Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Liver, ageing and disease

Abstract

As the global population ages, research on the biology of ageing and its role in chronic disease is expanding, alongside a growing clinical focus on the unique needs of older adults. In the past, the liver was not thought to undergo substantial age-related changes, nor was there thought to be any liver disease characteristic of older adults. Current studies challenge this perspective, revealing that ageing substantially influences liver pathophysiology at the organ level and within each of the liver cell types. These observations have implications for understanding the pathogenesis of liver diseases common in older adults, including hepatocellular carcinoma, hypoxic hepatitis and metabolic dysfunction-associated steatotic liver disease. Previously, managing older patients with liver disease mostly addressed age-related changes in drug metabolism and liver function tests. However, current clinical practice increasingly emphasizes age-specific issues such as frailty, sarcopenia, multimorbidity and polypharmacy. Given the liver’s pivotal role in systemic metabolism, immunity and detoxification, ageing of the liver can contribute to systemic diseases. In the future, interventions that target ageing biology might offer new treatment options for liver diseases. Here, we review those age-related changes in the liver that have substantial biological and clinical consequences for older adults.

Key points

  • The liver undergoes ageing processes that are comparable to those of other organs and tissues, contributing to impaired liver function and increased susceptibility to liver diseases in older adults.

  • Age-related changes in hepatocytes and non-parenchymal liver cells drive fibrosis, inflammation, steatosis, metabolic dysfunction, reduced detoxification and impaired regenerative capacity.

  • Elevated serum liver enzyme levels are often a result of comorbidities, whereas low serum alanine transaminase levels are associated with older age, frailty and increased mortality.

  • Liver diseases prevalent in older adults, including hepatocellular carcinoma and metabolic dysfunction-associated steatotic liver disease, share pathogenic mechanisms with the biological processes of ageing.

  • Liver ageing is associated with cardiometabolic syndromes, including dyslipidaemia, insulin resistance and vascular disease, and with neurodegenerative conditions such as dementia.

  • The liver is a key target for longevity-extending interventions, including pharmacological and nutritional strategies to modulate ageing processes that might mitigate liver diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structural changes in the ageing liver.
Fig. 2: Epidemiology of the effects of ageing on liver diseases.

Similar content being viewed by others

Data availability

Epidemiological data referred to in Fig. 2 and information on their source are available in Supplementary Tables 14.

References

  1. Popper, H. Coming of age. Hepatology 5, 1224–1226 (1985).

    Article  CAS  PubMed  Google Scholar 

  2. Schmucker, D. L. Age-related changes in liver structure and function: implications for disease? Exp. Gerontol. 40, 650–659 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Tajiri, K. & Shimizu, Y. Liver physiology and liver diseases in the elderly. World J. Gastroenterol. 19, 8459–8467 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kim, I. H., Kisseleva, T. & Brenner, D. A. Aging and liver disease. Curr. Opin. Gastroenterol. 31, 184–191 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Macias, R. I. R. et al. Impact of aging on primary liver cancer: epidemiology, pathogenesis and therapeutics. Aging 13, 23416–23434 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sanfeliu-Redondo, D., Gibert-Ramos, A. & Gracia-Sancho, J. Cell senescence in liver diseases: pathological mechanism and theranostic opportunity. Nat. Rev. Gastroenterol. Hepatol. 21, 477–492 (2024).

    Article  PubMed  Google Scholar 

  7. Wan, Y. et al. Endothelial dysfunction in pathological processes of chronic liver disease during aging. FASEB J. 36, e22125 (2022).

    Article  CAS  PubMed  Google Scholar 

  8. Baiocchi, L. et al. Impact of aging on liver cells and liver disease: focus on the biliary and vascular compartments. Hepatol. Commun. 5, 1125–1137 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Le Couteur, D. G., Fraser, R., Cogger, V. C. & McLean, A. J. Hepatic pseudocapillarisation and atherosclerosis in ageing. Lancet 359, 1612–1615 (2002).

    Article  PubMed  Google Scholar 

  10. Morsiani, C. et al. The peculiar aging of human liver: a geroscience perspective within transplant context. Ageing Res. Rev. 51, 24–34 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. United Nations. Global issues: ageing. United Nations www.un.org/en/global-issues/ageing (2024).

  12. de Cabo, R. & Le Couteur, D. in Harrison’s Principles of Internal Medicine Vol. 2 Ch. 476 (eds Loscalzo, J. et al.) 3733–3739 (McGraw Hill, 2021).

  13. Lemoine, M. Defining aging. Biol. Philos. 35, 46 (2020).

    Article  Google Scholar 

  14. Le Couteur, D. G. & Thillainadesan, J. What is an aging-related disease? An epidemiological perspective. J. Gerontol. A Biol. Sci. Med. Sci. 77, 2168–2174 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Thillainadesan, J., Scott, I. A. & Le Couteur, D. G. Frailty, a multisystem ageing syndrome. Age Ageing 49, 758–763 (2020).

    Article  PubMed  Google Scholar 

  16. Sierra, F. The emergence of geroscience as an interdisciplinary approach to the enhancement of health span and life span. Cold Spring Harb. Perspect. Med. 6, a025163 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Rolland, Y. et al. Challenges in developing geroscience trials. Nat. Commun. 14, 5038 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Le Couteur, D. G., Anderson, R. M. & de Cabo, R. Can we make drug discovery targeting fundamental mechanisms of aging a reality? Expert Opin. Drug Discov. 17, 97–100 (2022).

    Article  PubMed  Google Scholar 

  19. López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. J. C. Hallmarks of aging: an expanding universe. Cell 186, 243–278 (2023).

    Article  PubMed  Google Scholar 

  20. Hunt, N. J., Kang, S. W., Lockwood, G. P., Le Couteur, D. G. & Cogger, V. C. Hallmarks of aging in the liver. Comp. Struct. Biotech. J. 17, 1151–1161 (2019).

    Article  CAS  Google Scholar 

  21. Gan, L., Chitturi, S. & Farrell, G. C. Mechanisms and implications of age-related changes in the liver: nonalcoholic fatty liver disease in the elderly. Curr. Gerontol. Geriatr. Res. 2011, 831536 (2011).

    PubMed  PubMed Central  Google Scholar 

  22. Boyer, J. L. Hepatology highlights: the liver does age! Hepatology 33, 487 (2001).

    Article  Google Scholar 

  23. Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 14, R115 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Haghani, A. et al. DNA methylation networks underlying mammalian traits. Science 381, eabq5693 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Serviddio, G. et al. Bioenergetics in aging: mitochondrial proton leak in aging rat liver, kidney and heart. Redox Rep. 12, 91–95 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Pandya, J. D. et al. Age- and organ-specific differences in mitochondrial bioenergetics in brown Norway rats. J. Aging Res. 2020, 7232614 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Baek, J. H., Son, H., Jeong, Y. H., Park, S. W. & Kim, H. J. Chronological aging standard curves of telomere length and mitochondrial DNA copy number in twelve tissues of C57BL/6 male mouse. Cells 8, 247 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Khawaja, R. R. et al. Sex-specific and cell-type-specific changes in chaperone-mediated autophagy across tissues during aging. Nat. Aging 5, 691–708 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tuma, R. F., Irion, G. L., Vasthare, U. S. & Heinel, L. A. Age-related changes in regional blood flow in the rat. Am. J. Physiol. 249, H485–H491 (1985).

    CAS  PubMed  Google Scholar 

  30. Petr, M. A. et al. A cross-sectional study of functional and metabolic changes during aging through the lifespan in male mice. eLife 10, e62952 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tabula Muris, C. A single-cell transcriptomic atlas characterizes ageing tissues in the mouse. Nature 583, 590–595 (2020).

    Article  Google Scholar 

  32. Schaum, N. et al. Ageing hallmarks exhibit organ-specific temporal signatures. Nature 583, 596–602 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Oh, H. S. et al. Organ aging signatures in the plasma proteome track health and disease. Nature 624, 164–172 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jiang, M. et al. A biomarker framework for liver aging: the Aging Biomarker Consortium consensus statement. Life Med. 3, lnae004 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kwekel, J. C., Desai, V. G., Moland, C. L., Branham, W. S. & Fuscoe, J. C. Age and sex dependent changes in liver gene expression during the life cycle of the rat. BMC Genom. 11, 675 (2010).

    Article  Google Scholar 

  36. Le Couteur, D. G. et al. Nutritional reprogramming of mouse liver proteome is dampened by metformin, resveratrol, and rapamycin. Cell Metab. 33, 2367–2379.e4 (2021).

    Article  PubMed  Google Scholar 

  37. Schmucker, D. L. Aging and the liver: an update. J. Gerontol. A Biol. Sci. Med. Sci. 53, B315–B320 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Schmucker, D. L. Liver function and phase I drug metabolism in the elderly: a paradox. Drugs Aging 18, 837–851 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Terman, A. & Brunk, U. T. Lipofuscin. Int. J. Biochem. Cell Biol. 36, 1400–1404 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Wakabayashi, H., Nishiyama, Y., Ushiyama, T., Maeba, T. & Maeta, H. Evaluation of the effect of age on functioning hepatocyte mass and liver blood flow using liver scintigraphy in preoperative estimations for surgical patients: comparison with CT volumetry. J. Surg. Res. 106, 246–253 (2002).

    Article  PubMed  Google Scholar 

  41. Vats, R. et al. Intravital imaging reveals inflammation as a dominant pathophysiology of age-related hepatovascular changes. Am. J. Physiol. Cell Physiol. 322, C508–C520 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wiley, C. D. & Campisi, J. The metabolic roots of senescence: mechanisms and opportunities for intervention. Nat. Metab. 3, 1290–1301 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ershler, W. B. Interleukin-6: a cytokine for gerontologists. J. Am. Geriatr. Soc. 41, 176–181 (1993).

    Article  CAS  PubMed  Google Scholar 

  44. Heinke, P. et al. Diploid hepatocytes drive physiological liver renewal in adult humans. Cell Syst. 13, 499–507 e412 (2022).

    Article  CAS  PubMed  Google Scholar 

  45. Le Couteur, D. G. et al. Old age and the hepatic sinusoid. Anat. Rec. 291, 672–683 (2008).

    Article  Google Scholar 

  46. Le Couteur, D. G. & Lakatta, E. G. A vascular theory of aging. J. Gerontol. A Biol. Sci. Med. Sci. 65, 1025–1027 (2010).

    Article  PubMed  Google Scholar 

  47. Gracia-Sancho, J., Caparros, E., Fernandez-Iglesias, A. & Frances, R. Role of liver sinusoidal endothelial cells in liver diseases. Nat. Rev. Gastroenterol. Hepatol. 18, 411–431 (2021).

    Article  PubMed  Google Scholar 

  48. Le Couteur, D. G. et al. Pseudocapillarization and associated energy limitation in the aged rat liver. Hepatology 33, 537–543 (2001).

    Article  PubMed  Google Scholar 

  49. McLean, A. J. et al. Age-related pseudocapillarization of the human liver. J. Pathol. 200, 112–117 (2003).

    Article  PubMed  Google Scholar 

  50. Warren, A. et al. Hepatic pseudocapillarization in aged mice. Exp. Gerontol. 40, 807–812 (2005).

    Article  PubMed  Google Scholar 

  51. Cogger, V. C. et al. Hepatic sinusoidal pseudocapillarization with aging in the non-human primate. Exp. Gerontol. 38, 1101–1107 (2003).

    Article  PubMed  Google Scholar 

  52. Cogger, V. C., Hunt, N. J. & Le Couteur, D. G. in The Liver: Biology and Pathobiology Ch. 35 (eds Arias, I. M. et al.) 435–443 (Wiley, 2020).

  53. Cogger, V. C., Roessner, U., Warren, A., Fraser, R. & Le Couteur, D. G. A sieve-raft hypothesis for the regulation of endothelial fenestrations. Comput. Struct. Biotechnol. J. 8, e201308003 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Svistounov, D. et al. The relationship between fenestrations, sieve plates and rafts in liver sinusoidal endothelial cells. PLoS ONE 7, e46134 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mak, K. M., Chu, E., Lau, K. H. & Kwong, A. J. Liver fibrosis in elderly cadavers: localization of collagen types I, III, and IV, α-smooth muscle actin, and elastic fibers. Anat. Rec. 295, 1159–1167 (2012).

    Article  CAS  Google Scholar 

  56. Hilmer, S. N. et al. Age-related changes in the hepatic sinusoidal endothelium impede lipoprotein transfer in the rat. Hepatology 42, 1349–1354 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Mohamad, M. et al. Ultrastructure of the liver microcirculation influences hepatic and systemic insulin activity and provides a mechanism for age-related insulin resistance. Aging Cell 15, 706–715 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Grosse, L. et al. Defined p16high senescent cell types are indispensable for mouse healthspan. Cell Metab. 32, 87–99.e6 (2020).

    Article  CAS  PubMed  Google Scholar 

  59. Grosse, L. & Bulavin, D. V. LSEC model of aging. Aging 12, 11152–11160 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Maeso-Diaz, R. et al. Effects of aging on liver microcirculatory function and sinusoidal phenotype. Aging Cell 17, e12829 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Warren, A. et al. The effects of old age on hepatic stellate cells. Curr. Gerontol. Geriatr. Res. 2011, 439835 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Marcos, R. & Correia-Gomes, C. Long live the liver: immunohistochemical and stereological study of hepatocytes, liver sinusoidal endothelial cells, Kupffer cells and hepatic stellate cells of male and female rats throughout ageing. Cell Tissue Res. 366, 639–649 (2016).

    Article  CAS  PubMed  Google Scholar 

  63. Cogger, V. C. et al. Preliminary analysis of the sinusoidal endothelium and space of Disse in ageing Papio hamadrayas. Comp. Hepatol. 3, S26 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Franceschi, C., Garagnani, P., Parini, P., Giuliani, C. & Santoro, A. Inflammaging: a new immune-metabolic viewpoint for age-related diseases. Nat. Rev. Endocrinol. 14, 576–590 (2018).

    Article  CAS  PubMed  Google Scholar 

  65. Hilmer, S. N., Cogger, V. C. & Le Couteur, D. G. Basal activity of Kupffer cells increases with old age. J. Gerontol. A Biol. Sci. Med. Sci. 62, 973–978 (2007).

    Article  PubMed  Google Scholar 

  66. Knook, D. L. & Brouwer, A. Kupffer cells and the acute phase response: the effect of aging. Immunol. Invest. 18, 339–350 (1989).

    Article  CAS  PubMed  Google Scholar 

  67. Zou, J., Li, J., Wang, X., Tang, D. & Chen, R. Neuroimmune modulation in liver pathophysiology. J. Neuroinflamm. 21, 188 (2024).

    Article  CAS  Google Scholar 

  68. Chatterjee, N., Sharma, R., Kale, P. R., Trehanpati, N. & Ramakrishna, G. Is the liver resilient to the process of ageing? Ann. Hepatol. 30, 101580 (2024).

    Article  PubMed  Google Scholar 

  69. Stell, D. & Wall, W. J. The impact of aging on the liver. Geriatr. Aging 6, 36–37 (2003).

    Google Scholar 

  70. Frith, J., Jones, D. & Newton, J. L. Chronic liver disease in an ageing population. Age Ageing 38, 11–18 (2009).

    Article  PubMed  Google Scholar 

  71. Le Couteur, D. G. et al. The association of alanine transaminase with aging, frailty, and mortality. J. Gerontol. A Biol. Sci. Med. Sci. 65, 712–717 (2010).

    Article  PubMed  Google Scholar 

  72. Liu, Z., Que, S., Xu, J. & Peng, T. Alanine aminotransferase — old biomarker and new concept: a review. Int. J. Med. Sci. 11, 925–935 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. McPherson, S. et al. Age as a confounding factor for the accurate non-invasive diagnosis of advanced NAFLD fibrosis. Am. J. Gastroenterol. 112, 740–751 (2017).

    Article  PubMed  Google Scholar 

  74. Liu, Z. et al. Complex association between alanine aminotransferase activity and mortality in general population: a systematic review and meta-analysis of prospective studies. PLoS ONE 9, e91410 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Moshkovits, Y., Chetrit, A. & Dankner, R. The association between frailty biomarkers and 20-year all-cause and cardiovascular mortality among community-dwelling older adults. Postgrad. Med. 136, 641–650 (2024).

    Article  CAS  PubMed  Google Scholar 

  76. Fleming, K. M., West, J., Aithal, G. P. & Fletcher, A. E. Abnormal liver tests in people aged 75 and above: prevalence and association with mortality. Aliment. Pharmacol. Ther. 34, 324–334 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Katzke, V. et al. Circulating liver enzymes and risks of chronic diseases and mortality in the prospective EPIC-Heidelberg case-cohort study. BMJ Open 10, e033532 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Kim, J. W. et al. Liver function and Alzheimer’s brain pathologies: a longitudinal study: liver and Alzheimer’s pathologies. J. Prev. Alzheimers Dis. 12, 100012 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Li, C. et al. Serum liver enzymes and risk of stroke: systematic review with meta-analyses and Mendelian randomization studies. Eur. J. Neurol. 31, e16506 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Cieslak, K. P., Baur, O., Verheij, J., Bennink, R. J. & van Gulik, T. M. Liver function declines with increased age. HPB 18, 691–696 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Schembri, G. et al. Mebrofenin functional indices in a normal population. J. Nucl. Med. 64, P501 (2023).

    Google Scholar 

  82. McLean, A. J. & Le Couteur, D. G. Aging biology and geriatric clinical pharmacology. Pharmacol. Rev. 56, 163–184 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Butler, J. M. & Begg, E. J. Free drug metabolic clearance in elderly people. Clin. Pharmacokinet. 47, 297–321 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Sotaniemi, E. A., Arranto, A. J., Pelkonen, O. & Pasanen, M. Age and cytochrome p450-linked drug metabolism in humans: an analysis of 226 subjects with equal histopathologic conditions. Clin. Pharmacol. Ther. 61, 331–339 (1997).

    Article  CAS  PubMed  Google Scholar 

  85. Lin, L. et al. The burden and trends of primary liver cancer caused by specific etiologies from 1990 to 2017 at the global, regional, national, age, and sex level results from the Global Burden of Disease Study 2017. Liver Cancer 9, 563–582 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Institute for Health Metrics and Evaluation. Global Burden of Disease Study 2021 (GBD 2021) data resources. IHME https://ghdx.healthdata.org/gbd-2021 (2025).

  87. Villanueva, A. Hepatocellular carcinoma. N. Engl. J. Med. 380, 1450–1462 (2019).

    Article  CAS  PubMed  Google Scholar 

  88. Yi, S. W., Choi, J. S., Yi, J. J., Lee, Y. H. & Han, K. J. Risk factors for hepatocellular carcinoma by age, sex, and liver disorder status: a prospective cohort study in Korea. Cancer 124, 2748–2757 (2018).

    Article  PubMed  Google Scholar 

  89. He, Y. et al. Emerging role of aging in the progression of NAFLD to HCC. Ageing Res. Rev. 84, 101833 (2023).

    Article  PubMed  Google Scholar 

  90. Hanahan, D. Hallmarks of cancer: new dimensions. Cancer Discov. 12, 31–46 (2022).

    Article  CAS  PubMed  Google Scholar 

  91. Le Couteur, D. G. & Simpson, S. J. Adaptive senectitude: the prolongevity effects of aging. J. Gerontol. A Biol. Sci. Med. Sci. 66, 179–182 (2011).

    Article  PubMed  Google Scholar 

  92. Sheedfar, F., Di Biase, S., Koonen, D. & Vinciguerra, M. Liver diseases and aging: friends or foes? Aging Cell 12, 950–954 (2013).

    Article  CAS  PubMed  Google Scholar 

  93. Campisi, J. Aging, cellular senescence, and cancer. Annu. Rev. Physiol. 75, 685–705 (2013).

    Article  CAS  PubMed  Google Scholar 

  94. Abul-Husn, N. S. et al. A protein-truncating HSD17b13 variant and protection from chronic liver disease. N. Engl. J. Med. 378, 1096–1106 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hung, A. K. & Guy, J. Hepatocellular carcinoma in the elderly: meta-analysis and systematic literature review. World J. Gastroenterol. 21, 12197–12210 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Brunot, A., Le Sourd, S., Pracht, M. & Edeline, J. Hepatocellular carcinoma in elderly patients: challenges and solutions. J. Hepatocell. Carcinoma 3, 9–18 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Stefan, N., Yki-Jarvinen, H. & Neuschwander-Tetri, B. A. Metabolic dysfunction-associated steatotic liver disease: heterogeneous pathomechanisms and effectiveness of metabolism-based treatment. Lancet Diabetes Endocrinol. 13, 134–148 (2025).

    Article  CAS  PubMed  Google Scholar 

  98. Huang, D. Q. et al. Metabolic dysfunction-associated steatotic liver disease in adults. Nat. Rev. Dis. Primers 11, 14 (2025).

    Article  PubMed  Google Scholar 

  99. Alqahtani, S. A. & Schattenberg, J. M. NAFLD in the elderly. Clin. Interv. Aging 16, 1633–1649 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Le Couteur, D. G., Raubenheimer, D., Solon-Biet, S., de Cabo, R. & Simpson, S. J. Does diet influence aging? Evidence from animal studies. J. Intern. Med. 295, 400–415 (2024).

    Article  PubMed  Google Scholar 

  101. Diaz-Ruiz, A., Price, N. L., Ferrucci, L. & de Cabo, R. Obesity and lifespan, a complex tango. Sci. Transl Med. 15, eadh1175 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kagansky, N. et al. Non-alcoholic fatty liver disease — a common and benign finding in octogenarian patients. Liver Int. 24, 588–594 (2004).

    Article  PubMed  Google Scholar 

  103. Malenfant, J. H. & Batsis, J. A. Obesity in the geriatric population — a global health perspective. J. Glob. Health Rep. 3, e2019045 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Oliveros, E. et al. Hypertension in older adults: assessment, management, and challenges. Clin. Cardiol. 43, 99–107 (2020).

    Article  PubMed  Google Scholar 

  105. Hashemi, R. et al. High prevalence of comorbidities in older adult patients with type 2 diabetes: a cross-sectional survey. BMC Geriatr. 24, 873 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Rosada, A. et al. Hyperlipidemias in elderly patients: results from the Berlin Aging Study II (BASEII), a cross-sectional study. Lipids Health Dis. 19, 92 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Lichtinghagen, R. et al. The enhanced liver fibrosis (ELF) score: normal values, influence factors and proposed cut-off values. J. Hepatol. 59, 236–242 (2013).

    Article  PubMed  Google Scholar 

  108. Vali, Y. et al. Precision in liver diagnosis: varied accuracy across subgroups and the need for variable thresholds in diagnosis of MASLD. Liver Int. 45, e16240 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Stine, J. G. & Rinella, M. E. Editorial: age and non-invasive markers of fibrosis in patients with nonalcoholic fatty liver disease: time to adjust the clock? Am. J. Gastroenterol. 112, 752–754 (2017).

    Article  PubMed  Google Scholar 

  110. Chen, T. P., Lai, M., Lin, W. Y., Huang, K. C. & Yang, K. C. Metabolic profiles and fibrosis of nonalcoholic fatty liver disease in the elderly: a community-based study. J. Gastroenterol. Hepatol. 35, 1636–1643 (2020).

    Article  CAS  PubMed  Google Scholar 

  111. Li, Y., Adeniji, N. T., Fan, W., Kunimoto, K. & Torok, N. J. Non-alcoholic fatty liver disease and liver fibrosis during aging. Aging Dis. 13, 1239–1251 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Ogrodnik, M. et al. Cellular senescence drives age-dependent hepatic steatosis. Nat. Commun. 8, 15691 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ogrodnik, M. & Jurk, D. Senescence explains age- and obesity-related liver steatosis. Cell Stress 1, 70–72 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Eriksson, S., Fraser, J. R., Laurent, T. C., Pertoft, H. & Smedsrod, B. Endothelial cells are a site of uptake and degradation of hyaluronic acid in the liver. Exp. Cell Res. 144, 223–228 (1983).

    Article  CAS  PubMed  Google Scholar 

  115. Miyao, M. et al. Pivotal role of liver sinusoidal endothelial cells in NAFLD/NASH progression. Lab. Invest. 95, 1130–1144 (2015).

    Article  CAS  PubMed  Google Scholar 

  116. Kus, E. et al. LSEC fenestrae are preserved despite pro-inflammatory phenotype of liver sinusoidal endothelial cells in mice on high fat diet. Front. Physiol. 10, 6 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  117. McCuskey, R. S. et al. Hepatic microvascular dysfunction during evolution of dietary steatohepatitis in mice. Hepatology 40, 386–393 (2004).

    Article  PubMed  Google Scholar 

  118. DeLeve, L. D. Liver sinusoidal endothelial cells in hepatic fibrosis. Hepatology 61, 1740–1746 (2015).

    Article  CAS  PubMed  Google Scholar 

  119. Hammoutene, A. et al. A defect in endothelial autophagy occurs in patients with non-alcoholic steatohepatitis and promotes inflammation and fibrosis. J. Hepatol. 72, 528–538 (2020).

    Article  CAS  PubMed  Google Scholar 

  120. Dai, Q. et al. Aging-associated liver sinusoidal endothelial cells dysfunction aggravates the progression of metabolic dysfunction-associated steatotic liver disease. Aging Cell 24, e14502 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kim, I. H. et al. Aging increases the susceptibility of hepatic inflammation, liver fibrosis and aging in response to high-fat diet in mice. Age 38, 291–302 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Maeso-Diaz, R. et al. Aging influences hepatic microvascular biology and liver fibrosis in advanced chronic liver disease. Aging Dis. 10, 684–698 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Van den Broecke, A. et al. Epidemiology, causes, evolution and outcome in a single-center cohort of 1116 critically ill patients with hypoxic hepatitis. Ann. Intensive Care 8, 15 (2018).

    Article  PubMed  Google Scholar 

  124. Tapper, E. B., Sengupta, N. & Bonder, A. The incidence and outcomes of ischemic hepatitis: a systematic review with meta-analysis. Am. J. Med. 128, 1314–1321 (2015).

    Article  PubMed  Google Scholar 

  125. Roedl, K. et al. Occurrence, characteristics, and outcome of hypoxic liver injury among patients aged ≥90 years admitted to the intensive care unit: a retrospective cohort study. Gerontology 69, 728–736 (2023).

    Article  PubMed  Google Scholar 

  126. Aboelsoud, M. M., Javaid, A. I., Al-Qadi, M. O. & Lewis, J. H. Hypoxic hepatitis — its biochemical profile, causes and risk factors of mortality in critically-ill patients: a cohort study of 565 patients. J. Crit. Care 41, 9–15 (2017).

    Article  CAS  PubMed  Google Scholar 

  127. Rashed, K. A., McNabb, W. R. & Lewis, R. R. Ischaemic hepatitis in the elderly. Gerontology 48, 245–249 (2002).

    Article  PubMed  Google Scholar 

  128. Martinez, I. et al. The influence of oxygen tension on the structure and function of isolated liver sinusoidal endothelial cells. Comp. Hepatol. 7, 4 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Le Couteur, D. G. & McLean, A. J. The aging liver. Drug clearance and an oxygen diffusion barrier hypothesis. Clin. Pharmacokinet. 34, 359–373 (1998).

    PubMed  Google Scholar 

  130. Bjornsson, E. S., Bergmann, O. M., Bjornsson, H. K., Kvaran, R. B. & Olafsson, S. Incidence, presentation, and outcomes in patients with drug-induced liver injury in the general population of Iceland. Gastroenterology 144, 1419–1425 (2013).

    Article  PubMed  Google Scholar 

  131. Hoofnagle, J. H. & Navarro, V. J. Drug-induced liver injury: Icelandic lessons. Gastroenterology 144, 1335–1336 (2013).

    Article  PubMed  Google Scholar 

  132. Hoofnagle, J. H. & Bjornsson, E. S. Drug-induced liver injury — types and phenotypes. N. Engl. J. Med. 381, 264–273 (2019).

    Article  CAS  PubMed  Google Scholar 

  133. Scott, I. A. et al. Reducing inappropriate polypharmacy: the process of deprescribing. JAMA Intern. Med. 175, 827–834 (2015).

    Article  PubMed  Google Scholar 

  134. Dayoub, J. C., Cortese, F., Anzic, A., Grum, T. & de Magalhaes, J. P. The effects of donor age on organ transplants: a review and implications for aging research. Exp. Gerontol. 110, 230–240 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Sakai, Y., Zhong, R., Garcia, B., Zhu, L. & Wall, W. J. Assessment of the longevity of the liver using a rat transplant model. Hepatology 25, 421–425 (1997).

    Article  CAS  PubMed  Google Scholar 

  136. Wu, B. J. et al. The virtual 4Ms: a novel curriculum for first year health professional students during COVID-19. J. Am. Geriatr. Soc. 69, E13–E16 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Fried, L. P. et al. The physical frailty syndrome as a transition from homeostatic symphony to cacophony. Nat. Aging 1, 36–46 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Rodriguez-Manas, L. & Fried, L. P. Frailty in the clinical scenario. Lancet 385, e7–e9 (2015).

    Article  PubMed  Google Scholar 

  139. Kim, D. H. & Rockwood, K. Frailty in older adults. N. Engl. J. Med. 391, 538–548 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Lai, J. C. et al. Development of a novel frailty index to predict mortality in patients with end-stage liver disease. Hepatology 66, 564–574 (2017).

    Article  PubMed  Google Scholar 

  141. Jutras, G. & Lai, J. C. The liver frailty index: a model for establishing organ-specific frailty metrics across all solid organ transplantation. Curr. Opin. Organ Transplant. 29, 266–270 (2024).

    Article  PubMed  Google Scholar 

  142. Collard, R. M., Boter, H., Schoevers, R. A. & Oude Voshaar, R. C. Prevalence of frailty in community-dwelling older persons: a systematic review. J. Am. Geriatr. Soc. 60, 1487–1492 (2012).

    Article  PubMed  Google Scholar 

  143. Gnjidic, D. et al. High-risk prescribing and incidence of frailty among older community-dwelling men. Clin. Pharmacol. Ther. 91, 521–528 (2012).

    Article  CAS  PubMed  Google Scholar 

  144. Kirk, B. et al. The conceptual definition of sarcopenia: Delphi consensus from the Global Leadership Initiative in Sarcopenia (GLIS). Age Ageing 53, e14502 (2024).

    Article  Google Scholar 

  145. Le Couteur, D. G. et al. Sarcopenic obesity and amino acids: Cconcord Health and Ageing in Men Project. J. Gerontol. A Biol. Sci. Med. Sci. 76, 1000–1004 (2021).

    Article  PubMed  Google Scholar 

  146. Stankevicius, C. et al. Sarcopenia as a risk factor for mortality in NAFLD: how should we diagnose it? J. Dig. Dis. 25, 645–654 (2024).

    Article  CAS  PubMed  Google Scholar 

  147. Zambon Azevedo, V. et al. Impact of sarcopenia on the severity of the liver damage in patients with non-alcoholic fatty liver disease. Front. Nutr. 8, 774030 (2021).

    Article  PubMed  Google Scholar 

  148. Iwaki, M. et al. Impact of sarcopenia on non-alcoholic fatty liver disease. Nutrients 15, 891 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Markakis, G. E. et al. Sarcopenia as a predictor of survival and complications of patients with cirrhosis after liver transplantation: a systematic review and meta-analysis. Clin. Transplant. 39, e70088 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Liao, Y. Sarcopenia with muscle wasting in hepatic cancer predicts therapeutic outcome after hepatic artery intervention. Int. J. Clin. Pharmacol. Ther. 63, 70–76 (2025).

    Article  CAS  PubMed  Google Scholar 

  151. Mikolasevic, I. et al. Nonalcoholic fatty liver disease and sarcopenia: where do we stand? Can. J. Gastroenterol. Hepatol. 2020, 8859719 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Skou, S. T. et al. Multimorbidity. Nat. Rev. Dis. Primers 8, 48 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Moreno-Juste, A. et al. Multimorbidity in patients with chronic liver disease: a population-based study in the Epichron Cohort, Spain. J. Clin. Med. 13, 7198 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Gnjidic, D. et al. Polypharmacy cutoff and outcomes: five or more medicines were used to identify community-dwelling older men at risk of different adverse outcomes. J. Clin. Epidemiol. 65, 989–995 (2012).

    Article  PubMed  Google Scholar 

  155. Winardi, K. et al. Chronic polypharmacy, monotherapy, and deprescribing: understanding complex effects on the hepatic proteome of aging mice. Aging Cell 24, e14357 (2025).

    Article  CAS  PubMed  Google Scholar 

  156. Wu, H. et al. Comparing effects of polypharmacy on inflammatory profiles in older adults and mice: implications for translational aging research. J. Gerontol. A Biol. Sci. Med. Sci. 77, 1295–1303 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Hayward, K. L. et al. Changing prevalence of medication use in people with cirrhosis: a retrospective cohort study using Pharmaceutical Benefits Scheme data. Drugs Real World Outcomes 10, 605–618 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Lee, B. T., Odin, J. A. & Grewal, P. An approach to drug-induced liver injury from the geriatric perspective. Curr. Gastroenterol. Rep. 23, 6 (2021).

    Article  PubMed  Google Scholar 

  159. Hayward, K. L. & Weersink, R. A. Improving medication-related outcomes in chronic liver disease. Hepatol. Commun. 4, 1562–1577 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Longbotham, D. et al. The impact of age on post-operative liver function following right hepatectomy: a retrospective, single centre experience. HPB 22, 151–160 (2020).

    Article  PubMed  Google Scholar 

  161. Ruzzenente, A. et al. Impact of age on short-term outcomes of liver surgery: lessons learned in 10-years’ experience in a tertiary referral hepato-pancreato-biliary center. Medicine 96, e6955 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Joliat, G. R. et al. Guidelines for perioperative care for liver surgery: Enhanced Recovery After Surgery (ERAS) Society recommendations 2022. World J. Surg. 47, 11–34 (2023).

    Article  PubMed  Google Scholar 

  163. Thillainadesan, J., Yumol, M. F., Hilmer, S., Aitken, S. J. & Naganathan, V. Interventions to improve clinical outcomes in older adults admitted to a surgical service: a systematic review and meta-analysis. J. Am. Med. Dir. Assoc. 21, 1833–1843.e20 (2020).

    Article  PubMed  Google Scholar 

  164. Jung, I. et al. Association of metabolic dysfunction-associated fatty liver disease with white matter hyperintensity and cognitive decline: a longitudinal cohort study. Diabetes Obes. Metab. 27, 2271–2279 (2025).

    Article  PubMed  Google Scholar 

  165. Wang, L., Sang, B. & Zheng, Z. Risk of dementia or cognitive impairment in non-alcoholic fatty liver disease: a systematic review and meta-analysis. Front. Aging Neurosci. 14, 985109 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Hunt, N. J. et al. Targeting the liver in dementia and cognitive impairment: dietary macronutrients and diabetic therapeutics. Adv. Drug Deliv. Rev. 190, 114537 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Pinheiro, F. I. et al. Hepatopancreatic metabolic disorders and their implications in the development of Alzheimer’s disease and vascular dementia. Ageing Res. Rev. 96, 102250 (2024).

    Article  CAS  PubMed  Google Scholar 

  168. Kciuk, M. et al. Alzheimer’s disease as type 3 diabetes: understanding the link and implications. Int. J. Mol. Sci. 25, 11955 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Pujol, A. et al. Metabolic-associated fatty liver disease and cognitive performance in type 2 diabetes: basal data from the Phytate, Neurodegeneration and diabetes (PHYND) study. Biomedicines 12, 1993 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Tsoy, A., Umbayev, B., Kassenova, A., Kaupbayeva, B. & Askarova, S. Pathology of amyloid-β (aβ) peptide peripheral clearance in Alzheimer’s disease. Int. J. Mol. Sci. 25, 10964 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Lam, V. et al. Synthesis of human amyloid restricted to liver results in an Alzheimer disease-like neurodegenerative phenotype. PLoS Biol. 19, e3001358 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Bassendine, M. F., Taylor-Robinson, S. D., Fertleman, M., Khan, M. & Neely, D. Is Alzheimer’s disease a liver disease of the brain? J. Alzheimers Dis. 75, 1–14 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Cha, W. J. et al. Association between brain amyloid deposition and longitudinal changes of white matter hyperintensities. Alzheimers Res. Ther. 16, 50 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Kaur, A., Rohit & Aran, K. R. Unraveling the dual role of bilirubin in neurological diseases: a comprehensive exploration of its neuroprotective and neurotoxic effects. Brain Res. 1851, 149472 (2025).

    Article  CAS  PubMed  Google Scholar 

  175. Silvey, S. et al. A possible reversible cause of cognitive impairment: undiagnosed cirrhosis and potential hepatic encephalopathy in patients with dementia. Am. J. Med. 137, 1082–1087.e1 (2024).

    Article  PubMed  Google Scholar 

  176. Cogger, V. C. et al. Dietary macronutrients and the aging liver sinusoidal endothelial cell. Am. J. Physiol. Heart Circ. Physiol. 310, H1064–H1070 (2016).

    Article  PubMed  Google Scholar 

  177. O’Reilly, J. N., Cogger, V. C., Fraser, R. & Le Couteur, D. G. The effect of feeding and fasting on fenestrations in the liver sinusoidal endothelial cell. Pathology 42, 255–258 (2010).

    Article  PubMed  Google Scholar 

  178. Jamieson, H. A. et al. Caloric restriction reduces age-related pseudocapillarization of the hepatic sinusoid. Exp. Gerontol. 42, 374–378 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Bartke, A. & Darcy, J. GH and ageing: pitfalls and new insights. Best Pract. Res. Clin. Endocrinol. Metab. 31, 113–125 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Salminen, A., Kauppinen, A. & Kaarniranta, K. FGF21 activates AMPK signaling: impact on metabolic regulation and the aging process. J. Mol. Med. 95, 123–131 (2017).

    Article  CAS  PubMed  Google Scholar 

  181. Gesing, A. et al. A long-lived mouse lacking both growth hormone and growth hormone receptor: a new animal model for aging studies. J. Gerontol. A Biol. Sci. Med. Sci. 72, 1054–1061 (2017).

    CAS  PubMed  Google Scholar 

  182. Sinclair, D. A. A bile acid could explain how calorie restriction slows ageing. Nature 643, 38–40 (2025).

    Article  CAS  PubMed  Google Scholar 

  183. Qu, Q. et al. Lithocholic acid phenocopies anti-ageing effects of calorie restriction. Nature 643, 192–200 (2025).

    Article  CAS  PubMed  Google Scholar 

  184. Qu, Q. et al. Lithocholic acid binds TULP3 to activate sirtuins and AMPK to slow down ageing. Nature 643, 201–209 (2025).

    Article  CAS  PubMed  Google Scholar 

  185. Baur, J. A. et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444, 337–342 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Pearson, K. J. et al. Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell Metab. 8, 157–168 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Labbe, A. et al. Resveratrol improves insulin resistance hyperglycemia and hepatosteatosis but not hypertriglyceridemia, inflammation, and life span in a mouse model for werner syndrome. J. Gerontol. A Biol. Sci. Med. Sci. 66, 264–278 (2011).

    Article  PubMed  Google Scholar 

  188. Pfluger, P. T., Herranz, D., Velasco-Miguel, S., Serrano, M. & Tschop, M. H. Sirt1 protects against high-fat diet-induced metabolic damage. Proc. Natl Acad. Sci. USA 105, 9793–9798 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Luo, X. et al. Sirtuin 1 ameliorates defenestration in hepatic sinusoidal endothelial cells during liver fibrosis via inhibiting stress-induced premature senescence. Cell Prolif. 54, e12991 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Le Couteur, D. G. & Barzilai, N. New horizons in life extension, healthspan extension and exceptional longevity. Age Ageing 51, afac156 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Perazza, F. et al. Metformin and the liver: unlocking the full therapeutic potential. Metabolites 14, 186 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Martin-Montalvo, A. et al. Metformin improves healthspan and lifespan in mice. Nat. Commun. 4, 2192 (2013).

    Article  PubMed  Google Scholar 

  193. Alfaras, I. et al. Health benefits of late-onset metformin treatment every other week in mice. npj Aging Mech. Dis. 3, 16 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Keys, M. T. et al. Reassessing the evidence of a survival advantage in type 2 diabetes treated with metformin compared with controls without diabetes: a retrospective cohort study. Int. J. Epidemiol. 51, 1886–1898 (2022).

    Article  PubMed  Google Scholar 

  195. Barzilai, N., Crandall, J. P., Kritchevsky, S. B. & Espeland, M. A. Metformin as a tool to target aging. Cell Metab. 23, 1060–1065 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Chen, H. P. et al. Metformin decreases hepatocellular carcinoma risk in a dose-dependent manner: population-based and in vitro studies. Gut 62, 606–615 (2013).

    Article  CAS  PubMed  Google Scholar 

  197. McCay, C., Crowell, M. & Maynard, L. The effect of retarded growth upon the length of life span and upon the ultimate body size. J. Nutr. 10, 63–79 (1935).

    Article  CAS  Google Scholar 

  198. Ingram, D. K. & de Cabo, R. Calorie restriction in rodents: caveats to consider. Ageing Res. Rev. 39, 15–28 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Mattison, J. A. et al. Caloric restriction improves health and survival of rhesus monkeys. Nat. Commun. 8, 14063 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Derous, D. et al. The effects of graded levels of calorie restriction: XI. Evaluation of the main hypotheses underpinning the life extension effects of cr using the hepatic transcriptome. Aging 9, 1770–1824 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. de Sousa, D. J. M. et al. Dietary restriction and hepatic cancer: systematic review and meta-analysis of animal studies. Crit. Rev. Oncol. Hematol. 196, 104264 (2024).

    Article  PubMed  Google Scholar 

  202. Serra, M., Marongiu, F., Pisu, M. G., Serra, M. & Laconi, E. Time-restricted feeding delays the emergence of the age-associated, neoplastic-prone tissue landscape. Aging 11, 3851–3863 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Haigh, L. et al. The effectiveness and acceptability of Mediterranean diet and calorie restriction in non-alcoholic fatty liver disease (NAFLD): a systematic review and meta-analysis. Clin. Nutr. 41, 1913–1931 (2022).

    Article  CAS  PubMed  Google Scholar 

  204. Simpson, S. J. & Raubenheimer, D. The Nature of Nutrition: A Unifying Framework from Animal Adaptation to Human Obesity (Princeton Univ. Press, 2012).

  205. Solon-Biet, S. M. et al. The ratio of macronutrients, not caloric intake, dictates cardiometabolic health, aging, and longevity in ad libitum-fed mice. Cell Metab. 19, 418–430 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Gokarn, R. et al. The relationship between dietary macronutrients and hepatic telomere length in aging mice. J. Gerontol. A Biol. Sci. Med. Sci. 73, 446–449 (2018).

    Article  CAS  PubMed  Google Scholar 

  207. Levine, M. E. et al. Low protein intake is associated with a major reduction in IGF-1, cancer, and overall mortality in the 65 and younger but not older population. Cell Metab. 19, 407–417 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Liao, Y. et al. Amino acid is a major carbon source for hepatic lipogenesis. Cell Metab. 36, 2437–2448.e8 (2024).

    Article  CAS  PubMed  Google Scholar 

  209. Zeng, X. F. et al. The role of dietary modification in the prevention and management of metabolic dysfunction-associated fatty liver disease: an international multidisciplinary expert consensus. Metabolism 161, 156028 (2024).

    Article  CAS  PubMed  Google Scholar 

  210. Honfo, S. H. et al. Evidence for protein leverage on total energy intake, but not body mass index, in a large cohort of older adults. Int. J. Obes. 48, 654–661 (2024).

    Article  CAS  Google Scholar 

  211. Raubenheimer, D. & Simpson, S. J. Protein leverage: theoretical foundations and ten points of clarification. Obesity 27, 1225–1238 (2019).

    Article  CAS  PubMed  Google Scholar 

  212. Pibiri, M. Liver regeneration in aged mice: new insights. Aging 10, 1801–1824 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Maldonado-Rengel, R., Socola-Barsallo, Z. & Vasquez, B. Alterations of liver morphology in senescent rats. Int. J. Mol. Sci. 25, 9846 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Wang, M. J., Chen, F., Lau, J. T. Y. & Hu, Y. P. Hepatocyte polyploidization and its association with pathophysiological processes. Cell Death Dis. 8, e2805 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Lysek-Gladysinska, M. et al. Aging-related changes in the ultrastructure of hepatocytes and cardiomyocytes of elderly mice are enhanced in ApoE-deficient animals. Cells 10, 502 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Zhang, C. & Cuervo, A. M. Restoration of chaperone-mediated autophagy in aging liver improves cellular maintenance and hepatic function. Nat. Med. 14, 959–965 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Sun, W. B. et al. Effect of aging on cytoskeleton system of Kupffer cell and its phagocytic capacity. World J. Gastroenterol. 4, 77–79 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  218. de Leeuw, A. M., Brouwer, A., Barelds, R. J. & Knook, D. L. Maintenance cultures of Kupffer cells isolated from rats of various ages: ultrastructure, enzyme cytochemistry, and endocytosis. Hepatology 3, 497–506 (1983).

    Article  PubMed  Google Scholar 

  219. Saito, Y., Morine, Y. & Shimada, M. Mechanism of impairment on liver regeneration in elderly patients: role of hepatic stellate cell function. Hepatol. Res. 47, 505–513 (2017).

    Article  PubMed  Google Scholar 

  220. Pinto, C., Ninfole, E., Benedetti, A., Maroni, L. & Marzioni, M. Aging-related molecular pathways in chronic cholestatic conditions. Front. Med. 6, 332 (2019).

    Article  Google Scholar 

  221. Karaman, H. et al. Investigation of genome instability in patients with non-alcoholic steatohepatitis. World J. Gastroenterol. 19, 5295–5301 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Akazawa, Y. et al. Detection of DNA damage response in nonalcoholic fatty liver disease via p53-binding protein 1 nuclear expression. Mod. Pathol. 32, 997–1007 (2019).

    Article  CAS  PubMed  Google Scholar 

  223. Ningarhari, M. et al. Telomere length is key to hepatocellular carcinoma diversity and telomerase addiction is an actionable therapeutic target. J. Hepatol. 74, 1155–1166 (2021).

    Article  CAS  PubMed  Google Scholar 

  224. In der Stroth, L., Tharehalli, U., Gunes, C. & Lechel, A. Telomeres and telomerase in the development of liver cancer. Cancers 12, 2048 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Tang, L. et al. The association between telomere length and non-alcoholic fatty liver disease: a prospective study. BMC Med. 21, 427 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Bacalini, M. G. et al. Molecular aging of human liver: an epigenetic/transcriptomic signature. J. Gerontol. A Biol. Sci. Med. Sci. 74, 1–8 (2019).

    CAS  PubMed  Google Scholar 

  227. Fu, S., Debes, J. D. & Boonstra, A. DNA methylation markers in the detection of hepatocellular carcinoma. Eur. J. Cancer 191, 112960 (2023).

    Article  CAS  PubMed  Google Scholar 

  228. Vachher, M., Bansal, S., Kumar, B., Yadav, S. & Burman, A. Deciphering the role of aberrant DNA methylation in NAFLD and NASH. Heliyon 8, e11119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Loomba, R. et al. DNA methylation signatures reflect aging in patients with nonalcoholic steatohepatitis. JCI Insight 3, e96685 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  230. Negroni, L. et al. Integrative quantitative proteomics unveils proteostasis imbalance in human hepatocellular carcinoma developed on nonfibrotic livers. Mol. Cell Proteom. 13, 3473–3483 (2014).

    Article  CAS  Google Scholar 

  231. He, Q. J. et al. Recent advances in age-related metabolic dysfunction-associated steatotic liver disease. World J. Gastroenterol. 30, 652–662 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Schneider, J. L. & Cuervo, A. M. Liver autophagy: much more than just taking out the trash. Nat. Rev. Gastroenterol. Hepatol. 11, 187–200 (2014).

    Article  PubMed  Google Scholar 

  233. Yang, S. et al. New insights into autophagy in hepatocellular carcinoma: mechanisms and therapeutic strategies. Am. J. Cancer Res. 9, 1329–1353 (2019).

    PubMed  PubMed Central  Google Scholar 

  234. Han, X. et al. Nicotinamide riboside exerts protective effect against aging-induced NAFLD-like hepatic dysfunction in mice. PeerJ 7, e7568 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  235. Su, W. W. et al. Association of circulating insulin-like growth factor 1 with hepatocellular carcinoma: one cross-sectional correlation study. J. Clin. Lab. Anal. 24, 195–200 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Ge, S. et al. PSME4 activates mTOR signaling and promotes the malignant progression of hepatocellular carcinoma. Int. J. Gen. Med. 15, 885–895 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Chen, G., Li, M. Y., Yang, J. Y. & Zhou, Z. H. Will AMPK be a potential therapeutic target for hepatocellular carcinoma? Am. J. Cancer Res. 14, 3241–3258 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Shrestha, R. et al. Complete inhibition of liver acetyl-CoA carboxylase activity is required to exacerbate liver tumorigenesis in mice treated with diethylnitrosamine. Cancer Metab. 12, 34 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  239. Zhao, P. et al. An AMPK-caspase-6 axis controls liver damage in nonalcoholic steatohepatitis. Science 367, 652–660 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Purushotham, A. et al. Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab. 9, 327–338 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Marcondes-de-Castro, I. A., Reis-Barbosa, P. H., Marinho, T. S., Aguila, M. B. & Mandarim-de-Lacerda, C. A. AMPK/mTOR pathway significance in healthy liver and non-alcoholic fatty liver disease and its progression. J. Gastroenterol. Hepatol. 38, 1868–1876 (2023).

    Article  CAS  PubMed  Google Scholar 

  242. Muller-Hocker, J. et al. Defects of the respiratory chain in the normal human liver and in cirrhosis during aging. Hepatology 26, 709–719 (1997).

    Article  CAS  PubMed  Google Scholar 

  243. Zeng, L., Zhu, L., Fu, S., Li, Y. & Hu, K. Mitochondrial dysfunction-molecular mechanisms and potential treatment approaches of hepatocellular carcinoma. Mol. Cell Biochem. 480, 2131–2142 (2025).

    Article  CAS  PubMed  Google Scholar 

  244. Perez-Carreras, M. et al. Defective hepatic mitochondrial respiratory chain in patients with nonalcoholic steatohepatitis. Hepatology 38, 999–1007 (2003).

    Article  CAS  PubMed  Google Scholar 

  245. Allaire, M. & Gilgenkrantz, H. The aged liver: beyond cellular senescence. Clin. Res. Hepatol. Gastroenterol. 44, 6–11 (2020).

    Article  PubMed  Google Scholar 

  246. Schulte, L. A., Lopez-Gil, J. C., Sainz, B. Jr. & Hermann, P. C. The cancer stem cell in hepatocellular carcinoma. Cancers 12, 127–140 (2020).

    Article  Google Scholar 

  247. Gu, L. et al. FBP1 controls liver cancer evolution from senescent MASH hepatocytes. Nature 637, 461–469 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Hora, S. & Wuestefeld, T. Liver injury and regeneration: current understanding, new approaches, and future perspectives. Cells 12, 2129 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Lee, T. K., Guan, X. Y. & Ma, S. Cancer stem cells in hepatocellular carcinoma — from origin to clinical implications. Nat. Rev. Gastroenterol. Hepatol. 19, 26–44 (2022).

    Article  PubMed  Google Scholar 

  250. Nobili, V. et al. Hepatic progenitor cells activation, fibrosis, and adipokines production in pediatric nonalcoholic fatty liver disease. Hepatology 56, 2142–2153 (2012).

    Article  CAS  PubMed  Google Scholar 

  251. Li, Q. et al. Sirt1 promotes the restoration of hepatic progenitor cell (HPC)-mediated liver fatty injury in NAFLD through activating the Wnt/β-catenin signal pathway. Front. Nutr. 8, 791861 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  252. Chiang, C. H. et al. Decreased circulating endothelial progenitor cell levels and function in patients with nonalcoholic fatty liver disease. PLoS ONE 7, e31799 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Wang, W. T., Jin, W. L. & Li, X. Intercellular communication in the tumour microecosystem: mediators and therapeutic approaches for hepatocellular carcinoma. Biochim. Biophys. Acta Mol. Basis Dis. 1868, 166528 (2022).

    Article  CAS  PubMed  Google Scholar 

  254. Marrone, G., Shah, V. H. & Gracia-Sancho, J. Sinusoidal communication in liver fibrosis and regeneration. J. Hepatol. 65, 608–617 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  255. Wang, S. et al. Metabolic disorders, inter-organ crosstalk, and inflammation in the progression of metabolic dysfunction-associated steatotic liver disease. Life Sci. 359, 123211 (2024).

    Article  CAS  PubMed  Google Scholar 

  256. Karin, M. New insights into the pathogenesis and treatment of non-viral hepatocellular carcinoma: a balancing act between immunosuppression and immunosurveillance. Precis. Clin. Med. 1, 21–28 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  257. Barsch, M. et al. T-cell exhaustion and residency dynamics inform clinical outcomes in hepatocellular carcinoma. J. Hepatol. 77, 397–409 (2022).

    Article  CAS  PubMed  Google Scholar 

  258. Ruf, B., Heinrich, B. & Greten, T. F. Immunobiology and immunotherapy of HCC: spotlight on innate and innate-like immune cells. Cell Mol. Immunol. 18, 112–127 (2021).

    Article  CAS  PubMed  Google Scholar 

  259. Sawada, K., Chung, H., Softic, S., Moreno-Fernandez, M. E. & Divanovic, S. The bidirectional immune crosstalk in metabolic dysfunction-associated steatotic liver disease. Cell Metab. 35, 1852–1871 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Trivedi, Y. et al. The role of gut microbiome in hepatocellular carcinoma: a systematic review. Cureus 15, e43862 (2023).

    PubMed  PubMed Central  Google Scholar 

  261. Forlano, R. et al. Disruption of gut barrier integrity and host–microbiome interactions underlie MASLD severity in patients with type-2 diabetes mellitus. Gut Microbes 16, 2304157 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding by the Australian National and Health Medical Research Council (Investigator Grant no. 2025511 (to D.G.L.C.) and Programme Grant no. 1149976 (to S.J.S. and D.G.L.C.)) and the MRFF Targeted Translation Research Accelerator Program (to N.J.H., V.C.C. and D.G.L.C.).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article. All authors contributed substantially to discussion of the content. D.G.L.C. and V.C.C. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to David G. Le Couteur.

Ethics declarations

Competing interests

D.G.L.C. has received consultancy fees via the Reimbursement Advisory Expert Panel (REAP) for independent pre-submission advice to pharmaceutical companies on regulatory and funding applications to government. D.G.L.C., N.J.H. and V.C.C. are founder members and N.J.H. is the CEO of a start-up company (Endo Axiom) with Sydney University, Sydney Local Health District and Proto Axiom, which hold patents on nanomedicines for the treatment and prevention of diabetes mellitus. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le Couteur, D.G., Ngu, M.C., Hunt, N.J. et al. Liver, ageing and disease. Nat Rev Gastroenterol Hepatol 22, 680–695 (2025). https://doi.org/10.1038/s41575-025-01099-z

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41575-025-01099-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing