-controlled trial. J. Am. Acad. Dermatol. 51, 534–542 (2004).

    Article  PubMed  Google Scholar 

  316. McInnes, I. B. et al. Efficacy and safety of ustekinumab in patients with active psoriatic arthritis: 1 year results of the phase 3, multicentre, double-blind, placebo-controlled PSUMMIT 1 trial. Lancet 382, 780–789 (2013).

    Article  CAS  PubMed  Google Scholar 

  317. Fernandez, A. P. et al. Tildrakizumab efficacy and safety in patients with psoriasis and concomitant metabolic syndrome: post hoc analysis of 5-year data from reSURFACE 1 and reSURFACE 2. J. Eur. Acad. Dermatol. Venereol. 36, 1774–1783 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. Fiorillo, L. et al. Efficacy and safety of apremilast in pediatric patients with moderate-to-severe plaque psoriasis: 16-week results from SPROUT, a randomized controlled trial. J. Am. Acad. Dermatol. 90, 1232–1239 (2024).

    Article  CAS  PubMed  Google Scholar 

  319. Wren, A. A. et al. Multidisciplinary pain management for pediatric patients with acute and chronic pain: a foundational treatment approach when prescribing opioids. Children 6, 33 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  320. Paller, A. S. et al. Etanercept treatment for children and adolescents with plaque psoriasis. N. Engl. J. Med. 358, 241–251 (2008).

    Article  CAS  PubMed  Google Scholar 

  321. Paller, A. S. et al. Long-term safety and efficacy of etanercept in children and adolescents with plaque psoriasis. J. Am. Acad. Dermatol. 74, 280–287.e3 (2016).

    Article  CAS  PubMed  Google Scholar 

  322. Landells, I. et al. Ustekinumab in adolescent patients age 12 to 17 years with moderate-to-severe plaque psoriasis: results of the randomized phase 3 CADMUS study. J. Am. Acad. Dermatol. 73, 594–603 (2015).

    Article  CAS  PubMed  Google Scholar 

  323. Philipp, S. et al. Ustekinumab for the treatment of moderate-to-severe plaque psoriasis in paediatric patients (≥6 to <12 years of age): efficacy, safety, pharmacokinetic and biomarker results from the open-label CADMUS Jr study. Br. J. Dermatol. 183, 664–672 (2020).

    Article  CAS  PubMed  Google Scholar 

  324. Bodemer, C. et al. Secukinumab demonstrates high efficacy and a favourable safety profile in paediatric patients with severe chronic plaque psoriasis: 52-week results from a phase 3 double-blind randomized, controlled trial. J. Eur. Acad. Dermatol. Venereol. 35, 938–947 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  325. Paller, A. S. et al. Efficacy and safety of ixekizumab in a phase III, randomized, double-blind, placebo-controlled study in paediatric patients with moderate-to-severe plaque psoriasis (IXORA-PEDS). Br. J. Dermatol. 183, 231–241 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  326. Strober, B. E. et al. Clinical goals and barriers to effective psoriasis care. Dermatol. Ther. 9, 5–18 (2019).

    Article  Google Scholar 

  327. Kromer, C., Celis, D., Sonntag, D. & Peitsch, W. K. Biologicals and small molecules in psoriasis: a systematic review of economic evaluations. PLoS ONE 13, e0189765 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  328. Villanueva, G. et al. Access to methotrexate monitoring in Latin America: a multicountry survey of supportive care capacity. Pediatr. Hematol. Oncol. 41, 135–149 (2024).

    Article  CAS  PubMed  Google Scholar 

  329. Torres, A. E., Lyons, A. B., Hamzavi, I. H. & Lim, H. W. Role of phototherapy in the era of biologics. J. Am. Acad. Dermatol. 84, 479–485 (2021).

    Article  CAS  PubMed  Google Scholar 

  330. Contento, M., Cline, A. & Russo, M. Steroid phobia: a review of prevalence, risk factors, and interventions. Am. J. Clin. Dermatol. 22, 837–851 (2021).

    Article  PubMed  Google Scholar 

  331. Abo-Tabik, M. et al. Development and evaluation of an online training tool to aid in the diagnosis of chronic plaque psoriasis. JEADV Clin. Pract. 4, 174–180 (2025).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Introduction (A.W.A.); Epidemiology (A.W.A.); Mechanisms/pathophysiology (A.B.); Diagnosis, screening and prevention (Y.-H.H); Management (A.W.A., K.C.D., L.J.S. and J.F.M.); Quality of life (L.G.); Outlook (A.W.A. and A.B.); overview of the Primer (A.W.A. and L.G.).

Corresponding author

Correspondence to April W. Armstrong.

Ethics declarations

Competing interests

A.W.A. has served as a research investigator, scientific adviser or speaker for AbbVie, Amgen, Almirall, Arcutis, ASLAN, Beiersdorf, BI, BMS, EPI, Incyte, Leo, UCB, Janssen, Lilly, Mindera, Nimbus, Novartis, Ortho, Sun, Dermavant, Dermira, Sanofi, Takeda, Organon, Regeneron, Pfizer and Ventyx. A.B. has served as a speaker (received honoraria) for Eli Lilly and Company and UCB; has served as a scientific adviser (received honoraria) for AbbVie, Almirall, Alumis, Amgen, Anaptysbio, Apogee, Arcutis, Boehringer Ingelheim, Bristol Myers Squibb, Celltrion, Corvus, Dermavant, Eli Lilly and Company, Galderma, GlaxoSmithKline, Immunovant, Incyte, IQVIA, Janssen, Leo, Lipidio, Merck, Novartis, Oruka, Paragon, Pfizer, Regeneron, Sanofi, Spherix Global Insights, Sun Pharma, Syncona, Takeda, UCB and Union; has acted as a clinical study investigator (institution has received clinical study funds) for AbbVie, Acelyrin, Almirall, Alumis, Amgen, Arcutis, Boehringer Ingelheim, Bristol Myers Squibb, Dermavant, Eli Lilly and Company, Galderma, Incyte, Janssen, Leo, Merck, Novartis, Pfizer, Regeneron, Sanofi, Sun Pharma, Takeda and UCB; owns stock in Lipidio and Oruka; and has acted as Member and Owner of Blauvelt Consulting, LLC. In this capacity, A.B. has provided scientific consulting services (for example, protocol development, data analysis) to the following companies: AbbVie, Almirall, Alumis, Amgen, Anaptysbio, Apogee, Arcutis, Astria, Boehringer Ingelheim, Bristol Myers Squibb, Celltrion, Corvus, Dermavant, Eli Lilly and Company, Galderma, GlaxoSmithKline, Immunovant, Incyte, IQVIA, Janssen, Leo, Lipidio, Merck, Novartis, Oruka, Paragon, Pfizer, Regeneron, Sanofi, Spherix Global Insights, Sun Pharma, Syncona, Takeda, UCB, Union and Zai Lab. K.C.D. has served as a consultant (received honoraria) for AbbVie, Amgen/Celgene, Boehringer Ingelheim, Bristol Myers Squibb, Lilly, FIDE (which is sponsored by multiple pharmaceutical companies), CorEvitas, Janssen, Leo, Novartis, Pfizer, Stiefel and CorEvitas; and as an investigator for AbbVie, Amgen/Celgene, Boehringer Ingelheim, Bristol Myers Squibb, CorEvitas, Lilly, Janssen, Novartis, Pfizer, Regeneron, Stiefel and UCB. Y.-H.H. has conducted clinical trials or received honoraria as a consultant for Abbvie, Bristol Myers Squibb, Celgene, Janssen-Cilag Pharmaceuticals, Novartis and Pfizer Pharmaceuticals. L.J.S. has provided education or served on the advisory boards for AbbVie, Almirall, Amgen, Aspire Pharma, Biogen, Boehringer Ingelheim, Bristol Myers Squibb, Celgene, Celltrion, Fresenius Kabi, Galderma, Janssen, Leo, Lilly, Medac, Moonlake, Novartis, Pfizer, Sanofi, Takeda and UCB; and has received research funding from Janssen, Novartis and Pfizer. J.F.M. is a consultant and/or investigator for Amgen, Astra-Zeneca, Boehringer Ingelheim, Bristol Myers Squibb, Abbvie, Dermavant, Eli Lilly, Moonlake, Novartis, Janssen, UCB, Sanofi, Regeneron, Sun Pharma, Biogen and Pfizer. L.G. declares no competing interests.

Peer review

Peer review information

Nature Reviews Disease Primers thanks V. Chandran, G. Girolomoni, Y. Tada and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Informed consent

The authors affirm that human research participants provided informed consent for publication of the images in Fig. 3 and Fig. 4.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Armstrong, A.W., Blauvelt, A., Callis Duffin, K. et al. Psoriasis. Nat Rev Dis Primers 11, 45 (2025). https://doi.org/10.1038/s41572-025-00630-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-025-00630-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing