Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Interaction of inflammation and portal hypertension in cirrhosis progression

Abstract

Decompensated cirrhosis describes an advanced clinical stage with clinical complications, such as ascites, variceal bleeding or hepatic encephalopathy, associated with considerable mortality. Portal hypertension is the main risk factor for developing decompensation in patients with compensated cirrhosis, whereas systemic inflammation is the key driving force for organ failure, that is, for acute-on-chronic liver failure in later stages of cirrhosis. As portal hypertension and systemic inflammation coexist in patients with cirrhosis, an improved understanding of their interaction and dynamic role in distinct stages of cirrhosis is an important step forward towards the development of urgently needed therapeutic interventions. Based on emerging evidence from clinical and translational studies, a novel concept of different predominant pathomechanisms of decompensated cirrhosis is presented, which includes portal hypertension-predominant, systemic inflammmation-predominant and mixed portal hypertension–systemic inflammation phenotypes. A comprehensive set of biomarkers and surrogates of portal hypertension and systemic inflammation might assist clinicians in identifying a predominance of one over the other cirrhosis phenotype. As survival rates of patients with decompensated cirrhosis have remained detrimental without liver transplantation over the past decades, future studies should build on this knowledge to develop effective portal hypertension and systemic inflammation-directed therapies for this underserved population.

Key points

  • Cirrhosis decompensation is defined by the development of ascites, variceal bleeding, hepatic encephalopathy, or jaundice and is linked to a considerable increase in the risk for mortality.

  • In compensated cirrhosis, the magnitude of portal hypertension is the key determinant of the risk for developing decompensation.

  • Inflammation, and particularly the severity of systemic inflammation, is particularly pronounced in advanced stages of cirrhosis, that is, in patients with further decompensated cirrhosis or acute-on-chronic liver failure.

  • We propose a concept of ‘pathophysiological’ phenotypes of decompensated cirrhosis by predominance of portal hypertension, systemic inflammation, or even mixed systemic inflammation and portal hypertension.

  • The evidence for the interaction of portal hypertension and systemic inflammation in the key pathomechanism driving cirrhosis decompensation and end-organ dysfunction or failure is presented.

  • A summary of promising therapeutic approaches targeting portal hypertension and systemic inflammation for which translational or clinical studies have been or are being conducted is presented.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Clinico-pathophysiological correlates in patients with different cirrhosis phenotypes.
Fig. 2: Organ-level consequences of PH and inflammation in cirrhosis.
Fig. 3: Model for the role of SI and PH in accentuating cirrhosis progression and acute-on-chronic liver failure development, including therapeutic approaches targeting the presented pathomechanisms.

Similar content being viewed by others

References

  1. D’Amico, G., Garcia-Tsao, G. & Pagliaro, L. Natural history and prognostic indicators of survival in cirrhosis: a systematic review of 118 studies. J. Hepatol. 44, 217–231 (2006).

    Article  PubMed  Google Scholar 

  2. de Franchis, R. et al. Baveno VII — renewing consensus in portal hypertension. J. Hepatol. 76, 959–974 (2022).

    Article  PubMed  Google Scholar 

  3. Jalan, R. et al. New clinical and pathophysiological perspectives defining the trajectory of cirrhosis. J. Hepatol. 75, S14–S26 (2021).

    Article  PubMed  Google Scholar 

  4. Trebicka, J. et al. The PREDICT study uncovers three clinical courses of acutely decompensated cirrhosis that have distinct pathophysiology. J. Hepatol. 73, 842–854 (2020).

    Article  PubMed  Google Scholar 

  5. D’Amico, G., Bernardi, M. & Angeli, P. Towards a new definition of decompensated cirrhosis. J. Hepatol. 76, 202–207 (2022).

    Article  PubMed  Google Scholar 

  6. Tonon, M. et al. A new clinical and prognostic characterization of the patterns of decompensation of cirrhosis. J. Hepatol. 80, 603–609 (2024).

    Article  PubMed  Google Scholar 

  7. Ripoll, C. et al. Hepatic venous pressure gradient predicts clinical decompensation in patients with compensated cirrhosis. Gastroenterology 133, 481–488 (2007).

    Article  PubMed  CAS  Google Scholar 

  8. Paternostro, R. et al. Hepatic venous pressure gradient predicts risk of hepatic decompensation and liver-related mortality in patients with MASLD. J. Hepatol. 81, 827–836 (2024).

    Article  PubMed  Google Scholar 

  9. Moreau, R. et al. Acute-on-chronic liver failure is a distinct syndrome that develops in patients with acute decompensation of cirrhosis. Gastroenterology 144, 1426–1437 (2013).

    Article  PubMed  Google Scholar 

  10. Trebicka, J. et al. Addressing profiles of systemic inflammation across the different clinical phenotypes of acutely decompensated cirrhosis. Front. Immunol. 10, 2014 (2019).

    Article  Google Scholar 

  11. Clària, J. et al. Systemic inflammation in decompensated cirrhosis: characterization and role in acute-on-chronic liver failure. Hepatology 64, 1249–1264 (2016).

    Article  PubMed  Google Scholar 

  12. Gustot, T. et al. Clinical course of acute-on-chronic liver failure syndrome and effects on prognosis. Hepatology 62, 243–252 (2015).

    Article  PubMed  Google Scholar 

  13. Costa, D. et al. Systemic inflammation increases across distinct stages of advanced chronic liver disease and correlates with decompensation and mortality. J. Hepatol. 74, 819–828 (2021).

    Article  PubMed  CAS  Google Scholar 

  14. Turco, L. et al. Cardiopulmonary hemodynamics and C-reactive protein as prognostic indicators in compensated and decompensated cirrhosis. J. Hepatol. 68, 949–958 (2018).

    Article  PubMed  CAS  Google Scholar 

  15. Colecchia, A. et al. Measurement of spleen stiffness to evaluate portal hypertension and the presence of esophageal varices in patients with HCV-related cirrhosis. Gastroenterology 143, 646–654 (2012).

    Article  PubMed  Google Scholar 

  16. Ferlitsch, M. et al. Von Willebrand factor as new noninvasive predictor of portal hypertension, decompensation and mortality in patients with liver cirrhosis. Hepatology 56, 1439–1447 (2012).

    Article  PubMed  CAS  Google Scholar 

  17. Simbrunner, B. et al. Non-invasive detection of portal hypertension by enhanced liver fibrosis score in patients with different aetiologies of advanced chronic liver disease. Liver Int. 40, 1713–1724 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Thorhauge, K. H. et al. Using liver stiffness to predict and monitor the risk of decompensation and mortality in patients with alcohol-related liver disease. J. Hepatol. 81, 876–886 (2024).

    Article  Google Scholar 

  19. Monteiro, S. et al. Differential inflammasome activation predisposes to acute-on-chronic liver failure in human and experimental cirrhosis with and without previous decompensation. Gut 70, 379–387 (2021).

    PubMed  CAS  Google Scholar 

  20. Juanola, A. et al. Novel prognostic biomarkers in decompensated cirrhosis: a systematic review and meta-analysis. Gut 73, 156–165 (2023).

    Article  PubMed  Google Scholar 

  21. Albillos, A. et al. Cirrhosis-associated immune dysfunction. Nat. Rev. Gastroenterol. Hepatol. 19, 112–134 (2022).

    Article  PubMed  Google Scholar 

  22. Simbrunner, B. et al. Dysregulated biomarkers of innate and adaptive immunity predict infections and disease progression in cirrhosis. JHEP Rep. 5, 100624 (2023).

    Google Scholar 

  23. Hackstein, C. P. et al. Gut microbial translocation corrupts myeloid cell function to control bacterial infection during liver cirrhosis. Gut 66, 507–518 (2017).

    Article  PubMed  CAS  Google Scholar 

  24. Arvaniti, V. et al. Infections in patients with cirrhosis increase mortality four-fold and should be used in determining prognosis. Gastroenterology 139, 1246–1256 (2010).

    Article  PubMed  Google Scholar 

  25. Thabut, D. et al. Model for end-stage liver disease score and systemic inflammatory response are major prognostic factors in patients with cirrhosis and acute functional renal failure. Hepatology 46, 1872–1882 (2007).

    Article  PubMed  Google Scholar 

  26. Fernandez, M. et al. Reversal of portal hypertension and hyperdynamic splanchnic circulation by combined vascular endothelial growth factor and platelet-derived growth factor blockade in rats. Hepatology 46, 1208–1217 (2007).

    Article  PubMed  CAS  Google Scholar 

  27. DeLeve, L. D., Wang, X. & Guo, Y. Sinusoidal endothelial cells prevent rat stellate cell activation and promote reversion to quiescence. Hepatology 48, 920–930 (2008).

    Article  PubMed  CAS  Google Scholar 

  28. Xie, G. et al. Role of differentiation of liver sinusoidal endothelial cells in progression and regression of hepatic fibrosis in rats. Gastroenterology 142, 918–927.e6 (2012).

    Article  PubMed  Google Scholar 

  29. Xie, G. et al. Hedgehog signalling regulates liver sinusoidal endothelial cell capillarisation. Gut 62, 299–309 (2013).

    Article  PubMed  CAS  Google Scholar 

  30. Copple, B. L., Bai, S., Burgoon, L. D. & Moon, J.-O. Hypoxia-inducible factor-1α regulates the expression of genes in hypoxic hepatic stellate cells important for collagen deposition and angiogenesis. Liver Int. 31, 230–244 (2011).

    Article  PubMed  CAS  Google Scholar 

  31. Gracia-Sancho, J. et al. Endothelial expression of transcription factor Kruppel-like factor 2 and its vasoprotective target genes in the normal and cirrhotic rat liver. Gut 60, 517–524 (2011).

    Article  PubMed  CAS  Google Scholar 

  32. Shah, V. et al. Impaired endothelial nitric oxide synthase activity associated with enhanced caveolin binding in experimental cirrhosis in the rat. Hepatology 46, 537–547 (2007).

    Google Scholar 

  33. Gracia-Sancho, J. et al. Increased oxidative stress in cirrhotic rat livers: a potential mechanism contributing to reduced nitric oxide bioavailability. Hepatology 47, 1248–1256 (2008).

    Article  PubMed  CAS  Google Scholar 

  34. Rockey, D. C. & Weisiger, R. A. Endothelin induced contractility of stellate cells from normal and cirrhotic rat liver: implications for regulation of portal pressure and resistance. Hepatology 23, 1193–1201 (1996).

    Google Scholar 

  35. Gracia-Sancho, J. et al. Enhanced vasoconstrictor prostanoid production by sinusoidal endothelial cells increases portal perfusion pressure in cirrhotic rat livers. J. Hepatol. 47, 220–227 (2007).

    Article  PubMed  CAS  Google Scholar 

  36. Zhou, Q. et al. Intrahepatic upregulation of RhoA and Rho-kinase signalling contributes to increased hepatic vascular resistance in rats with secondary biliary cirrhosis. Gut 55, 1296–1305 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Julien, B. et al. Antifibrogenic role of the cannabinoid receptor CB2 in the liver. Gastroenterology 128, 742–755 (2005).

    Article  PubMed  CAS  Google Scholar 

  38. Abraldes, J. G. et al. Mild increases in portal pressure upregulate vascular endothelial growth factor and endothelial nitric oxide synthase in the intestinal microcirculatory bed, leading to a hyperdynamic state. Am. J. Physiol. Gastrointest. Liver Physiol. 290, G980–G987 (2006).

    Article  PubMed  CAS  Google Scholar 

  39. Goh, B. J. Nitric oxide synthase and heme oxygenase expressions in human liver cirrhosis. World J. Gastroenterol. 12, 588–593 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Ros, J. et al. Endogenous cannabinoids: a new system involved in the homeostasis of arterial pressure in experimental cirrhosis in the rat. Gastroenterology 122, 85–93 (2002).

    Article  PubMed  CAS  Google Scholar 

  41. Erario, M. et al. Role of heme oxygenase/carbon monoxide pathway on the vascular response to noradrenaline in portal hypertensive rats. Clin. Exp. Pharmacol. Physiol. 32, 196–201 (2005).

    Article  PubMed  CAS  Google Scholar 

  42. Thabut, D. et al. Cirrhotic patients with portal hypertension-related bleeding and an indication for early-TIPS: a large multicentre audit with real-life results. J. Hepatol. 68, 73–81 (2018).

    Article  Google Scholar 

  43. Liu, B. et al. Innovative angiography: a new approach to discover more hepatic vein collaterals in patients with cirrhotic portal hypertension. BMC Gastroenterol. 23, 144 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Colle, I. O. et al. Vascular hyporesponsiveness in the mesenteric artery of anaesthetized rats with cirrhosis and portal hypertension: an in-vivo study. Eur. J. Gastroenterol. Hepatol. 16, 139–145 (2004).

    Article  PubMed  CAS  Google Scholar 

  45. Klein, S. et al. Janus-kinase-2 relates directly to portal hypertension and to complications in rodent and human cirrhosis. Gut 66, 145–155 (2015).

    Article  PubMed  Google Scholar 

  46. Casey, S. et al. Activation of the alternate renin-angiotensin system correlates with the clinical status in human cirrhosis and corrects post liver transplantation. J. Clin. Med. 8, 517 (2019).

    Article  Google Scholar 

  47. Grace, J. A. et al. Activation of the MAS receptor by angiotensin-(1-7) in the renin-angiotensin system mediates mesenteric vasodilatation in cirrhosis. Gastroenterology 145, 874–884 (2013).

    Article  PubMed  CAS  Google Scholar 

  48. Salerno, F. et al. Vasopressin release and water metabolism in patients with cirrhosis. J. Hepatol. 21, 822–830 (1994).

    Article  PubMed  CAS  Google Scholar 

  49. Kumar, A. et al. Hemodynamic studies in acute-on-chronic liver failure. Dig. Dis. Sci. 54, 869–878 (2009).

    Article  PubMed  Google Scholar 

  50. Sánchez-Aldehuelo, R. et al. Progressive systemic inflammation precedes decompensation in compensated cirrhosis. JHEP Rep. 7, 101231 (2025).

    Article  PubMed  Google Scholar 

  51. Albillos, A. et al. Increased lipopolysaccharide binding protein in cirrhotic patients with marked immune and hemodynamic derangement. Hepatology 37, 208–217 (2003).

    Article  PubMed  CAS  Google Scholar 

  52. Weiss, E. et al. Characterization of blood immune cells in patients with decompensated cirrhosis including ACLF. Front. Immunol. 11, 619039 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Clària, J., Arroyo, V. & Moreau, R. Roles of systemic inflammatory and metabolic responses in the pathophysiology of acute-on-chronic liver failure. JHEP Rep. 5, 100807 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Fernández, J., Piano, S., Bartoletti, M. & Wey, E. Q. Management of bacterial and fungal infections in cirrhosis: the MDRO challenge. J. Hepatol. 75, S101–S117 (2021).

    Article  PubMed  Google Scholar 

  55. Moreau, R., Périanin, A. & Arroyo, V. Review of defective NADPH oxidase activity and myeloperoxidase release in neutrophils from patients with cirrhosis. Front. Immunol. 10, 1044 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Bernsmeier, C. et al. Patients with acute-on-chronic liver failure have increased numbers of regulatory immune cells expressing the receptor tyrosine kinase MERTK. Gastroenterology 148, 603–615.e14 (2015).

    Article  PubMed  CAS  Google Scholar 

  57. Bernsmeier, C. et al. CD14+ CD15+ HLA-DR myeloid-derived suppressor cells impair antimicrobial responses in patients with acute-on-chronic liver failure. Gut 67, 1155–1167 (2018).

    Article  PubMed  CAS  Google Scholar 

  58. Geng, A. et al. Circulating monocytes upregulate CD52 and sustain innate immune function in cirrhosis unless acute decompensation emerges. J. Hepatol. 83, 146–160 (2025).

    Article  PubMed  CAS  Google Scholar 

  59. Lario, M. et al. Defective thymopoiesis and poor peripheral homeostatic replenishment of T-helper cells cause T-cell lymphopenia in cirrhosis. J. Hepatol. 59, 723–730 (2013).

    Article  PubMed  CAS  Google Scholar 

  60. Kwok, A. J. et al. Neutrophils and emergency granulopoiesis drive immune suppression and an extreme response endotype during sepsis. Nat. Immunol. 24, 767–779 (2023).

    Article  PubMed  CAS  Google Scholar 

  61. Medzhitov, R. Origin and physiological roles of inflammation. Nature 454, 428–435 (2008).

    Article  PubMed  CAS  Google Scholar 

  62. Bajaj, J. S., Kamath, P. S. & Reddy, K. R. The evolving challenge of infections in cirrhosis. N. Engl. J. Med. 384, 2317–2330 (2021).

    Article  PubMed  CAS  Google Scholar 

  63. Alvarez-Silva, C. et al. Compartmentalization of immune response and microbial translocation in decompensated cirrhosis. Front. Immunol. 10, 69 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Crispe, I. N. Immune tolerance in liver disease. Hepatology 60, 2109–2117 (2014).

    Article  PubMed  CAS  Google Scholar 

  65. Soffientini, U. et al. The lipopolysaccharide-sensing caspase(s)-4/11 are activated in cirrhosis and are causally associated with progression to multi-organ injury. Front. Cell Dev. Biol. 9, 668459 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Trawalé, J.-M. et al. The spectrum of renal lesions in patients with cirrhosis: a clinicopathological study. Liver Int. 30, 725–732 (2010).

    Article  PubMed  Google Scholar 

  67. Ventura-Cots, M. et al. Clinical, histological and molecular profiling of different stages of alcohol-related liver disease. Gut 71, 1856–1866 (2022).

    Article  PubMed  CAS  Google Scholar 

  68. Kondo, T. et al. The role of RIPK1 mediated cell death in acute on chronic liver failure. Cell Death Dis. 13, 5 (2022).

    Article  CAS  Google Scholar 

  69. Macdonald, S. et al. Cell death markers in patients with cirrhosis and acute decompensation. Hepatology 67, 989–1002 (2018).

    Article  PubMed  CAS  Google Scholar 

  70. Moreau, R. et al. Blood metabolomics uncovers inflammation-associated mitochondrial dysfunction as a potential mechanism underlying ACLF. J. Hepatol. 72, 688–701 (2020).

    Article  PubMed  CAS  Google Scholar 

  71. Ganeshan, K. et al. Energetic trade-offs and hypometabolic states promote disease tolerance. Cell 177, 399–413.e12 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Bernardi, M. & Caraceni, P. Novel perspectives in the management of decompensated cirrhosis. Nat. Rev. Gastroenterol. Hepatol. 15, 753–764 (2018).

    Article  PubMed  CAS  Google Scholar 

  73. Gracia-Sancho, J. Sinusoidal Cells in Liver Diseases: Role in Their Pathophysiology, Diagnosis, and Treatment (Academic Press, 2024).

  74. Albillos, A., de Gottardi, A. & Rescigno, M. The gut–liver axis in liver disease: pathophysiological basis for therapy. J. Hepatol. 72, 558–577 (2020).

    Article  PubMed  CAS  Google Scholar 

  75. Trebicka, J. et al. Expression of vasoactive proteins in gastric antral mucosa reflects vascular dysfunction in patients with cirrhosis and portal hypertension. Liver Int. 35, 1393–1402 (2015).

    Article  PubMed  CAS  Google Scholar 

  76. Hennenberg, M., Trebicka, J., Sauerbruch, T. & Heller, J. Mechanisms of extrahepatic vasodilation in portal hypertension. Gut 57, 1300–1314 (2008).

    Article  PubMed  CAS  Google Scholar 

  77. Schierwagen, R. et al. Circulating microbiome in blood of different circulatory compartments. Gut 68, 578–580 (2019).

    Article  PubMed  CAS  Google Scholar 

  78. Queck, A. et al. Role of portal venous platelet activation in patients with decompensated cirrhosis and TIPS. Gut 69, 1535–1536 (2020).

    Article  PubMed  Google Scholar 

  79. Boyer, T. The role of transjugular intrahepatic portosystemic shunt (TIPS) in the management of portal hypertension: update 2009. Hepatology 51, 808–815 (2010).

    Article  Google Scholar 

  80. Simbrunner, B. et al. Bacterial translocation occurs early in cirrhosis and triggers a selective inflammatory response. Hepatol. Int. 17, 1045–1056 (2023).

    Article  PubMed  Google Scholar 

  81. Moreau, R., Gao, B., Papp, M., Bañares, R. & Kamath, P. S. Acute-on-chronic liver failure: a distinct clinical syndrome. J. Hepatol. 75, S27–S35 (2021).

    Article  PubMed  Google Scholar 

  82. Simonetto, D. A. et al. Chronic passive venous congestion drives hepatic fibrogenesis via sinusoidal thrombosis and mechanical forces. Hepatology 61, 648–659 (2015).

    Article  PubMed  CAS  Google Scholar 

  83. McDonald, B. et al. Intravascular danger signals guide neutrophils to sites of sterile inflammation. Science 330, 362–366 (2010).

    Article  PubMed  CAS  Google Scholar 

  84. Wree, A. et al. NLRP3 inflammasome activation results in hepatocyte pyroptosis, liver inflammation, and fibrosis in mice. Hepatology 59, 898–910 (2014).

    Article  PubMed  CAS  Google Scholar 

  85. Taru, V., Szabo, G., Mehal, W. & Reiberger, T. Inflammasomes in chronic liver disease: hepatic injury, fibrosis progression and systemic inflammation. J. Hepatol. 81, 895–910 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Jansen, C. et al. Increase in liver stiffness after transjugular intrahepatic portosystemic shunt is associated with inflammation and predicts mortality. Hepatology 67, 1472–1484 (2018).

    Article  PubMed  CAS  Google Scholar 

  87. Königshofer, P. et al. Distinct structural and dynamic components of portal hypertension in different animal models and human liver disease etiologies. Hepatology 75, 610–622 (2022).

    Article  PubMed  Google Scholar 

  88. Gracia-Sancho, J., Marrone, G. & Fernández-Iglesias, A. Hepatic microcirculation and mechanisms of portal hypertension. Nat. Rev. Gastroenterol. Hepatol. 16, 221–234 (2019).

    Article  PubMed  Google Scholar 

  89. Sandahl, T. D. et al. The macrophage activation marker sCD163 combined with markers of the enhanced liver fibrosis (ELF) score predicts clinically significant portal hypertension in patients with cirrhosis. Aliment. Pharmacol. Ther. 43, 1222–1231 (2016).

    Article  PubMed  CAS  Google Scholar 

  90. Bai, L. et al. M2-like macrophages exert hepatoprotection in acute-on-chronic liver failure through inhibiting necroptosis-S100A9-necroinflammation axis. Cell Death Dis. 12, 93 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Tritto, G. et al. Evidence of neutrophil functional defect despite inflammation in stable cirrhosis. J. Hepatol. 55, 574–581 (2011).

    Article  PubMed  CAS  Google Scholar 

  92. Trebicka, J., Macnaughtan, J., Schnabl, B., Shawcross, D. L. & Bajaj, J. S. The microbiota in cirrhosis and its role in hepatic decompensation. J. Hepatol. 75, S67–S81 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Lisman, T. et al. Elevated levels of von Willebrand factor in cirrhosis support platelet adhesion despite reduced functional capacity. Hepatology 44, 53–61 (2006).

    Article  PubMed  CAS  Google Scholar 

  94. Zenlander, R. et al. Neutrophil extracellular traps in patients with liver cirrhosis and hepatocellular carcinoma. Sci. Rep. 11, 18025 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Muñoz, L. et al. Intestinal immune dysregulation driven by dysbiosis promotes barrier disruption and bacterial translocation in rats with cirrhosis. Hepatology 70, 925–938 (2019).

    Article  PubMed  Google Scholar 

  96. du Plessis, J. & van der Merwe, S. W. Reply to: Uncovering the molecular events associated with increased intestinal permeability in liver cirrhosis: the pivotal role of enterocyte tight junctions and future perspectives. J. Hepatol. 59, 1146–1147 (2013).

    Article  PubMed  Google Scholar 

  97. du Plessis, J. et al. Activated intestinal macrophages in patients with cirrhosis release NO and IL-6 that may disrupt intestinal barrier function. J. Hepatol. 58, 1125–1132 (2013).

    Article  PubMed  Google Scholar 

  98. Trebicka, J. et al. Soluble TNF-α-receptors I are prognostic markers in TIPS-treated patients with cirrhosis and portal hypertension. PLoS One 8, e83341 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Bellot, P. et al. Bacterial DNA translocation is associated with systemic circulatory abnormalities and intrahepatic endothelial dysfunction in patients with cirrhosis. Hepatology 52, 2044–2052 (2010).

    Article  PubMed  CAS  Google Scholar 

  100. Garcia-Tsao, G., Albillos, A., Barden, G. E. & West, B. A. Bacterial translocation in acute and chronic portal hypertension. Hepatology 17, 1081–1085 (1993).

    Article  PubMed  CAS  Google Scholar 

  101. Verbeke, L., Nevens, F. & Laleman, W. Bench-to-beside review: acute-on-chronic liver failure — linking the gut, liver and systemic circulation. Crit. Care 15, 233 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Simbrunner, B. et al. FXR-FGF19 signaling in the gut–liver axis is dysregulated in patients with cirrhosis and correlates with impaired intestinal defence. Hepatol. Int. 18, 929–942 (2024).

    Article  PubMed  Google Scholar 

  103. Engelmann, C., Clària, J., Szabo, G., Bosch, J. & Bernardi, M. Pathophysiology of decompensated cirrhosis: portal hypertension, circulatory dysfunction, inflammation, metabolism and mitochondrial dysfunction. J. Hepatol. 75, S49–S66 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Trebicka, J. et al. Endotoxin and tumor necrosis factor-receptor levels in portal and hepatic vein of patients with alcoholic liver cirrhosis receiving elective transjugular intrahepatic portosystemic shunt. Eur. J. Gastroenterol. Hepatol. 23, 1218–1225 (2011).

    Article  PubMed  CAS  Google Scholar 

  105. Kajita, M. et al. iNOS expression in vascular resident macrophages contributes to circulatory dysfunction of splanchnic vascular smooth muscle contractions in portal hypertensive rats. Am. J. Physiol. Heart Circ. Physiol. 300, H1021–H1031 (2011).

    Article  PubMed  CAS  Google Scholar 

  106. Zapater, P. et al. Norfloxacin modulates the inflammatory response and directly affects neutrophils in patients with decompensated cirrhosis. Gastroenterology 137, 1669–1679.e1 (2009).

    Article  PubMed  CAS  Google Scholar 

  107. Liu, Y. et al. Associations between changes in the gut microbiota and liver cirrhosis: a systematic review and meta-analysis. BMC Gastroenterol. 25, 16 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Iwakiri, Y. & Trebicka, J. Portal hypertension in cirrhosis: pathophysiological mechanisms and therapy. JHEP Rep. 3, 100316 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Verbeke, L. et al. FXR agonist obeticholic acid reduces hepatic inflammation and fibrosis in a rat model of toxic cirrhosis. Sci. Rep. 6, 33453 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Lorenzo-Zúñiga, V. et al. Oral bile acids reduce bacterial overgrowth, bacterial translocation, and endotoxemia in cirrhotic rats. Hepatology 37, 551–557 (2003).

    Article  PubMed  Google Scholar 

  111. Pérez-Paramo, M. et al. Effect of propranolol on the factors promoting bacterial translocation in cirrhotic rats with ascites. Hepatology 31, 43–48 (2000).

    Article  PubMed  Google Scholar 

  112. Reiberger, T. et al. Non-selective betablocker therapy decreases intestinal permeability and serum levels of LBP and IL-6 in patients with cirrhosis. J. Hepatol. 58, 911–921 (2013).

    Article  PubMed  CAS  Google Scholar 

  113. Mookerjee, R. P. et al. Treatment with non-selective beta blockers is associated with reduced severity of systemic inflammation and improved survival of patients with acute-on-chronic liver failure. J. Hepatol. 64, 574–582 (2016).

    Article  PubMed  CAS  Google Scholar 

  114. Berres, M. L. et al. CXCL9 is a prognostic marker in patients with liver cirrhosis receiving transjugular intrahepatic portosystemic shunt. J. Hepatol. 62, 332–339 (2015).

    Article  PubMed  CAS  Google Scholar 

  115. Lehmann, J. M. et al. Circulating CXCL10 in cirrhotic portal hypertension might reflect systemic inflammation and predict ACLF and mortality. Liver Int. 38, 875–884 (2018).

    Article  PubMed  CAS  Google Scholar 

  116. Mehta, G., Mookerjee, R. P., Sharma, V. & Jalan, R. Systemic inflammation is associated with increased intrahepatic resistance and mortality in alcohol-related acute-on-chronic liver failure. Liver Int. 35, 724–734 (2015).

    Article  PubMed  CAS  Google Scholar 

  117. Trebicka, J. et al. Rebleeding and mortality risk are increased by ACLF but reduced by pre-emptive TIPS. J. Hepatol. 73, 1082–1091 (2020).

    Article  PubMed  Google Scholar 

  118. Piano, S. et al. Association between grade of acute on chronic liver failure and response to terlipressin and albumin in patients with hepatorenal syndrome. Clin. Gastroenterol. Hepatol. 16, 1792–1800.e3 (2018).

    Article  PubMed  CAS  Google Scholar 

  119. Semmler, G. et al. Non-invasive tests for clinically significant portal hypertension after HCV cure. J. Hepatol. 77, 1573–1585 (2022).

    Article  PubMed  Google Scholar 

  120. Shah, N. et al. Increased renal expression and urinary excretion of TLR4 in acute kidney injury associated with cirrhosis. Liver Int. 33, 398–409 (2013).

    Article  PubMed  CAS  Google Scholar 

  121. Nadim, M. K. et al. Acute kidney injury in patients with cirrhosis: Acute Disease Quality Initiative (ADQI) and International Club of Ascites (ICA) joint multidisciplinary consensus meeting. J. Hepatol. 81, 163–183 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Danielsen, K. V. et al. Cardiovascular mapping in cirrhosis from the compensated stage to hepatorenal syndrome: a magnetic resonance study. Am. J. Gastroenterol. 117, 1269–1278 (2022).

    Article  PubMed  CAS  Google Scholar 

  123. Izzy, M. et al. Redefining cirrhotic cardiomyopathy for the modern era. Hepatology 71, 334–345 (2020).

    Article  PubMed  Google Scholar 

  124. Liu, H., Nguyen, H. H., Yoon, K. T. & Lee, S. S. Pathogenic mechanisms underlying cirrhotic cardiomyopathy. Front. Netw. Physiol. 2, 849253 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Gaskari, S. A., Liu, H., D’mello, C., Kunos, G. & Lee, S. S. Blunted cardiac response to hemorrhage in cirrhotic rats is mediated by local macrophage-released endocannabinoids. J. Hepatol. 62, 1272–1277 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Gregolin, C. S. et al. Myocardial dysfunction in cirrhotic cardiomyopathy is associated with alterations of phospholamban phosphorylation and IL-6 levels. Arch. Med. Res. 52, 284–293 (2021).

    Article  PubMed  CAS  Google Scholar 

  127. Kao, Y. H. et al. Tumor necrosis factor-α decreases sarcoplasmic reticulum Ca2+-ATPase expressions via the promoter methylation in cardiomyocytes. Crit. Care Med. 38, 217–222 (2010).

    Article  PubMed  CAS  Google Scholar 

  128. Bortoluzzi, A. et al. Positive cardiac inotropic effect of albumin infusion in rodents with cirrhosis and ascites: molecular mechanisms. Hepatology 57, 266–276 (2013).

    Article  PubMed  CAS  Google Scholar 

  129. Praktiknjo, M. et al. Cardiodynamic state is associated with systemic inflammation and fatal acute-on-chronic liver failure. Liver Int. 40, 1457–1466 (2020).

    Article  PubMed  CAS  Google Scholar 

  130. Jansen, C. et al. Significant reduction in heart rate variability is a feature of acute decompensation of cirrhosis and predicts 90-day mortality. Aliment. Pharmacol. Ther. 50, 568–579 (2019).

    Article  PubMed  CAS  Google Scholar 

  131. Rose, C. F. et al. Hepatic encephalopathy: novel insights into classification, pathophysiology and therapy. J. Hepatol. 73, 1526–1547 (2020).

    Article  PubMed  Google Scholar 

  132. Córdoba, J. et al. Characteristics, risk factors and mortality of cirrhotic patients hospitalized for hepatic encephalopathy with and without acute-on-chronic liver failure. J. Hepatol. 73, 1256–1266 (2020).

    Google Scholar 

  133. Greinert, R. et al. Covert hepatic encephalopathy and spontaneous portosystemic shunts increase the risk of developing overt hepatic encephalopathy. Liver Int. 40, 3093–3102 (2020).

    Article  PubMed  Google Scholar 

  134. Ripoll, C. et al. Influence of NOD2 risk variants on hepatic encephalopathy and association with inflammation, bacterial translocation and immune activation. Liver Int. 43, 1793–1802 (2023).

    Article  PubMed  CAS  Google Scholar 

  135. Görg, B., Bidmon, H.-J. & Häussinger, D. Gene expression profiling in the cerebral cortex of patients with cirrhosis with and without hepatic encephalopathy. Hepatology 57, 2436–2447 (2013).

    Article  PubMed  Google Scholar 

  136. Wright, G. et al. Endotoxemia produces coma and brain swelling in bile duct ligated rats. Hepatology 45, 1517–1526 (2007).

    Article  PubMed  CAS  Google Scholar 

  137. Macías-Rodríguez, R. U. et al. Cerebral haemodynamics in cirrhotic patients with hepatic encephalopathy. Liver Int. 35, 344–352 (2015).

    Article  PubMed  Google Scholar 

  138. Jalan, R. & Rose, C. F. Heretical thoughts into hepatic encephalopathy. J. Hepatol. 77, 539–548 (2022).

    Article  PubMed  Google Scholar 

  139. Córdoba, J. et al. The development of low-grade cerebral edema in cirrhosis is supported by the evolution of 1H-magnetic resonance abnormalities after liver transplantation. J. Hepatol. 47, 219–227 (2007).

    Google Scholar 

  140. Weissenborn, K. et al. Liver transplantation improves hepatic myelopathy: evidence by three cases. Gastroenterology 124, 346–351 (2003).

    Article  PubMed  Google Scholar 

  141. Rose, C. & Jalan, R. Is minimal hepatic encephalopathy completely reversible following liver transplantation? Liver Transpl. 10, 84–87 (2004).

    Article  PubMed  Google Scholar 

  142. Rodríguez-Roisin, R. & Krowka, M. J. Hepatopulmonary syndrome — a liver-induced lung vascular disorder. N. Engl. J. Med. 358, 2378–2387 (2008).

    Article  PubMed  Google Scholar 

  143. Schenk, P. et al. Prognostic significance of the hepatopulmonary syndrome in patients with cirrhosis. Gastroenterology 125, 1042–1052 (2003).

    Article  PubMed  Google Scholar 

  144. Luo, B. et al. ET-1 and TNF-α in HPS: analysis in prehepatic portal hypertension and biliary and nonbiliary cirrhosis in rats. Am. J. Physiol. Gastrointest. Liver Physiol. 285, G131–G138 (2003).

    Google Scholar 

  145. Fallon, M. B. et al. The role of endothelial nitric oxide synthase in the pathogenesis of a rat model of hepatopulmonary syndrome. Gastroenterology 113, 606–612 (1997).

    Article  PubMed  CAS  Google Scholar 

  146. Zhang, J. et al. Pulmonary angiogenesis in a rat model of hepatopulmonary syndrome. Gastroenterology 136, 1070–1080 (2009).

    Article  PubMed  CAS  Google Scholar 

  147. Benz, F., Mohr, R., Tacke, F. & Roderburg, C. Pulmonary complications in patients with liver cirrhosis. J. Transl. Intern. Med. 8, 150–158 (2020).

    Article  Google Scholar 

  148. Krowka, M. J. & Edwards, W. D. A spectrum of pulmonary vascular pathology in portopulmonary hypertension. Liver Transpl. 6, 373–382 (2000).

    Article  Google Scholar 

  149. Nunes, H. et al. Role of nitric oxide in hepatopulmonary syndrome in cirrhotic rats. Am. J. Respir. Crit. Care Med. 164, 879–885 (2001).

    Article  PubMed  CAS  Google Scholar 

  150. Talwalkar, J. A., Swanson, K. L., Krowka, M. J., Andrews, J. C. & Kamath, P. S. Prevalence of spontaneous portosystemic shunts in patients with portopulmonary hypertension and effect on treatment. Gastroenterology 141, 1673–1679 (2011).

    Article  PubMed  Google Scholar 

  151. Groszmann, R. J. et al. Beta-blockers to prevent gastroesophageal varices in patients with cirrhosis. N. Engl. J. Med. 353, 2254–2261 (2005).

    Article  PubMed  CAS  Google Scholar 

  152. Villanueva, C. et al. Bacterial infections adversely influence the risk of decompensation and survival in compensated cirrhosis. J. Hepatol. 75, 589–599 (2021).

    Article  PubMed  Google Scholar 

  153. D’Amico, G. et al. Competing risks and prognostic stages of cirrhosis: a 25-year inception cohort study of 494 patients. Aliment. Pharmacol. Ther. 39, 1180–1193 (2014).

    Article  PubMed  Google Scholar 

  154. Bruno, S. et al. Mortality risk according to different clinical characteristics of first episode of liver decompensation in cirrhotic patients: a nationwide, prospective, 3-year follow-up study in Italy. Am. J. Gastroenterol. 108, 1112–1122 (2013).

    Article  PubMed  Google Scholar 

  155. Remmler, J. et al. Increased level of interleukin 6 associates with increased 90-day and 1-year mortality in patients with end-stage liver disease. Clin. Gastroenterol. Hepatol. 16, 730–737 (2018).

    Article  PubMed  CAS  Google Scholar 

  156. Cervoni, J. P. et al. Prognostic value of C-reactive protein in cirrhosis: external validation from the CANONIC cohort. Eur. J. Gastroenterol. Hepatol. 28, 1028–1034 (2016).

    Article  PubMed  CAS  Google Scholar 

  157. Huang, C. H. et al. Hepatic encephalopathy and spontaneous bacterial peritonitis improve cirrhosis outcome prediction: a modified seven-stage model as a clinical alternative to MELD. J. Pers. Med. 10, 1 (2020).

    Article  Google Scholar 

  158. Fernández, J. et al. Effects of albumin treatment on systemic and portal hemodynamics and systemic inflammation in patients with decompensated cirrhosis. Gastroenterology 157, 149–162 (2019).

    Article  PubMed  Google Scholar 

  159. Trebicka, J. et al. PREDICT identifies precipitating events associated with the clinical course of acutely decompensated cirrhosis. J. Hepatol. 74, 1097–1108 (2021).

    Article  PubMed  Google Scholar 

  160. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03056612 (2019).

  161. Pompili, E. et al. Predictors of clinical trajectories of patients with acutely decompensated cirrhosis. An external validation of the PREDICT study. Liver Int. 44, 72–82 (2024).

    Article  PubMed  CAS  Google Scholar 

  162. Gu, W. et al. Trends and the course of liver cirrhosis and its complications in Germany: nationwide population-based study (2005 to 2018). Liver Int. 44, 1515–1526 (2024).

    Google Scholar 

  163. Tonon, M. et al. Outcomes and mortality of grade 1 ascites and recurrent ascites in patients with cirrhosis. Clin. Gastroenterol. Hepatol. 19, 358–366.e8 (2021).

    Article  PubMed  CAS  Google Scholar 

  164. Patidar, K. R. & Bajaj, J. S. Covert and overt hepatic encephalopathy: diagnosis and management. Clin. Gastroenterol. Hepatol. 13, 2048–2061 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Arroyo, V. et al. The systemic inflammation hypothesis: towards a new paradigm of acute decompensation and multiorgan failure in cirrhosis. J. Hepatol. 74, 670–685 (2021).

    Article  PubMed  CAS  Google Scholar 

  166. Verma, N. et al. Clinical and pathophysiological characteristics of non-acute decompensation of cirrhosis. J. Hepatol. 82, 1234–1244 (2025).

    Google Scholar 

  167. Bahceci, M. et al. The correlation between adiposity and adiponectin, tumor necrosis factor alpha, interleukin-6 and high sensitivity C-reactive protein levels. Is adipocyte size associated with inflammation in adults? J. Endocrinol. Invest. 30, 210–214 (2007).

    Article  PubMed  CAS  Google Scholar 

  168. Emerging Risk Factors Collaboration et al. C-reactive protein, fibrinogen, and cardiovascular disease prediction. N. Engl. J. Med. 367, 1310–1320 (2012).

    Article  Google Scholar 

  169. Bertoni, A. G. et al. Inflammation and the incidence of type 2 diabetes: the Multi-Ethnic Study of Atherosclerosis (MESA). Diabetes Care 33, 804–810 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Spranger, J. et al. Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes 52, 812–817 (2003).

    Article  PubMed  CAS  Google Scholar 

  171. Wang, Q. et al. Validation of Baveno VII criteria for recompensation in entecavir-treated patients with hepatitis B-related decompensated cirrhosis. J. Hepatol. 77, 1564–1572 (2022).

    Article  PubMed  CAS  Google Scholar 

  172. Hui, V. W. K. et al. Baveno VII criteria for recompensation predict transplant-free survival in patients with hepatitis B-related decompensated cirrhosis. JHEP Rep. 5, 100–110 (2023).

    Google Scholar 

  173. Sánchez-Torrijos, Y. et al. Recompensation of decompensated cirrhosis in hepatitis C patients after SVR: prognostic implications. J. Hepatol. 82, 1250–1259 (2025).

    Google Scholar 

  174. Mandorfer, M. et al. Sustained virologic response to interferon-free therapies ameliorates HCV-induced portal hypertension. J. Hepatol. 65, 692–699 (2016).

    Article  PubMed  Google Scholar 

  175. Pose, E. et al. A notable proportion of liver transplant candidates with alcohol-related cirrhosis can be delisted because of clinical improvement. J. Hepatol. 75, 275–283 (2021).

    Article  PubMed  Google Scholar 

  176. Aravinthan, A. D. et al. Characteristics of liver transplant candidates delisted following recompensation and predictors of such delisting in alcohol-related liver disease: a case–control study. Transpl. Int. 30, 1140–1149 (2017).

    Article  PubMed  Google Scholar 

  177. Hofer, B. S. et al. Hepatic recompensation according to Baveno VII criteria is linked to a significant survival benefit in decompensated alcohol-related cirrhosis. Liver Int. 43, 2220–2231 (2023).

    Article  PubMed  Google Scholar 

  178. Fernandez, M. Molecular pathophysiology of portal hypertension. Hepatology 61, 1406–1415 (2015).

    Article  PubMed  Google Scholar 

  179. Villanueva, C. et al. Carvedilol reduces the risk of decompensation and mortality in patients with compensated cirrhosis in a competing-risk meta-analysis. J. Hepatol. 77, 1014–1025 (2022).

    Article  PubMed  CAS  Google Scholar 

  180. Abraldes, J. G. et al. Simvastatin lowers portal pressure in patients with cirrhosis and portal hypertension: a randomized controlled trial. Gastroenterology 136, 1651–1658 (2009).

    Article  PubMed  CAS  Google Scholar 

  181. Tandon, P., Abraldes, J. G., Berzigotti, A., Garcia-Pagan, J. C. & Bosch, J. Renin-angiotensin-aldosterone inhibitors in the reduction of portal pressure: a systematic review and meta-analysis. J. Hepatol. 53, 273–282 (2010).

    Article  PubMed  CAS  Google Scholar 

  182. Simon, T. G., Patorno, E. & Schneeweiss, S. Glucagon-like peptide-1 receptor agonists and hepatic decompensation events in patients with cirrhosis and diabetes. Clin. Gastroenterol. Hepatol. 20, 1382–1393.e19 (2022).

    Article  PubMed  CAS  Google Scholar 

  183. Kuchay, M. S. et al. Effect of empagliflozin on liver fat in patients with type 2 diabetes and nonalcoholic fatty liver disease: a randomized controlled trial (E-LIFT Trial). Diabetes Care 41, 1801–1808 (2018).

    Article  PubMed  CAS  Google Scholar 

  184. Harrison, S. A. et al. Design of the phase 3 MAESTRO clinical program to evaluate resmetirom for the treatment of nonalcoholic steatohepatitis. Aliment. Pharmacol. Ther. 59, 51–63 (2024).

    Article  PubMed  CAS  Google Scholar 

  185. Zipprich, A., Gittinger, F., Winkler, M., Dollinger, M. M. & Ripoll, C. Effect of ET-A blockade on portal pressure and hepatic arterial perfusion in patients with cirrhosis: a proof of concept study. Liver Int. 41, 554–561 (2021).

    Article  PubMed  CAS  Google Scholar 

  186. Lawitz, E. J. et al. Safety and pharmacokinetics of BI 685509, a soluble guanylyl cyclase activator, in patients with cirrhosis: a randomized phase Ib study. Hepatol. Commun. 7, e0276 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  187. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03842761 (2021).

  188. Villa, E. et al. Enoxaparin prevents portal vein thrombosis and liver decompensation in patients with advanced cirrhosis. Gastroenterology 143, 1253–1260 (2012).

    Article  PubMed  CAS  Google Scholar 

  189. Jachs, M. et al. Amelioration of systemic inflammation in advanced chronic liver disease upon beta-blocker therapy translates into improved clinical outcomes. Gut 70, 1758–1767 (2021).

    Article  PubMed  CAS  Google Scholar 

  190. Tergast, T. L. et al. Systemic arterial blood pressure determines the therapeutic window of non-selective beta blockers in decompensated cirrhosis. Aliment. Pharmacol. Ther. 50, 696–706 (2019).

    Article  PubMed  CAS  Google Scholar 

  191. Pose, E. et al. Simvastatin and rifaximin in decompensated cirrhosis: a randomized clinical trial. JAMA 333, 864–874 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03780673 (2023).

  193. Larrue, H. et al. TIPS prevents further decompensation and improves survival in patients with cirrhosis and portal hypertension in an individual patient data meta-analysis. J. Hepatol. 79, 692–703 (2023).

    Article  PubMed  Google Scholar 

  194. Stockhoff, L. et al. TIPS Insertion Leads to Partial Reversal of Systemic Inflammation in Patients with Decompensated Liver Cirrhosis https://www.postersessiononline.eu/173580348_eu/congresos/ILC2022/aula/-FRI_485_ILC2022.pdf (2022).

  195. Van der Merwe, S., Chokshi, S., Bernsmeier, C. & Albillos, A. The multifactorial mechanisms of bacterial infection in decompensated cirrhosis. J. Hepatol. 75, S82–S100 (2021).

    Article  PubMed  Google Scholar 

  196. Zeng, X. et al. Low-dose rifaximin prevents complications and improves survival in patients with decompensated liver cirrhosis. Hepatol. Int. 15, 155–165 (2021).

    Article  PubMed  Google Scholar 

  197. Moreau, R. et al. Effects of long-term norfloxacin therapy in patients with advanced cirrhosis. Gastroenterology 155, 1816–1827.e9 (2018).

    Article  PubMed  CAS  Google Scholar 

  198. Macnaughtan, J. et al. A double blind, randomised, placebo-controlled study to assess safety and tolerability of oral enterosorbent Carbalive (Yaq-001) in cirrhotic patients. Gut 70, A5–A6 (2021).

    Google Scholar 

  199. Bajaj, J. S. et al. Fecal microbiota transplant from a rational stool donor improves hepatic encephalopathy: a randomized clinical trial. Hepatology 66, 1727–1738 (2017).

    Article  PubMed  CAS  Google Scholar 

  200. Bajaj, J. S. et al. Microbiota transplant for hepatic encephalopathy in cirrhosis: the THEMATIC trial. J. Hepatol. 83, 81–91 (2025).

    Article  PubMed  CAS  Google Scholar 

  201. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03796598 (2025).

  202. Saeidinejad, M. M. et al. Novel therapeutic approaches in treatment of acute-on-chronic liver failure. Semin. Liver Dis. 43, 429–445 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  203. Hu, J. J. et al. FDA-approved disulfiram inhibits pyroptosis by blocking gasdermin D pore formation. Nat. Immunol. 21, 736–745 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  204. Engelmann, C. et al. Toll-like receptor 4 is a therapeutic target for prevention and treatment of liver failure. J. Hepatol. 73, 102–112 (2020).

    Article  PubMed  CAS  Google Scholar 

  205. Engelmann, C. et al. Combination of G-CSF and a TLR4 inhibitor reduce inflammation and promote regeneration in a mouse model of ACLF. J. Hepatol. 77, 1325–1338 (2022).

    Article  PubMed  CAS  Google Scholar 

  206. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04620148 (2021).

  207. Trebicka, J. & Garcia-Tsao, G. Controversies regarding albumin therapy in cirrhosis. Hepatology 81, 288–303 (2025).

    Article  PubMed  Google Scholar 

  208. Bernardi, M. et al. Albumin in decompensated cirrhosis: new concepts and perspectives. Gut 69, 1127–1138 (2020).

    Article  PubMed  CAS  Google Scholar 

  209. Caraceni, P. et al. Long-term albumin administration in decompensated cirrhosis (ANSWER): an open-label randomised trial. Lancet 391, 2417–2429 (2018).

    Article  PubMed  CAS  Google Scholar 

  210. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT01288794 (2017).

  211. Solà, E. et al. Midodrine and albumin for prevention of complications in patients with cirrhosis awaiting liver transplantation: a randomized placebo-controlled trial. J. Hepatol. 69, 1250–1259 (2018).

    Article  PubMed  Google Scholar 

  212. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT00839358 (2016).

  213. China, L. et al. A randomized trial of albumin infusions in hospitalized patients with cirrhosis. N. Engl. J. Med. 384, 808–817 (2021).

    Article  PubMed  CAS  Google Scholar 

  214. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03451292 (2025).

  215. O’Leary, J. G. et al. Efficacy and safety of long-term human albumin therapy in cirrhotic patients with acute decompensation and ascites: topline results of the PRECIOSA trial. J. Hepatol. 82, S10 (2025).

    Article  Google Scholar 

  216. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03702920 (2019).

  217. Torp, N. et al. Personalised human albumin in patients with cirrhosis and ascites: design and rationale for the ALB-TRIAL – a randomised clinical biomarker validation trial. BMJ Open 14, e079309 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  218. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05056220 (2025).

  219. Agarwal, B. et al. Randomized, controlled clinical trial of the DIALIVE liver dialysis device versus standard of care in patients with acute-on-chronic liver failure. J. Hepatol. 79, 79–92 (2023).

    Article  PubMed  Google Scholar 

  220. Bañares, R. et al. Extracorporeal albumin dialysis with the molecular adsorbent recirculating system in acute-on-chronic liver failure: the RELIEF trial. Hepatology 57, 1153–1162 (2013).

    Article  PubMed  Google Scholar 

  221. Rifai, K. et al. Prometheus® — a new extracorporeal system for the treatment of liver failure. J. Hepatol. 39, 984–990 (2003).

    Article  PubMed  CAS  Google Scholar 

  222. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03065699 (2021).

  223. Ballester, M. P. et al. Development and validation of the AMMON-OHE model to predict risk of overt hepatic encephalopathy occurrence in outpatients with cirrhosis. J. Hepatol. 79, 967–976 (2023).

    Article  PubMed  Google Scholar 

  224. Rahimi, R. S. et al. Efficacy and safety of ornithine phenylacetate for treating overt hepatic encephalopathy in a randomized trial. Clin. Gastroenterol. Hepatol. 19, 2626–2635.e7 (2021).

    Article  PubMed  CAS  Google Scholar 

  225. European Clinical Trials Register https://www.clinicaltrialsregister.eu/ctr-search/trial/2021-002617-33/DE (2021).

  226. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05900050 (2025).

  227. D’Amico, G. et al. Further decompensation in cirrhosis: results of a large multicenter cohort study supporting Baveno VII statements. Hepatology 79, 869–881 (2024).

    Article  PubMed  Google Scholar 

  228. Hartl, L. et al. The systemic and hepatic alternative renin–angiotensin system is activated in liver cirrhosis, linked to endothelial dysfunction and inflammation. Sci. Rep. 13, 953 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  229. Turco, L., Reiberger, T., Vitale, G. & La Mura, V. Carvedilol as the new non-selective beta-blocker of choice in patients with cirrhosis and portal hypertension. Liver Int. 43, 1183–1194 (2023).

    Article  PubMed  Google Scholar 

  230. Weiss, E. et al. Sympathetic nervous activation, mitochondrial dysfunction and outcome in acutely decompensated cirrhosis: the metabolomic prognostic models (CLIF-C MET). Gut 72, 1581–1591 (2023).

    Article  PubMed  CAS  Google Scholar 

  231. Mandorfer, M. et al. Von Willebrand factor indicates bacterial translocation, inflammation, and procoagulant imbalance and predicts complications independently of portal hypertension severity. Aliment. Pharmacol. Ther. 47, 980–988 (2018).

    Article  PubMed  CAS  Google Scholar 

  232. Lluch, P. et al. Plasma concentrations of nitric oxide and asymmetric dimethylarginine in human alcoholic cirrhosis. J. Hepatol. 41, 55–59 (2004).

    Article  PubMed  CAS  Google Scholar 

  233. Zhang, I. W. et al. Mitochondrial dysfunction governs immunometabolism in leukocytes of patients with acute-on-chronic liver failure. J. Hepatol. 76, 93–106 (2022).

    Article  PubMed  CAS  Google Scholar 

  234. Tazi, K. A. et al. In vivo altered unfolded protein response and apoptosis in livers from lipopolysaccharide-challenged cirrhotic rats. J. Hepatol. 46, 1075–1088 (2007).

    Article  PubMed  CAS  Google Scholar 

  235. Robic, M. A. et al. Liver stiffness accurately predicts portal hypertension related complications in patients with chronic liver disease: a prospective study. J. Hepatol. 55, 1017–1024 (2011).

    Article  PubMed  Google Scholar 

  236. Colecchia, A. et al. Spleen stiffness measurement can predict clinical complications in compensated HCV-related cirrhosis: a prospective study. J. Hepatol. 60, 1158–1164 (2014).

    Article  PubMed  Google Scholar 

  237. Jachs, M. et al. Decreasing von Willebrand factor levels upon nonselective beta blocker therapy indicate a decreased risk of further decompensation, acute-on-chronic liver failure, and death. Clin. Gastroenterol. Hepatol. 20, 1362–1373.e6 (2022).

    Article  PubMed  CAS  Google Scholar 

  238. Solé, C. et al. Characterization of inflammatory response in acute-on-chronic liver failure and relationship with prognosis. Sci. Rep. 6, 32341 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  239. Paternostro, R. et al. Plasma renin concentration represents an independent risk factor for mortality and is associated with liver dysfunction in patients with cirrhosis. J. Gastroenterol. Hepatol. 32, 184–190 (2017).

    Article  PubMed  CAS  Google Scholar 

  240. Hartl, L. et al. The differential activation of cardiovascular hormones across distinct stages of portal hypertension predicts clinical outcomes. Hepatol. Int. 15, 1160–1173 (2021).

    Article  PubMed  Google Scholar 

  241. Kerbert, A. J. C. et al. Copeptin in acute decompensation of liver cirrhosis: relationship with acute-on-chronic liver failure and short-term survival. Crit. Care 21, 321 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  242. Lisotti, A. et al. Indocyanine green retention test as a noninvasive marker of portal hypertension and esophageal varices in compensated liver cirrhosis. Hepatology 59, 643–650 (2014).

    Article  PubMed  CAS  Google Scholar 

  243. Tranah, T. H. et al. Plasma ammonia levels predict hospitalisation with liver-related complications and mortality in clinically stable outpatients with cirrhosis. J. Hepatol. 77, 1554–1563 (2022).

    Article  PubMed  CAS  Google Scholar 

  244. Shawcross, D. L. et al. Ammonia impairs neutrophil phagocytic function in liver disease. Hepatology 48, 1202–1212 (2008).

    Article  PubMed  CAS  Google Scholar 

  245. Faisal Sheikh, M., Mookerjee, R. P., Agarwal, B., Kumar Acharya, S. & Jalan, R. Prognostic role of ammonia in patients with cirrhosis. Hepatology 70, 982–994 (2019).

    Article  Google Scholar 

  246. Jalan, R. et al. Ammonia produces pathological changes in human hepatic stellate cells and is a target for therapy of portal hypertension. J. Hepatol. 64, 823–833 (2016).

    Article  PubMed  CAS  Google Scholar 

  247. Jalan, R. et al. Alterations in the functional capacity of albumin in patients with decompensated cirrhosis is associated with increased mortality. Hepatology 50, 555–564 (2009).

    Article  PubMed  CAS  Google Scholar 

  248. Jalan, R. & Bernardi, M. Effective albumin concentration and cirrhosis mortality: from concept to reality. J. Hepatol. 59, 918–920 (2013).

    Article  PubMed  Google Scholar 

  249. Buck, M. et al. Novel inflammatory biomarkers of portal pressure in compensated cirrhosis patients. Hepatology 59, 1052–1059 (2014).

    Article  PubMed  CAS  Google Scholar 

  250. Navasa, M. et al. Tumor necrosis factor and interleukin-6 in spontaneous bacterial peritonitis in cirrhosis: relationship with the development of renal impairment and mortality. Hepatology 27, 1227–1232 (1998).

    Article  PubMed  CAS  Google Scholar 

  251. Cao, Z. et al. Blood markers for type-1,-2, and -3 inflammation are associated with severity of acutely decompensated cirrhosis. J. Hepatol. 82, 836–850 (2025).

    Article  PubMed  CAS  Google Scholar 

  252. Rainer, F. et al. Soluble CD163 and soluble mannose receptor predict survival and decompensation in patients with liver cirrhosis, and correlate with gut permeability and bacterial translocation. Aliment. Pharmacol. Ther. 47, 657–664 (2018).

    Article  PubMed  CAS  Google Scholar 

  253. Ariza, X. et al. Neutrophil gelatinase-associated lipocalin is a biomarker of acute-on-chronic liver failure and prognosis in cirrhosis. J. Hepatol. 65, 57–65 (2016).

    Article  PubMed  CAS  Google Scholar 

  254. Gambino, C. et al. Diagnostic and prognostic performance of urinary neutrophil gelatinase-associated lipocalin in patients with cirrhosis and acute kidney injury. Hepatology 77, 1630–1638 (2023).

    Article  PubMed  Google Scholar 

  255. Woolbright, B. L. et al. Cell death and prognosis of mortality in alcoholic hepatitis patients using plasma keratin-18. Gene Expr. 17, 301–312 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Lidia Garcia-Campmany for her valuable contribution in designing Fig. 3 of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Thomas Reiberger.

Ethics declarations

Competing interests

J.T. has received speaking and/or consulting fees from Versantis, Gore, Boehringer-Ingelheim, Falk, Grifols, Genfit and CSL Behring. C.R. has received speaker fees from GORE, Falk Foundation and Bristol-Myers Squibb, and has acted as a consultant for Boerhinger-Ingelheim. C.R. receives funding from the DFG (Deutsche Forschung Gemeinschaft) project number 431667134 and the European Union Horizon 2020 research and innovation programme under grant agreement 101136299 ARTEMIS. R.J. is the founder of Yaqrit Discovery Limited, which owns Amalive Limited and Enterosorb Limited; is a co-founder of Cyberliver Limited and Hepyx Limited; has received payment for sponsored talks and grant reviews from Grifols; and has received consulting fees from Boehringer Ingelheim. T.R. has received grant support from Abbvie, Boehringer Ingelheim, Gilead, Intercept/Advanz Pharma, MSD, Myr Pharmaceuticals, Philips Healthcare, Pliant, Siemens and W. L. Gore & Associates; speaking/writing honoraria from Abbvie, Echosens, Gilead, GSK, Intercept/Advanz Pharma, Pfizer, Roche, MSD, Siemens and W. L. Gore & Associates; consulting/advisory board fees from Abbvie, Astra Zeneca, Bayer, Boehringer Ingelheim, Gilead, Intercept/Advanz Pharma, MSD, Resolution Therapeutics and Siemens; and travel support from Abbvie, Boehringer Ingelheim, Dr. Falk Pharma, Gilead and Roche. D.C. and R.M. declare no competing interests.

Peer review

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks Chien-Hao Huang and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Dedication

We dedicate this article, which provides an integrated view on the pathogenesis of cirrhosis complications, to the memory of Professor Jaume Bosch — a great teacher, mentor, colleague and dear friend to all of us, whose pioneering efforts in developing new concepts and therapies in the field of portal hypertension are immeasurable. Jaume was more than a brilliant clinician–scientist; he was a source of inspiration, wisdom, generosity and warmth for everyone privileged to work with him. His passion for advancing knowledge in the field of cirrhosis was matched only by his zest for life and love for his friends and family. Many of us owe our careers — and our love for hepatology — to his guidance and example. This article stands as a small tribute to a remarkable man whose legacy will continue to shape and inspire us.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

CANONIC: https://efclif.com/projects/canonic-chronic-liver-failure-acute-on-chronic-liver-failure/

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, D., Trebicka, J., Ripoll, C. et al. Interaction of inflammation and portal hypertension in cirrhosis progression. Nat Rev Gastroenterol Hepatol (2025). https://doi.org/10.1038/s41575-025-01107-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41575-025-01107-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing