Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Materials advances for distributed environmental sensor networks at scale

Abstract

Historic and ongoing efforts in ecology and environmental science have highlighted the pressing need to monitor the health, sustainability and productivity of global and local ecosystems. Interest in these areas reflects a need both to determine the suitability of environments to support human activity (settlement, agriculture and industry) and to evaluate the impacts of such anthropogenic action. Of interest are chemical, biological and physical factors that reduce ecosystem viability owing to human intervention. Evaluating these factors and their impact on global health, ecological stability and resource availability demands improvements to existing environmental sensing technologies. Current methods to quantify chemical pollutants, biological factors and deleterious physical conditions affecting target ecosystems suffer from lack of automation and narrow spatiotemporal range. Recent advances in materials science, chemistry, electronics and robotics offer solutions to this problem. A vision emerges for fully autonomous, networked and ecoresorbable sensing systems that can be deployed over large aerial, terrestrial and aquatic environments. This Review describes ongoing efforts in these areas, focusing on materials advances supporting the accurate quantification of environmental factors with apparatus that accommodates full or partial device resorption. Discussion begins with an overview of hazards affecting global ecosystems, followed by a description of existing detection methods to quantify their severity. We proceed with an exploration of existing and developing technologies affecting sensor dispersion, motility, communication and power. Finally, we describe exciting recent efforts in the development of environmentally degradable materials that could prove beneficial in the realization of massively distributed (millions of individual sensors) transient sensor networks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sources, types and health impacts of environmental pollutants.
Fig. 2: Sensing modalities.
Fig. 3: Sampling and deployment strategies.
Fig. 4: Communication networks and data processing.
Fig. 5: Designs and materials for bioresorbable environmental sensors.

Similar content being viewed by others

References

  1. Myers, S. S. et al. Human health impacts of ecosystem alteration. Proc. Natl Acad. Sci. USA 110, 18753–18760 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Ehrlich, P. R., Raven, P. H. & Gustafson, J. P. Population, Agriculture, and Biodiversity: Problems and Prospects (Univ. Missouri Press, 2020).

  4. Häder, D.-P. et al. Anthropogenic pollution of aquatic ecosystems: emerging problems with global implications. Sci. Total Environ. 713, 136586 (2020).

    Article  PubMed  Google Scholar 

  5. Rhind, S. M. Anthropogenic pollutants: a threat to ecosystem sustainability? Phil. Trans. R. Soc. B 364, 3391–3401 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fuller, R. et al. Pollution and health: a progress update. Lancet Planet. Health 6, e535–e547 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Keith, L. Environmental Sampling and Analysis: A Practical Guide (Routledge, 2017).

  8. US Environmental Protection Agency. Guidance on Choosing a Sampling Design for Environmental Data Collection (Office of Environmental Information, 2002).

  9. Corke, P. et al. Environmental wireless sensor networks. Proc. IEEE 98, 1903–1917 (2010).

    Article  Google Scholar 

  10. Cao, R. et al. Using a distributed air sensor network to investigate the spatiotemporal patterns of PM2.5 concentrations. Environ. Pollut. 264, 114549 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Gunawardena, N., Pardyjak, E. R., Stoll, R. & Khadka, A. Development and evaluation of an open-source, low-cost distributed sensor network for environmental monitoring applications. Meas. Sci. Technol. 29, 024008 (2018).

    Article  Google Scholar 

  12. Jin, J., Wang, Y., Jiang, H. & Chen, X. Evaluation of microclimatic detection by a wireless sensor network in forest ecosystems. Sci. Rep. 8, 16433 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lloret, J., Sendra, S., Garcia, L. & Jimenez, J. M. A wireless sensor network deployment for soil moisture monitoring in precision agriculture. Sensors 21, 7243 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Thakur, D., Kumar, Y., Kumar, A. & Singh, P. K. Applicability of wireless sensor networks in precision agriculture: a review. Wirel. Pers. Commun. 107, 471–512 (2019).

    Article  Google Scholar 

  15. Sethi, S. S., Kovac, M., Wiesemüller, F., Miriyev, A. & Boutry, C. M. Biodegradable sensors are ready to transform autonomous ecological monitoring. Nat. Ecol. Evol. 6, 1245–1247 (2022).

    Article  PubMed  Google Scholar 

  16. Radović, J. R. et al. Post-incident monitoring to evaluate environmental damage from shipping incidents: chemical and biological assessments. J. Environ. Manag. 109, 136–153 (2012).

    Article  Google Scholar 

  17. Gray, W. B. & Shimshack, J. P. The effectiveness of environmental monitoring and enforcement: a review of the empirical evidence. Rev. Environ. Econ. Policy 5, 3–24 (2011).

    Article  Google Scholar 

  18. DeFord, L. & Yoon, J.-Y. Soil microbiome characterization and its future directions with biosensing. J. Biol. Eng. 18, 50 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ahmad, W. et al. Toxic and heavy metals contamination assessment in soil and water to evaluate human health risk. Sci. Rep. 11, 17006 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Alengebawy, A., Abdelkhalek, S. T., Qureshi, S. R. & Wang, M.-Q. Heavy metals and pesticides toxicity in agricultural soil and plants: ecological risks and human health implications. Toxics 9, 42 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hu, Q.-H., Weng, J.-Q. & Wang, J.-S. Sources of anthropogenic radionuclides in the environment: a review. J. Environ. Radioact. 101, 426–437 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Sousa, J. C. G., Ribeiro, A. R., Barbosa, M. O., Pereira, M. F. R. & Silva, A. M. T. A review on environmental monitoring of water organic pollutants identified by EU guidelines. J. Hazard. Mater. 344, 146–162 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. Sunderland, E. M. et al. A review of the pathways of human exposure to poly- and perfluoroalkyl substances (PFASs) and present understanding of health effects. J. Expo. Sci. Environ. Epidemiol. 29, 131–147 (2019).

    Article  CAS  PubMed  Google Scholar 

  25. Dickman, R. A. & Aga, D. S. A review of recent studies on toxicity, sequestration, and degradation of per- and polyfluoroalkyl substances (PFAS). J. Hazard. Mater. 436, 129120 (2022).

    Article  CAS  PubMed  Google Scholar 

  26. Fenton, S. E. et al. Per- and polyfluoroalkyl substance toxicity and human health review: current state of knowledge and strategies for informing future research. Environ. Toxicol. Chem. 40, 606–630 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Tang, Y. et al. A review: research progress on microplastic pollutants in aquatic environments. Sci. Total Environ. 766, 142572 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Sajjad, M. et al. Microplastics in the soil environment: a critical review. Environ. Technol. Innov. 27, 102408 (2022).

    Article  CAS  Google Scholar 

  29. Barrett, J. et al. Microplastic pollution in deep-sea sediments from the Great Australian bight. Front. Mar. Sci. 7, 576170 (2020).

    Article  Google Scholar 

  30. Mohamed Nor, N. H., Kooi, M., Diepens, N. J. & Koelmans, A. A. Lifetime accumulation of microplastic in children and adults. Environ. Sci. Technol. 55, 5084–5096 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Boots, B., Russell, C. W. & Green, D. S. Effects of microplastics in soil ecosystems: above and below ground. Environ. Sci. Technol. 53, 11496–11506 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Li, Y. et al. Potential health impact of microplastics: a review of environmental distribution, human exposure, and toxic effects. Environ. Health 1, 249–257 (2023).

    Article  CAS  Google Scholar 

  33. Badmus, S. O., Amusa, H. K., Oyehan, T. A. & Saleh, T. A. Environmental risks and toxicity of surfactants: overview of analysis, assessment, and remediation techniques. Environ. Sci. Pollut. Res. 28, 62085–62104 (2021).

    Article  CAS  Google Scholar 

  34. Lu, Q. et al. Spatial distribution, bioconversion and ecological risk of PCBs and PBDEs in the surface sediment of contaminated urban rivers: a nationwide study in China. Environ. Sci. Technol. 55, 9579–9590 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Tudi, M. et al. Agriculture development, pesticide application and its impact on the environment. Int. J. Environ. Res. Public Health 18, 1112 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wilkinson, J. L. et al. Pharmaceutical pollution of the world’s rivers. Proc. Natl Acad. Sci. USA 119, e2113947119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kolpin, D. W. et al. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999−2000:  a national reconnaissance. Environ. Sci. Technol. 36, 1202–1211 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Tang, F. et al. Pollution characteristics of groundwater in an agricultural hormone-contaminated site and implementation of Fenton oxidation process. Environ. Sci. Pollut. Res. 30, 35670–35682 (2023).

    Article  CAS  Google Scholar 

  39. Manyi-Loh, C., Mamphweli, S., Meyer, E. & Okoh, A. Antibiotic use in agriculture and its consequential resistance in environmental sources: potential public health implications. Molecules 23, 795 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Cycoń, M., Mrozik, A. & Piotrowska-Seget, Z. Antibiotics in the soil environment — degradation and their impact on microbial activity and diversity. Front. Microbiol. 10, 338 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Delgado-Baquerizo, M. et al. The global distribution and environmental drivers of the soil antibiotic resistome. Microbiome 10, 219 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Friedman, N. D., Temkin, E. & Carmeli, Y. The negative impact of antibiotic resistance. Clin. Microbiol. Infect. 22, 416–422 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Schultze, S. R., Campbell, M. N., Walley, S., Pfeiffer, K. & Wilkins, B. Exploration of sub-field microclimates and winter temperatures: implications for precision agriculture. Int. J. Biometeorol. 65, 1043–1052 (2021).

    Article  PubMed  Google Scholar 

  44. Wahid, A., Gelani, S., Ashraf, M. & Foolad, M. R. Heat tolerance in plants: an overview. Environ. Exp. Bot. 61, 199–223 (2007).

    Article  Google Scholar 

  45. Farooq, M. S., Riaz, S., Abid, A., Umer, T. & Zikria, Y. B. Role of IoT technology in agriculture: a systematic literature review. Electronics 9, 319 (2020).

    Article  Google Scholar 

  46. Imam, S. A., Choudhary, A. & Sachan, V. K. Design issues for wireless sensor networks and smart humidity sensors for precision agriculture: a review. In Int. Conf. Soft Comput. Tech. Implement. 181–187 (IEEE, 2015).

  47. Wang, J. et al. Remote sensing of soil degradation: progress and perspective. Int. Soil Water Conserv. Res. 11, 429–454 (2023).

    Article  CAS  Google Scholar 

  48. Kashyap, B. & Kumar, R. Sensing methodologies in agriculture for soil moisture and nutrient monitoring. IEEE Access 9, 14095–14121 (2021).

    Article  Google Scholar 

  49. Atreya, M. et al. A transient printed soil decomposition sensor based on a biopolymer composite conductor. Adv. Sci. 10, 2205785 (2023).

    Article  CAS  Google Scholar 

  50. Shah, A. N. et al. Soil compaction effects on soil health and crop productivity: an overview. Environ. Sci. Pollut. Res. 24, 10056–10067 (2017).

    Article  Google Scholar 

  51. Knox, J. E. & Mittelstet, A. R. Application of an ultrasonic sensor to monitor soil erosion and deposition. Trans. ASABE 64, 963–974 (2021).

    Article  Google Scholar 

  52. Soussi, A., Zero, E., Sacile, R., Trinchero, D. & Fossa, M. Smart sensors and smart data for precision agriculture: a review. Sensors 24, 2647 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Babaeian, E. et al. Ground, proximal, and satellite remote sensing of soil moisture. Rev. Geophys. 57, 530–616 (2019).

    Article  Google Scholar 

  54. Merl, T. et al. Optical chemical sensors for soil analysis: possibilities and challenges of visualising NH3 concentrations as well as pH and O2 microscale heterogeneity. Environ. Sci. Adv. 2, 1210–1219 (2023).

    Article  CAS  Google Scholar 

  55. Hossain, M. I. et al. Development of electrochemical sensors for quick detection of environmental (soil and water) NPK ions. RSC Adv. 14, 9137–9158 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Liu, J., Cai, H., Chen, S., Pi, J. & Zhao, L. A review on soil nitrogen sensing technologies: challenges, progress and perspectives. Agriculture 13, 743 (2023).

    Article  CAS  Google Scholar 

  57. Guo, M., Li, J., Sheng, C., Xu, J. & Wu, L. A review of wetland remote sensing. Sensors 17, 777 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Torresan, C. et al. A new generation of sensors and monitoring tools to support climate-smart forestry practices. Can. J. Res. 51, 1751–1765 (2021).

    Article  Google Scholar 

  59. Llaver, M., Fiorentini, E. F., Oviedo, M. N., Quintas, P. Y. & Wuilloud, R. G. Elemental speciation analysis in environmental studies: latest trends and ecological impact. Int. J. Environ. Res. Public Health 18, 12135 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cortés-Bautista, S., Molins-Legua, C. & Campíns-Falcó, P. Miniaturized liquid chromatography in environmental analysis: a review. J. Chromatogr. A 1730, 465101 (2024).

    Article  PubMed  Google Scholar 

  61. Lebedev, A. T. Environmental mass spectrometry. Annu. Rev. Anal. Chem. 6, 163–189 (2013).

    Article  CAS  Google Scholar 

  62. Duan, C. F. et al. Portable instruments for on-site analysis of environmental samples. Trends Anal. Chem. 154, 116653 (2022).

    Article  CAS  Google Scholar 

  63. Zhang, C. Fundamentals of Environmental Sampling and Analysis (Wiley, 2024).

  64. Hussain, C. M. & Kecili, R. Modern Environmental Analysis Techniques for Pollutants (Elsevier, 2019).

  65. Bickerdike, E. L. & Willard, H. H. Dimethylglyoxime for determination of nickel in large amounts. Anal. Chem. 24, 1026–1026 (1952).

    Article  CAS  Google Scholar 

  66. Patra, S. G., Mandal, N., Datta, A. & Datta, D. On bonding in bis(dimethylglyoximato)nickel(II). Comput. Theor. Chem. 1114, 118–124 (2017).

    Article  CAS  Google Scholar 

  67. Yan, X., Li, H. X. & Su, X. G. Review of optical sensors for pesticides. Trends Anal. Chem. 103, 1–20 (2018).

    Article  CAS  Google Scholar 

  68. Dey, S. et al. Ultrasensitive colorimetric detection of fluoride and arsenate in water and mammalian cells using recyclable metal oxacalixarene probe: a lateral flow assay. Sci. Rep. 12, 17119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sallam, G., Shaban, S. Y., Nassar, A. & El-Khouly, M. E. Water soluble porphyrin as optical sensor for the toxic heavy metal ions in an aqueous medium. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 241, 118609 (2020).

    Article  CAS  Google Scholar 

  70. Fang, X., Zong, B. & Mao, S. Metal–organic framework-based sensors for environmental contaminant sensing. Nanomicro Lett. 10, 64 (2018).

    PubMed  PubMed Central  Google Scholar 

  71. Wang, J. & Zhuang, S. Covalent organic frameworks (COFs) for environmental applications. Coord. Chem. Rev. 400, 213046 (2019).

    Article  CAS  Google Scholar 

  72. Goswami, S., Sen, D., Das, N. K. & Hazra, G. Highly selective colorimetric fluorescence sensor for Cu2+: cation-induced ‘switching on’ of fluorescence due to excited state internal charge transfer in the red/near-infrared region of emission spectra. Tetrahedron Lett. 51, 5563–5566 (2010).

    Article  CAS  Google Scholar 

  73. Sivaraman, G. et al. Chemically diverse small molecule fluorescent chemosensors for copper ion. Coord. Chem. Rev. 357, 50–104 (2018).

    Article  CAS  Google Scholar 

  74. Rasheed, T. et al. Fluorescent sensor based models for the detection of environmentally-related toxic heavy metals. Sci. Total Environ. 615, 476–485 (2018).

    Article  CAS  PubMed  Google Scholar 

  75. Vahab, L. & Keshipour, S. Novel nanosensor of cobalt(II) and copper(II) constructed from graphene quantum dots modified with Eriochrome Black T. Sci. Rep. 12, 13179 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chen, Q. et al. Colorimetric and fluorescent sensors for detection of nerve agents and organophosphorus pesticides. Sens. Actuators B Chem. 344, 130278 (2021).

    Article  CAS  Google Scholar 

  77. Kumar, V. et al. Recent advances in fluorescent and colorimetric chemosensors for the detection of chemical warfare agents: a legacy of the 21st century. Chem. Soc. Rev. 52, 663–704 (2023).

    Article  CAS  PubMed  Google Scholar 

  78. Li, Z., Askim, J. R. & Suslick, K. S. The optoelectronic nose: colorimetric and fluorometric sensor arrays. Chem. Rev. 119, 231–292 (2019).

    Article  CAS  PubMed  Google Scholar 

  79. Willner, M. R. & Vikesland, P. J. Nanomaterial enabled sensors for environmental contaminants. J. Nanobiotechnol. 16, 95 (2018).

    Article  CAS  Google Scholar 

  80. Stiles, P. L., Dieringer, J. A., Shah, N. C. & Van Duyne, R. P. Surface-enhanced Raman spectroscopy. Annu. Rev. Anal. Chem. 1, 601–626 (2008).

    Article  CAS  Google Scholar 

  81. Singh, P. SPR biosensors: historical perspectives and current challenges. Sens. Actuators B Chem. 229, 110–130 (2016).

    Article  CAS  Google Scholar 

  82. Priyadarshini, E. & Pradhan, N. Gold nanoparticles as efficient sensors in colorimetric detection of toxic metal ions: a review. Sens. Actuators B Chem. 238, 888–902 (2017).

    Article  CAS  Google Scholar 

  83. Su, D., Li, H., Yan, X., Lin, Y. & Lu, G. Biosensors based on fluorescence carbon nanomaterials for detection of pesticides. Trends Anal. Chem. 134, 116126 (2021).

    Article  CAS  Google Scholar 

  84. Girmatsion, M. et al. Rapid detection of antibiotic residues in animal products using surface-enhanced Raman spectroscopy: a review. Food Control 126, 108019 (2021).

    Article  CAS  Google Scholar 

  85. Concellón, A., Castro-Esteban, J. & Swager, T. M. Ultratrace PFAS detection using amplifying fluorescent polymers. J. Am. Chem. Soc. 145, 11420–11430 (2023).

    Article  PubMed  Google Scholar 

  86. Burtsev, V. et al. Detection of trace amounts of insoluble pharmaceuticals in water by extraction and SERS measurements in a microfluidic flow regime. Analyst 146, 3686–3696 (2021).

    Article  CAS  PubMed  Google Scholar 

  87. Chen, W. H. et al. Application of smartphone-based spectroscopy to biosample analysis: a review. Biosens. Bioelectron. 172, 112788 (2021).

    Article  CAS  PubMed  Google Scholar 

  88. Kummari, S. et al. Trends in paper-based sensing devices for clinical and environmental monitoring. Biosensors 13, 420 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kung, C. T., Hou, C. Y., Wang, Y. N. & Fu, L. M. Microfluidic paper-based analytical devices for environmental analysis of soil, air, ecology and river water. Sens. Actuators B Chem. 301, 126855 (2019).

    Article  CAS  Google Scholar 

  90. Liu, B., Zhuang, J. & Wei, G. Recent advances in the design of colorimetric sensors for environmental monitoring. Environ. Sci. Nano 7, 2195–2213 (2020).

    Article  CAS  Google Scholar 

  91. Chen, Z. et al. Colorimetric detection of heavy metal ions with various chromogenic materials: strategies and applications. J. Hazard. Mater. 441, 129889 (2023).

    Article  CAS  PubMed  Google Scholar 

  92. Chen, Y., Zilberman, Y., Mostafalu, P. & Sonkusale, S. R. Paper based platform for colorimetric sensing of dissolved NH3 and CO2. Biosens. Bioelectron. 67, 477–484 (2015).

    Article  CAS  PubMed  Google Scholar 

  93. Huang, L. J. et al. Portable colorimetric detection of mercury(II) based on a non-noble metal nanozyme with tunable activity. Inorg. Chem. 58, 1638–1646 (2019).

    Article  CAS  PubMed  Google Scholar 

  94. Deng, H. H. et al. Chitosan-stabilized platinum nanoparticles as effective oxidase mimics for colorimetric detection of acid phosphatase. Nanoscale 9, 10292–10300 (2017).

    Article  CAS  PubMed  Google Scholar 

  95. Liu, Q. et al. A facile strategy to prepare porphyrin functionalized ZnS nanoparticles and their peroxidase-like catalytic activity for colorimetric sensor of hydrogen peroxide and glucose. Sens. Actuators B Chem. 251, 339–348 (2017).

    Article  CAS  Google Scholar 

  96. Kong, Q., Wang, Y., Zhang, L., Ge, S. & Yu, J. A novel microfluidic paper-based colorimetric sensor based on molecularly imprinted polymer membranes for highly selective and sensitive detection of bisphenol A. Sens. Actuators B Chem. 243, 130–136 (2017).

    Article  CAS  Google Scholar 

  97. Singh, R. et al. Nanozyme-based pollutant sensing and environmental treatment: trends, challenges, and perspectives. Sci. Total Environ. 854, 158771 (2023).

    Article  CAS  PubMed  Google Scholar 

  98. Hyder, A. et al. Identification of heavy metal ions from aqueous environment through gold, silver and copper nanoparticles: an excellent colorimetric approach. Environ. Res. 205, 112475 (2022).

    Article  CAS  PubMed  Google Scholar 

  99. Prosposito, P., Burratti, L. & Venditti, I. Silver nanoparticles as colorimetric sensors for water pollutants. Chemosensors 8, 26 (2020).

    Article  CAS  Google Scholar 

  100. Mochi, F. et al. Plasmonic sensor based on interaction between silver nanoparticles and Ni2+ or Co2+ in water. Nanomaterials 8, 488 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Huang, L. J. et al. A colorimetric paper sensor based on the domino reaction of acetylcholinesterase and degradable γ-MnOOH nanozyme for sensitive detection of organophosphorus pesticides. Sens. Actuators B Chem. 290, 573–580 (2019).

    Article  CAS  Google Scholar 

  102. Idros, N. & Chu, D. Triple-indicator-based multidimensional colorimetric sensing platform for heavy metal ion detections. ACS Sens. 3, 1756–1764 (2018).

    Article  CAS  PubMed  Google Scholar 

  103. Umapathi, R. et al. Colorimetric based on-site sensing strategies for the rapid detection of pesticides in agricultural foods: new horizons, perspectives, and challenges. Coord. Chem. Rev. 446, 214061 (2021).

    Article  CAS  Google Scholar 

  104. Park, D.-H. et al. Smartphone-based VOC sensor using colorimetric polydiacetylenes. ACS Appl. Mater. Interfaces 10, 5014–5021 (2018).

    Article  CAS  PubMed  Google Scholar 

  105. Karimi-Maleh, H., Karimi, F., Alizadeh, M. & Sanati, A. L. Electrochemical sensors, a bright future in the fabrication of portable kits in analytical systems. Chem. Rec. 20, 682–692 (2020).

    Article  CAS  PubMed  Google Scholar 

  106. Sophocleous, M. & Atkinson, J. K. A review of screen-printed silver/silver chloride (Ag/AgCl) reference electrodes potentially suitable for environmental potentiometric sensors. Sens. Actuators A Phys. 267, 106–120 (2017).

    Article  CAS  Google Scholar 

  107. Rojas, D., Torricelli, D., Cuartero, M. & Crespo, G. A. 3D-printed transducers for solid contact potentiometric ion sensors: improving reproducibility by fabrication automation. Anal. Chem. 96, 15572–15580 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Rebelo, P. et al. Molecularly imprinted polymer-based electrochemical sensors for environmental analysis. Biosens. Bioelectron. 172, 112719 (2021).

    Article  CAS  PubMed  Google Scholar 

  109. Guzinski, M. et al. PEDOT(PSS) as solid contact for ion-selective electrodes: the influence of the PEDOT(PSS) film thickness on the equilibration times. Anal. Chem. 89, 3508–3516 (2017).

    Article  CAS  PubMed  Google Scholar 

  110. Shao, Y., Ying, Y. & Ping, J. Recent advances in solid-contact ion-selective electrodes: functional materials, transduction mechanisms, and development trends. Chem. Soc. Rev. 49, 4405–4465 (2020).

    Article  CAS  PubMed  Google Scholar 

  111. Baumbauer, C. L. et al. Printed potentiometric nitrate sensors for use in soil. Sensors 22, 4095 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Belikova, V. et al. Continuous monitoring of water quality at aeration plant with potentiometric sensor array. Sens. Actuators B Chem. 282, 854–860 (2019).

    Article  CAS  Google Scholar 

  113. Baracu, A. M. & Gugoasa, L. A. D. Recent advances in microfabrication, design and applications of amperometric sensors and biosensors. J. Electrochem. Soc. 168, 037503 (2021).

    Article  CAS  Google Scholar 

  114. Bard, A. J. & Faulkner, L. R. Fundamentals and applications. Electrochem. Methods 2, 580–632 (2001).

    Google Scholar 

  115. Grieshaber, D., MacKenzie, R., Vörös, J. & Reimhult, E. Electrochemical biosensors — sensor principles and architectures. Sensors 8, 1400–1458 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Kumunda, C., Adekunle, A. S., Mamba, B. B., Hlongwa, N. W. & Nkambule, T. T. I. Electrochemical detection of environmental pollutants based on graphene derivatives: a review. Front. Mater. 7, 616787 (2021).

    Article  Google Scholar 

  117. Butmee, P. et al. A portable selective electrochemical sensor amplified with Fe3O4@Au-cysteamine–thymine acetic acid as conductive mediator for determination of mercuric ion. Talanta 221, 121669 (2021).

    Article  CAS  PubMed  Google Scholar 

  118. Singh, S. et al. A novel highly efficient and ultrasensitive electrochemical detection of toxic mercury (II) ions in canned tuna fish and tap water based on a copper metal–organic framework. J. Hazard. Mater. 399, 123042 (2020).

    Article  CAS  PubMed  Google Scholar 

  119. Pathak, P. et al. Flexible copper–biopolymer nanocomposite sensors for trace level lead detection in water. Sens. Actuators B Chem. 344, 130263 (2021).

    Article  CAS  Google Scholar 

  120. Hu, R., Zhang, X., Chi, K. N., Yang, T. & Yang, Y. H. Bifunctional MOFs-based ratiometric electrochemical sensor for multiplex heavy metal ions. ACS Appl. Mater. Interfaces 12, 30770–30778 (2020).

    Article  CAS  PubMed  Google Scholar 

  121. Lu, Y., Li, X., Li, D. & Compton, R. G. Amperometric environmental phosphate sensors. ACS Sens. 6, 3284–3294 (2021).

    Article  CAS  PubMed  Google Scholar 

  122. Pérez-Fernández, B. et al. Direct competitive immunosensor for imidacloprid pesticide detection on gold nanoparticle-modified electrodes. Talanta 209, 120465 (2020).

    Article  PubMed  Google Scholar 

  123. Song, D. et al. Metal−organic frameworks-derived MnO2/Mn3O4 microcuboids with hierarchically ordered nanosheets and Ti3C2 MXene/Au NPs composites for electrochemical pesticide detection. J. Hazard. Mater. 373, 367–376 (2019).

    Article  CAS  PubMed  Google Scholar 

  124. Motoc, S., Manea, F., Baciu, A., Vasilie, S. & Pop, A. Highly sensitive and simultaneous electrochemical determinations of non-steroidal anti-inflammatory drugs in water using nanostructured carbon-based paste electrodes. Sci. Total Environ. 846, 157412 (2022).

    Article  CAS  PubMed  Google Scholar 

  125. Li, X. et al. Emerging applications of nanozymes in environmental analysis: opportunities and trends. Trends Anal. Chem. 120, 115653 (2019).

    Article  CAS  Google Scholar 

  126. Rebollar-Pérez, G., Campos-Terán, J., Ornelas-Soto, N., Méndez-Albores, A. & Torres, E. Biosensors based on oxidative enzymes for detection of environmental pollutants. Biocatalysis 1, 118–129 (2016).

    Article  Google Scholar 

  127. Hara, T. O. & Singh, B. Electrochemical biosensors for detection of pesticides and heavy metal toxicants in water: recent trends and progress. ACS ES T Water 1, 462–478 (2021).

    Article  CAS  Google Scholar 

  128. Khan, S. et al. DNAzyme-based biosensors: immobilization strategies, applications, and future prospective. ACS Nano 15, 13943–13969 (2021).

    Article  CAS  PubMed  Google Scholar 

  129. Rengaraj, S., Cruz-Izquierdo, Á., Scott, J. L. & Di Lorenzo, M. Impedimetric paper-based biosensor for the detection of bacterial contamination in water. Sens. Actuators B Chem. 265, 50–58 (2018).

    Article  CAS  Google Scholar 

  130. Zhou, N. et al. Construction of Ce-MOF@COF hybrid nanostructure: label-free aptasensor for the ultrasensitive detection of oxytetracycline residues in aqueous solution environments. Biosens. Bioelectron. 127, 92–100 (2019).

    Article  CAS  PubMed  Google Scholar 

  131. Oloketuyi, S. et al. Electrochemical immunosensor functionalized with nanobodies for the detection of the toxic microalgae Alexandrium minutum using glassy carbon electrode modified with gold nanoparticles. Biosens. Bioelectron. 154, 112052 (2020).

    Article  CAS  PubMed  Google Scholar 

  132. Abdelrasoul, G. N. et al. DNA aptamer-based non-faradaic impedance biosensor for detecting E. coli. Anal. Chim. Acta 1107, 135–144 (2020).

    Article  CAS  PubMed  Google Scholar 

  133. Zouaoui, F. et al. Electrochemical impedance spectroscopy determination of glyphosate using a molecularly imprinted chitosan. Sens. Actuators B Chem. 309, 127753 (2020).

    Article  CAS  Google Scholar 

  134. Magar, H. S., Hassan, R. Y. A. & Mulchandani, A. Electrochemical impedance spectroscopy (EIS): principles, construction, and biosensing applications. Sensors 21, 6578 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Cheng, Y. H. et al. Metal–organic framework-based microfluidic impedance sensor platform for ultrasensitive detection of perfluorooctanesulfonate. ACS Appl. Mater. Interfaces 12, 10503–10514 (2020).

    Article  CAS  PubMed  Google Scholar 

  136. Du, H., Chen, G. & Wang, J. Highly selective electrochemical impedance spectroscopy-based graphene electrode for rapid detection of microplastics. Sci. Total Environ. 862, 160873 (2023).

    Article  CAS  PubMed  Google Scholar 

  137. Zamfir, L.-G., Puiu, M. & Bala, C. Advances in electrochemical impedance spectroscopy detection of endocrine disruptors. Sensors 20, 6443 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Li, X., Huang, Y., Chen, M., Tong, Y. & Zhang, C. A label-free electrochemical bisphenol A immunosensor based on chlorogenic acid as a redox probe. Anal. Methods 9, 2183–2188 (2017).

    Article  CAS  Google Scholar 

  139. Singh, A. C., Bacher, G. & Bhand, S. A label free immunosensor for ultrasensitive detection of 17β-estradiol in water. Electrochim. Acta 232, 30–37 (2017).

    Article  CAS  Google Scholar 

  140. Radi, A.-E., Eissa, A. & Wahdan, T. Molecularly imprinted impedimetric sensor for determination of mycotoxin zearalenone. Electroanalysis 32, 1788–1794 (2020).

    Article  CAS  Google Scholar 

  141. Karimzadeh, A., Hasanzadeh, M., Shadjou, N. & de la Guardia, M.Peptide based biosensors. Trends Anal. Chem. 107, 1–20 (2018).

    Article  CAS  Google Scholar 

  142. Yin, W. -J et al. A highly sensitive electrochemical immunosensor based on electrospun nanocomposite for the detection of parathion. Food Chem. 404, 134371 (2023).

    Article  CAS  PubMed  Google Scholar 

  143. El-Moghazy, A. Y. et al. An innovative nanobody-based electrochemical immunosensor using decorated nylon nanofibers for point-of-care monitoring of human exposure to pyrethroid insecticides. ACS Appl. Mater. Interfaces 12, 6159–6168 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Abu-Ali, H., Nabok, A. & Smith, T. J. Development of novel and highly specific ssDNA-aptamer-based electrochemical biosensor for rapid detection of mercury (II) and lead (II) ions in water. Chemosensors 7, 27 (2019).

    Article  CAS  Google Scholar 

  145. Cheng, C. et al. Bisphenol A sensors on polyimide fabricated by laser direct writing for onsite river water monitoring at attomolar concentration. ACS Appl. Mater. Interfaces 8, 17784–17792 (2016).

    Article  CAS  PubMed  Google Scholar 

  146. Lu, Q. et al. Selection of aptamers specific for DEHP based on ssDNA library immobilized SELEX and development of electrochemical impedance spectroscopy aptasensor. Molecules 25, 747 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Li, Y. et al. A robust electrochemical sensing of molecularly imprinted polymer prepared by using bifunctional monomer and its application in detection of cypermethrin. Biosens. Bioelectron. 127, 207–214 (2019).

    Article  CAS  PubMed  Google Scholar 

  148. Zamora-Gálvez, A. et al. Molecularly imprinted polymer-decorated magnetite nanoparticles for selective sulfonamide detection. Anal. Chem. 88, 3578–3584 (2016).

    Article  PubMed  Google Scholar 

  149. Zamora-Gálvez, A., Mayorga-Matinez, C. C., Parolo, C., Pons, J. & Merkoçi, A. Magnetic nanoparticle-molecular imprinted polymer: a new impedimetric sensor for tributyltin detection. Electrochem. Commun. 82, 6–11 (2017).

    Article  Google Scholar 

  150. Hanssen, B. L., Siraj, S. & Wong, D. K. Y. Recent strategies to minimise fouling in electrochemical detection systems. Rev. Anal. Chem. 35, 1–28 (2016).

    Article  CAS  Google Scholar 

  151. Saha, A. et al. A new paradigm of reliable sensing with field-deployed electrochemical sensors integrating data redundancy and source credibility. Sci. Rep. 13, 3101 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Saha, A., Mi, Y., Glassmaker, N., Shakouri, A. & Alam, M. A. In situ drift monitoring and calibration of field-deployed potentiometric sensors using temperature supervision. ACS Sens. 8, 2799–2808 (2023).

    Article  CAS  PubMed  Google Scholar 

  153. Malings, C. et al. Fine particle mass monitoring with low-cost sensors: corrections and long-term performance evaluation. Aerosol Sci. Technol. 54, 160–174 (2020).

    Article  CAS  Google Scholar 

  154. Bulot, F. M. J. et al. Long-term field comparison of multiple low-cost particulate matter sensors in an outdoor urban environment. Sci. Rep. 9, 7497 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Singh, N., Elsayed, M. Y. & El-Gamal, M. N. Towards the world’s smallest gravimetric particulate matter sensor: a miniaturized virtual impactor with a folded design. Sensors 22, 1727 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Carminati, M. et al. Capacitive detection of micrometric airborne particulate matter for solid-state personal air quality monitors. Sens. Actuators A Phys. 219, 80–87 (2014).

    Article  CAS  Google Scholar 

  157. Ciccarella, P., Carminati, M., Sampietro, M. & Ferrari, G. Multichannel 65 zF rms resolution CMOS monolithic capacitive sensor for counting single micrometer-sized airborne particles on chip. IEEE J. Solid State Circuits 51, 2545–2553 (2016).

    Article  Google Scholar 

  158. Yin, R. et al. Flexible conductive Ag nanowire/cellulose nanofibril hybrid nanopaper for strain and temperature sensing applications. Sci. Bull. 65, 899–908 (2020).

    Article  CAS  Google Scholar 

  159. Salvatore, G. A. et al. Biodegradable and highly deformable temperature sensors for the internet of things. Adv. Funct. Mater. 27, 1702390 (2017).

    Article  Google Scholar 

  160. Park, S. Y. et al. Chemoresistive materials for electronic nose: progress, perspectives, and challenges. InfoMat 1, 289–316 (2019).

    Article  CAS  Google Scholar 

  161. Mazumder, J. T., Jha, R. K., Kim, H. W. & Kim, S. S. Capacitive toxic gas sensors based on oxide composites: a review. IEEE Sens. J. 23, 17842–17853 (2023).

    Article  CAS  Google Scholar 

  162. Peng, X., Wu, X., Zhang, M. & Yuan, H. Metal–organic framework coated devices for gas sensing. ACS Sens. 8, 2471–2492 (2023).

    Article  CAS  PubMed  Google Scholar 

  163. Wawrzynek, E., Baumbauer, C. & Arias, A. C. Characterization and comparison of biodegradable printed capacitive humidity sensors. Sensors 21, 6557 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Rathore, P. et al. Real-time urban microclimate analysis using internet of things. IEEE Internet Things J. 5, 500–511 (2017).

    Article  Google Scholar 

  165. Dargie, W. et al. Monitoring toxic gases using nanotechnology and wireless sensor networks. IEEE Sens. J. 23, 12274–12283 (2023).

    Article  CAS  Google Scholar 

  166. Wang, Z., Xu, J., He, X. & Wang, Y. Analysis of spatiotemporal influence patterns of toxic gas monitoring concentrations in an urban drainage network based on IoT and GIS. Pattern Recognit. Lett. 138, 237–246 (2020).

    Article  Google Scholar 

  167. Cui, Y., Lai, B. & Tang, X. Microbial fuel cell-based biosensors. Biosensors 9, 92 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Sonawane, J. M., Ezugwu, C. I. & Ghosh, P. C. Microbial fuel cell-based biological oxygen demand sensors for monitoring wastewater: state-of-the-art and practical applications. ACS Sens. 5, 2297–2316 (2020).

    Article  CAS  PubMed  Google Scholar 

  169. Burge, S. R. et al. Microbial potentiometric sensor array measurements in unsaturated soils. Sci. Total Environ. 751, 142342 (2021).

    Article  CAS  PubMed  Google Scholar 

  170. ElMekawy, A., Hegab, H. M., Pant, D. & Saint, C. P. Bio-analytical applications of microbial fuel cell-based biosensors for onsite water quality monitoring. J. Appl. Microbiol. 124, 302–313 (2018).

    Article  CAS  PubMed  Google Scholar 

  171. Simoska, O. et al. Recent trends and advances in microbial electrochemical sensing technologies: an overview. Curr. Opin. Electrochem. 30, 100762 (2021).

    Article  CAS  Google Scholar 

  172. Adão, T. et al. Hyperspectral imaging: a review on UAV-based sensors, data processing and applications for agriculture and forestry. Remote Sens. 9, 1110 (2017).

    Article  Google Scholar 

  173. Pajares, G. Overview and current status of remote sensing applications based on unmanned aerial vehicles (UAVs). Photogramm. Eng. Remote Sensing 81, 281–329 (2015).

    Article  Google Scholar 

  174. Ayaz, M., Ammad-Uddin, M., Sharif, Z., Mansour, A. & Aggoune, E. H. M. Internet-of-things (IoT)-based smart agriculture: toward making the fields talk. IEEE Access 7, 129551–129583 (2019).

    Article  Google Scholar 

  175. Yuan, C., Zhang, Y. & Liu, Z. A survey on technologies for automatic forest fire monitoring, detection, and fighting using unmanned aerial vehicles and remote sensing techniques. Can. J. Res. 45, 783–792 (2015).

    Article  Google Scholar 

  176. Burgués, J. & Marco, S. Environmental chemical sensing using small drones: a review. Sci. Total Environ. 748, 141172 (2020).

    Article  PubMed  Google Scholar 

  177. Burgués, J., Hernández, V., Lilienthal, A. J. & Marco, S. Smelling nano aerial vehicle for gas source localization and mapping. Sensors 19, 478 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Tackenberg, O., Poschlod, P. & Kahmen, S. Dandelion seed dispersal: the horizontal wind speed does not matter for long-distance dispersal - it is updraft! Plant Biol. 5, 451–454 (2003).

    Article  Google Scholar 

  179. Greene, D. F. The role of abscission in long-distance seed dispersal by the wind. Ecology 86, 3105–3110 (2005).

    Article  Google Scholar 

  180. Mazzolai, B. et al. Morphological computation in plant seeds for a new generation of self-burial and flying soft robots. Front. Robot. AI 8, 797556 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Lentink, D., Dickson, W. B., Van Leeuwen, J. L. & Dickinson, M. H. Leading-edge vortices elevate lift of autorotating plant seeds. Science 324, 1438–1440 (2009).

    Article  CAS  PubMed  Google Scholar 

  182. Cummins, C. et al. A separated vortex ring underlies the flight of the dandelion. Nature 562, 414–418 (2018).

    Article  CAS  PubMed  Google Scholar 

  183. Kim, B. H. et al. Three-dimensional electronic microfliers inspired by wind-dispersed seeds. Nature 597, 503–510 (2021).

    Article  CAS  PubMed  Google Scholar 

  184. Xu, S. et al. Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling. Science 347, 154–159 (2015).

    Article  CAS  PubMed  Google Scholar 

  185. Zhang, Y. et al. Printing, folding and assembly methods for forming 3D mesostructures in advanced materials. Nat. Rev. Mater. 2, 17019 (2017).

    Article  CAS  Google Scholar 

  186. Yoon, H. J. et al. Biodegradable, three-dimensional colorimetric fliers for environmental monitoring. Sci. Adv. 8, eade3201 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Yang, W. et al. Bio-inspired propeller robot with controllable pitch driven by magnetic and optical coupling field. Sens. Actuators B Chem. 382, 133509 (2023).

    Article  CAS  Google Scholar 

  188. Win, S. K. H., Win, L. S. T., Sufiyan, D., Soh, G. S. & Foong, S. An Agile Samara-inspired single-actuator aerial robot capable of autorotation and diving. IEEE Trans. Robot. 38, 1033–1046 (2022).

    Article  Google Scholar 

  189. Win, S. K. H., Lim, K., Suhadi, B. L., Sufiyan, D. & Foong, S. Aerial deployment of novel gravity-assisted ground penetrating sensors using nature-inspired platform. In IEEE/ASME Int. Conf. Adv. Intell. Mechatron. 669–674 (IEEE, 2023).

  190. Wang, D. et al. Bioinspired rotary flight of light-driven composite films. Nat. Commun. 14, 5070 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Wiesemüller, F. et al. Transient bio-inspired gliders with embodied humidity responsive actuators for environmental sensing. Front. Robot. AI 9, 1011793 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Cikalleshi, K. et al. A printed luminescent flier inspired by plant seeds for eco-friendly physical sensing. Sci. Adv. 9, eadi8492 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Cikalleshi, K., Mariani, S. & Mazzolai, B. A 3D-printed biomimetic porous cellulose-based artificial seed with photonic cellulose nanocrystals for colorimetric humidity sensing. In Biomimetic and Biohybrid Systems (eds Meder, F. et al.) 117–129 (Springer, 2023).

  194. Chu, F. et al. Superhydrophobic strategy for nature-inspired rotating microfliers: enhancing spreading, reducing contact time, and weakening impact force of raindrops. ACS Appl. Mater. Interfaces 14, 57340–57349 (2022).

    Article  PubMed  Google Scholar 

  195. Yang, J., Shankar, M. R. & Zeng, H. Photochemically responsive polymer films enable tunable gliding flights. Nat. Commun. 15, 4684 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Iyer, V., Gaensbauer, H., Daniel, T. L. & Gollakota, S. Wind dispersal of battery-free wireless devices. Nature 603, 427–433 (2022).

    Article  CAS  PubMed  Google Scholar 

  197. Yang, J., Zhang, H., Berdin, A., Hu, W. & Zeng, H. Dandelion-inspired, wind-dispersed polymer-assembly controlled by light. Adv. Sci. 10, e2206752 (2023).

    Article  Google Scholar 

  198. Yan, W. et al. Self-sensing dandelion-inspired flying soft actuator with multi-stimuli response. Adv. Mater. Technol. 9, 2400952 (2024).

    Article  CAS  Google Scholar 

  199. Chen, Y. et al. Light-driven dandelion-inspired microfliers. Nat. Commun. 14, 3036 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Johnson, K. et al. Solar-powered shape-changing origami microfliers. Sci. Robot. 8, eadg4276 (2023).

    Article  PubMed  Google Scholar 

  201. Singh, R., Gupta, R., Bansal, D., Bhateria, R. & Sharma, M. A review on recent trends and future developments in electrochemical sensing. ACS Omega 9, 7336–7356 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Kim, J. T. et al. Functional bio-inspired hybrid fliers with separated ring and leading edge vortices. PNAS Nexus 3, pgae110 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Meng, Q. et al. Hydroactuated configuration alteration of fibrous dandelion Pappi: toward self-controllable transport behavior. Adv. Funct. Mater. 26, 7378–7385 (2016).

    Article  CAS  Google Scholar 

  204. Luo, D. et al. Autonomous self-burying seed carriers for aerial seeding. Nature 614, 463–470 (2023).

    Article  CAS  PubMed  Google Scholar 

  205. Shen, W. et al. Sunlight-powered sustained flight of an ultralight micro aerial vehicle. Nature 631, 537–543 (2024).

    Article  CAS  PubMed  Google Scholar 

  206. Jafferis, N. T., Helbling, E. F., Karpelson, M. & Wood, R. J. Untethered flight of an insect-sized flapping-wing microscale aerial vehicle. Nature 570, 491–495 (2019).

    Article  CAS  PubMed  Google Scholar 

  207. Iyer, V., Najafi, A., James, J., Fuller, S. & Gollakota, S. Wireless steerable vision for live insects and insect-scale robots. Sci. Robot. 5, eabb0839 (2020).

    Article  PubMed  Google Scholar 

  208. Shaikh, S. F. et al. Noninvasive featherlight wearable compliant ‘Marine Skin’: standalone multisensory system for deep-sea environmental monitoring. Small 15, 1804385 (2019).

    Article  Google Scholar 

  209. Nassar, J. M. et al. Compliant lightweight non-invasive standalone ‘Marine Skin’ tagging system. npj Flex. Electron. 2, 13 (2018).

    Article  Google Scholar 

  210. Aubin, C. A. et al. Powerful, soft combustion actuators for insect-scale robots. Science 381, 1212–1217 (2023).

    Article  CAS  PubMed  Google Scholar 

  211. Hu, W., Lum, G. Z., Mastrangeli, M. & Sitti, M. Small-scale soft-bodied robot with multimodal locomotion. Nature 554, 81–85 (2018).

    Article  CAS  PubMed  Google Scholar 

  212. Wu, Y., Dong, X., Kim, J. K., Wang, C. & Sitti, M. Wireless soft millirobots for climbing three-dimensional surfaces in confined spaces. Sci. Adv. 8, eabn3431 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Cheng, K. et al. The role of soils in regulation of freshwater and coastal water quality. Phil. Trans. R. Soc. B 376, 20200176 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Arias-Estévez, M. et al. The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agric. Ecosyst. Environ. 123, 247–260 (2008).

    Article  Google Scholar 

  215. Pan, M. & Chu, L. M. Occurrence of antibiotics and antibiotic resistance genes in soils from wastewater irrigation areas in the Pearl river delta region, southern China. Sci. Total Environ. 624, 145–152 (2018).

    Article  CAS  PubMed  Google Scholar 

  216. European Commission, Directorate-General for Environment. Commission Decision (EU) 2017/848 of 17 May 2017 Laying Down Criteria and Methodological Standards on Good Environmental Status of Marine Waters and Specifications and Standardised Methods for Monitoring and Assessment, and Repealing Decision 2010/477/EU (Publications Office of the European Union, 2017).

  217. Jones, D. O. B., Gates, A. R., Huvenne, V. A. I., Phillips, A. B. & Bett, B. J. Autonomous marine environmental monitoring: application in decommissioned oil fields. Sci. Total Environ. 668, 835–853 (2019).

    Article  CAS  PubMed  Google Scholar 

  218. Liu, Z., Zhang, Y., Yu, X. & Yuan, C. Unmanned surface vehicles: an overview of developments and challenges. Annu. Rev. Control 41, 71–93 (2016).

    Article  Google Scholar 

  219. Rudnick, D. L. Ocean research enabled by underwater gliders. Annu. Rev. Mar. Sci. 8, 519–541 (2016).

    Article  Google Scholar 

  220. Aracri, S. et al. Soft robots for ocean exploration and offshore operations: a perspective. Soft Robot. 8, 625–639 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Gabl, R. et al. Hydrodynamic loads on a restrained ROV under waves and current. Ocean Eng. 234, 109279 (2021).

    Article  Google Scholar 

  222. Qu, J. et al. Recent advances on underwater soft robots. Adv. Intell. Syst. 6, 2300299 (2024).

    Article  Google Scholar 

  223. Li, G. et al. Self-powered soft robot in the Mariana Trench. Nature 591, 66–71 (2021).

    Article  CAS  PubMed  Google Scholar 

  224. Justus, K. B. et al. A biosensing soft robot: autonomous parsing of chemical signals through integrated organic and inorganic interfaces. Sci. Robot. 4, eaax0765 (2019).

    Article  PubMed  Google Scholar 

  225. Carrico, J. D., Hermans, T., Kim, K. J. & Leang, K. K. 3D-printing and machine learning control of soft ionic polymer–metal composite actuators. Sci. Rep. 9, 17482 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  226. Palagi, S. et al. Structured light enables biomimetic swimming and versatile locomotion of photoresponsive soft microrobots. Nat. Mater. 15, 647–653 (2016).

    Article  CAS  PubMed  Google Scholar 

  227. Chen, T., Bilal, O. R., Shea, K. & Daraio, C. Harnessing bistability for directional propulsion of soft, untethered robots. Proc. Natl Acad. Sci. USA 115, 5698–5702 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Ren, Z., Hu, W., Dong, X. & Sitti, M. Multi-functional soft-bodied jellyfish-like swimming. Nat. Commun. 10, 2703 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Park, S.-J. et al. Phototactic guidance of a tissue-engineered soft-robotic ray. Science 353, 158–162 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Rumley, E. H. et al. Biodegradable electrohydraulic actuators for sustainable soft robots. Sci. Adv. 9, eadf5551 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Wang, T. et al. A versatile jellyfish-like robotic platform for effective underwater propulsion and manipulation. Sci. Adv. 9, eadg0292 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  232. Na, H. et al. Hydrogel-based strong and fast actuators by electroosmotic turgor pressure. Science 376, 301–307 (2022).

    Article  CAS  PubMed  Google Scholar 

  233. Wehner, M. et al. An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 536, 451–455 (2016).

    Article  CAS  PubMed  Google Scholar 

  234. Katzschmann, R. K., DelPreto, J., MacCurdy, R. & Rus, D. Exploration of underwater life with an acoustically controlled soft robotic fish. Sci. Robot. 3, eaar3449 (2018).

    Article  PubMed  Google Scholar 

  235. Aubin, C. A. et al. Electrolytic vascular systems for energy-dense robots. Nature 571, 51–57 (2019).

    Article  CAS  PubMed  Google Scholar 

  236. Zufferey, R. et al. Consecutive aquatic jump-gliding with water-reactive fuel. Sci. Robot. 4, eaax7330 (2019).

    Article  PubMed  Google Scholar 

  237. Dai, M., Tu, C., Du, P., Bao, F. & Lin, J. Spontaneous rising of a whirling-swimmer driven by a bubble. Langmuir 39, 10638–10650 (2023).

    Article  CAS  PubMed  Google Scholar 

  238. Xiao, T. X. et al. Spherical triboelectric nanogenerators based on spring-assisted multilayered structure for efficient water wave energy harvesting. Adv. Funct. Mater. 28, 1802634 (2018).

    Article  Google Scholar 

  239. Pan, L. et al. Liquid-FEP-based U-tube triboelectric nanogenerator for harvesting water-wave energy. Nano Res. 11, 4062–4073 (2018).

    Article  CAS  Google Scholar 

  240. Liang, X. et al. Spherical triboelectric nanogenerator integrated with power management module for harvesting multidirectional water wave energy. Energy Environ. Sci. 13, 277–285 (2020).

    Article  Google Scholar 

  241. Zheng, X., Kamat, A. M., Krushynska, A. O., Cao, M. & Kottapalli, A. G. P. 3D printed graphene piezoresistive microelectromechanical system sensors to explain the ultrasensitive wake tracking of wavy seal whiskers. Adv. Funct. Mater. 32, 2207274 (2022).

    Article  CAS  Google Scholar 

  242. Kandris, D., Nakas, C., Vomvas, D. & Koulouras, G. Applications of wireless sensor networks: an up-to-date survey. Appl. Syst. Innov. 3, 14 (2020).

    Article  Google Scholar 

  243. Jawad, H. M., Nordin, R., Gharghan, S. K., Jawad, A. M. & Ismail, M. Energy-efficient wireless sensor networks for precision agriculture: a review. Sensors 17, 1781 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  244. Sinha, B. B. & Dhanalakshmi, R. Recent advancements and challenges of internet of things in smart agriculture: a survey. Future Gener. Comput. Syst. 126, 169–184 (2022).

    Article  Google Scholar 

  245. Awan, K. M. et al. Underwater wireless sensor networks: a review of recent issues and challenges. Wirel. Commun. Mob. Comput. 2019, 6470359 (2019).

    Article  Google Scholar 

  246. Wang, C., Zhang, B., Li, Y. & Zhao, X. Suspended graphene hydroacoustic sensor for broadband underwater wireless communications. IEEE Wirel. Commun. 27, 44–52 (2020).

    Article  CAS  Google Scholar 

  247. Schirripa Spagnolo, G., Cozzella, L. & Leccese, F. Underwater optical wireless communications: overview. Sensors 20, 2261 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  248. Lloret, J., Sendra, S., Ardid, M. & Rodrigues, J. J. P. C. Underwater wireless sensor communications in the 2.4 GHz ISM frequency band. Sensors 12, 4237–4264 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  249. Che, X., Wells, I., Dickers, G., Kear, P. & Gong, X. Re-evaluation of RF electromagnetic communication in underwater sensor networks. IEEE Commun. Mag. 48, 143–151 (2010).

    Article  Google Scholar 

  250. Yang, T. et al. A soft artificial muscle driven robot with reinforcement learning. Sci. Rep. 8, 14518 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  251. Fascista, A. Toward integrated large-scale environmental monitoring using WSN/UAV/crowdsensing: a review of applications, signal processing, and future perspectives. Sensors 22, 1824 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Sanislav, T., Mois, G. D., Zeadally, S. & Folea, S. C. Energy harvesting techniques for internet of things (IoT). IEEE Access 9, 39530–39549 (2021).

    Article  Google Scholar 

  253. Pecunia, V., Occhipinti, L. G. & Hoye, R. L. Z. Emerging indoor photovoltaic technologies for sustainable internet of things. Adv. Energy Mater. 11, 2100698 (2021).

    Article  CAS  Google Scholar 

  254. Nguyen, H.-U.-D., Nguyen, D.-T. & Taguchi, K. A portable soil microbial fuel cell for sensing soil water content. Measur. Sens. 18, 100231 (2021).

    Article  Google Scholar 

  255. Lin, F. T. et al. A self-powering wireless environment monitoring system using soil energy. IEEE Sens. J. 15, 3751–3758 (2015).

    Article  CAS  Google Scholar 

  256. Liu, L., Lu, Y., Zhong, W., Meng, L. & Deng, H. On-line monitoring of repeated copper pollutions using sediment microbial fuel cell based sensors in the field environment. Sci. Total Environ. 748, 141544 (2020).

    Article  CAS  PubMed  Google Scholar 

  257. Pappinisseri Puluckul, P. & Weyn, M. Battery-less environment sensor using thermoelectric energy harvesting from soil-ambient air temperature differences. Sensors 22, 4737 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  258. Paterova, T. et al. Environment-monitoring IoT devices powered by a TEG which converts thermal flux between air and near-surface soil into electrical energy. Sensors 21, 8098 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Li, Z. et al. Towards self-powered technique in underwater robots via a high-efficiency electromagnetic transducer with circularly abrupt magnetic flux density change. Appl. Energy 302, 117569 (2021).

    Article  Google Scholar 

  260. Zou, H.-X. et al. A magnetically coupled bistable piezoelectric harvester for underwater energy harvesting. Energy 217, 119429 (2021).

    Article  Google Scholar 

  261. Vinh, N. D. & Kim, H.-M. Ocean-based electricity generating system utilizing the electrochemical conversion of wave energy by ionic polymer–metal composites. Electrochem. Commun. 75, 64–68 (2017).

    Article  Google Scholar 

  262. Wang, Y. et al. Flexible seaweed-like triboelectric nanogenerator as a wave energy harvester powering marine internet of things. ACS Nano 15, 15700–15709 (2021).

    Article  CAS  PubMed  Google Scholar 

  263. Zhao, T. et al. Recent progress in blue energy harvesting for powering distributed sensors in ocean. Nano Energy 88, 106199 (2021).

    Article  CAS  Google Scholar 

  264. Moretti, G. et al. Modelling and field testing of a breakwater-integrated U-OWC wave energy converter with dielectric elastomer generator. Renew. Energy 146, 628–642 (2020).

    Article  Google Scholar 

  265. Wang, Y. et al. A rolling-mode triboelectric nanogenerator with multi-tunnel grating electrodes and opposite-charge-enhancement for wave energy harvesting. Nat. Commun. 15, 6834 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Jung, H., Ouro-Koura, H., Salalila, A., Salalila, M. & Deng, Z. D. Frequency-multiplied cylindrical triboelectric nanogenerator for harvesting low frequency wave energy to power ocean observation system. Nano Energy 99, 107365 (2022).

    Article  CAS  Google Scholar 

  267. Zhao, L.-C. et al. Mechanical intelligent wave energy harvesting and self-powered marine environment monitoring. Nano Energy 108, 108222 (2023).

    Article  CAS  Google Scholar 

  268. Feng, Y., Liang, X., An, J., Jiang, T. & Wang, Z. L. Soft-contact cylindrical triboelectric–electromagnetic hybrid nanogenerator based on swing structure for ultra-low frequency water wave energy harvesting. Nano Energy 81, 105625 (2021).

    Article  CAS  Google Scholar 

  269. Wang, Q. et al. A synergetic hybrid mechanism of piezoelectric and triboelectric for galloping wind energy harvesting. Appl. Phys. Lett. 117, 043902 (2020).

    Article  CAS  Google Scholar 

  270. Zhang, Y. et al. Advances in bioresorbable materials and electronics. Chem. Rev. 123, 11722–11773 (2023).

    Article  CAS  PubMed  Google Scholar 

  271. Choi, Y., Koo, J. & Rogers, J. A. Inorganic materials for transient electronics in biomedical applications. MRS Bull. 45, 103–112 (2020).

    Article  Google Scholar 

  272. Lee, Y. K. et al. Dissolution of monocrystalline silicon nanomembranes and their use as encapsulation layers and electrical interfaces in water-soluble electronics. ACS Nano 11, 12562–12572 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Lee, Y. K. et al. Kinetics and chemistry of hydrolysis of ultrathin, thermally grown layers of silicon oxide as biofluid barriers in flexible electronic systems. ACS Appl. Mater. Interfaces 9, 42633–42638 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Kang, S.-K. et al. Dissolution behaviors and applications of silicon oxides and nitrides in transient electronics. Adv. Funct. Mater. 24, 4427–4434 (2014).

    Article  CAS  Google Scholar 

  275. Hwang, S.-W. et al. A physically transient form of silicon electronics. Science 337, 1640–1644 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Lang, A. W., Österholm, A. M. & Reynolds, J. R. Paper-based electrochromic devices enabled by nanocellulose-coated substrates. Adv. Funct. Mater. 29, 1903487 (2019).

    Article  Google Scholar 

  277. Li, A. et al. High-performance, breathable, and degradable fully cellulose-based sensor for multifunctional human activity monitoring. Chem. Eng. J. 505, 159564 (2025).

    Article  CAS  Google Scholar 

  278. Wen, D.-L. et al. Recent progress in silk fibroin-based flexible electronics. Microsyst. Nanoeng. 7, 35 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Atreya, M. et al. Wax blends as tunable encapsulants for soil-degradable electronics. ACS Appl. Electron. Mater. 4, 4912–4920 (2022).

    Article  CAS  Google Scholar 

  280. Li, W. et al. Biodegradable materials and green processing for green electronics. Adv. Mater. 32, 2001591 (2020).

    Article  CAS  Google Scholar 

  281. Camus, A. et al. Electrical response and biodegradation of sepia melanin-shellac films printed on paper. Commun. Mater. 5, 173 (2024).

    Article  CAS  Google Scholar 

  282. Wang, L. L. et al. Biocompatible and biodegradable functional polysaccharides for flexible humidity sensors. Research 2020, 8716847 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Miao, J. L., Liu, H. H., Li, Y. B. & Zhang, X. X. Biodegradable transparent substrate based on edible starch-chitosan embedded with nature-inspired three-dimensionally interconnected conductive nanocomposites for wearable green electronics. ACS Appl. Mater. Interfaces 10, 23037–23047 (2018).

    Article  CAS  PubMed  Google Scholar 

  284. Ilyas, R. A. et al. Natural fiber-reinforced polylactic acid, polylactic acid blends and their composites for advanced applications. Polymers 14, 202 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Huang, Y. et al. Implantable electronic medicine enabled by bioresorbable microneedles for wireless electrotherapy and drug delivery. Nano Lett. 22, 5944–5953 (2022).

    Article  CAS  PubMed  Google Scholar 

  286. Lee, J., Park, S. & Choi, Y. Organic encapsulants for bioresorbable medical electronics. MRS Bull. 49, 247–255 (2024).

    Article  CAS  Google Scholar 

  287. Kim, H. et al. Bioresorbable, miniaturized porous silicon needles on a flexible water-soluble backing for unobtrusive, sustained delivery of chemotherapy. ACS Nano 14, 7227–7236 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Mndlovu, H., Kumar, P., du Toit, L. C. & Choonara, Y. E. A review of biomaterial degradation assessment approaches employed in the biomedical field. npj Mater. Degrad. 8, 66 (2024).

    Article  CAS  Google Scholar 

  289. Choi, Y. S. et al. Biodegradable polyanhydrides as encapsulation layers for transient electronics. Adv. Funct. Mater. 30, 2000941 (2020).

    Article  CAS  Google Scholar 

  290. McDonald, S. M. et al. Resorbable barrier polymers for flexible bioelectronics. Nat. Commun. 14, 7299 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Ko, G.-J. et al. Materials and designs for extremely efficient encapsulation of soft, biodegradable electronics. Adv. Funct. Mater. 34, 2403427 (2024).

    Article  CAS  Google Scholar 

  292. Han, W. B. et al. Micropatterned elastomeric composites for encapsulation of transient electronics. ACS Nano 17, 14822–14830 (2023).

    Article  CAS  PubMed  Google Scholar 

  293. Park, C. W. et al. Thermally triggered degradation of transient electronic devices. Adv. Mater. 27, 3783–3788 (2015).

    Article  CAS  PubMed  Google Scholar 

  294. Istif, E., Ali, M., Ozuaciksoz, E. Y., Morova, Y. & Beker, L. Near-infrared triggered degradation for transient electronics. ACS Omega 9, 2528–2535 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Zhong, S., Ji, X., Song, L., Zhang, Y. & Zhao, R. Enabling transient electronics with degradation on demand via light-responsive encapsulation of a hydrogel–oxide bilayer. ACS Appl. Mater. Interfaces 10, 36171–36176 (2018).

    Article  CAS  PubMed  Google Scholar 

  296. Son, D. et al. Bioresorbable electronic stent integrated with therapeutic nanoparticles for endovascular diseases. ACS Nano 9, 5937–5946 (2015).

    Article  CAS  PubMed  Google Scholar 

  297. Bai, W. et al. Bioresorbable photonic devices for the spectroscopic characterization of physiological status and neural activity. Nat. Biomed. Eng. 3, 644–654 (2019).

    Article  PubMed  Google Scholar 

  298. Yin, L. et al. Dissolvable metals for transient electronics. Adv. Funct. Mater. 24, 645–658 (2014).

    Article  CAS  Google Scholar 

  299. Gu, J.-W. et al. Corrosion characteristics of single-phase Mg–3Zn alloy thin film for biodegradable electronics. J. Magnes. Alloy. 11, 3241–3254 (2023).

    Article  CAS  Google Scholar 

  300. Lee, S. et al. Metal microparticle–polymer composites as printable, bio/ecoresorbable conductive inks. Mater. Today 21, 207–215 (2018).

    Article  CAS  Google Scholar 

  301. Kang, S.-K. et al. Biodegradable thin metal foils and spin-on glass materials for transient electronics. Adv. Funct. Mater. 25, 1789–1797 (2015).

    Article  CAS  Google Scholar 

  302. Wu, Y. et al. A sewing approach to the fabrication of eco/bioresorbable electronics. Small 19, 2305017 (2023).

    Article  CAS  Google Scholar 

  303. Zhao, H. et al. Biodegradable germanium electronics for integrated biosensing of physiological signals. npj Flex. Electron. 6, 63 (2022).

    Article  CAS  Google Scholar 

  304. Song, F. et al. ZnO-based physically transient and bioresorbable memory on silk protein. IEEE Electron. Device Lett. 39, 31–34 (2018).

    Article  CAS  Google Scholar 

  305. Sundaram, J. et al. Fabrication and microstructural characterization of MgO composites for biomedical applications using the bottom pour stir casting process. Mater. Today. Proc. 72, 2289–2293 (2023).

    Article  CAS  Google Scholar 

  306. Vidakis, N. et al. Polylactic acid/silicon nitride biodegradable and biomedical nanocomposites with optimized rheological and thermomechanical response for material extrusion additive manufacturing. Biomed. Eng. Adv. 6, 100103 (2023).

    Article  Google Scholar 

  307. Alahmad, W., Cetinkaya, A., Kaya, S. I., Varanusupakul, P. & Ozkan, S. A. Electrochemical paper-based analytical devices for environmental analysis: current trends and perspectives. Trends Environ. Anal. Chem. 40, e00220 (2023).

    Article  CAS  Google Scholar 

  308. Patel, S. et al. Recent development in nanomaterials fabricated paper-based colorimetric and fluorescent sensors: a review. Trends Environ. Anal. Chem. 31, e00136 (2021).

    Article  CAS  Google Scholar 

  309. Xiang, H. et al. Green flexible electronics based on starch. npj Flex. Electron. 6, 15 (2022).

    Article  Google Scholar 

  310. Miao, J., Liu, H., Li, Y. & Zhang, X. Biodegradable transparent substrate based on edible starch–chitosan embedded with nature-inspired three-dimensionally interconnected conductive nanocomposites for wearable green electronics. ACS Appl. Mater. Interfaces 10, 23037–23047 (2018).

    Article  CAS  PubMed  Google Scholar 

  311. Cheng, H. et al. Starch-based biodegradable packaging materials: a review of their preparation, characterization and diverse applications in the food industry. Trends Food Sci. Technol. 114, 70–82 (2021).

    Article  CAS  Google Scholar 

  312. Ahamed, A. et al. Environmental footprint of voltammetric sensors based on screen-printed electrodes: an assessment towards ‘green’ sensor manufacturing. Chemosphere 278, 130462 (2021).

    Article  CAS  PubMed  Google Scholar 

  313. Vyas, R. et al. Inkjet printed, self powered, wireless sensors for environmental, gas, and authentication-based sensing. IEEE Sens. J. 11, 3139–3152 (2011).

    Article  CAS  Google Scholar 

  314. Ju, K. et al. Laser direct writing of carbonaceous sensors on cardboard for human health and indoor environment monitoring. RSC Adv. 10, 18694–18703 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  315. Jadoun, S., Riaz, U. & Budhiraja, V. Biodegradable conducting polymeric materials for biomedical applications: a review. Med. Devices Sens. 4, e10141 (2021).

    Article  CAS  Google Scholar 

  316. Hwang, S.-W. et al. Biodegradable elastomers and silicon nanomembranes/nanoribbons for stretchable, transient electronics, and biosensors. Nano Lett. 15, 2801–2808 (2015).

    Article  CAS  PubMed  Google Scholar 

  317. Aeby, X. et al. Printed humidity sensors from renewable and biodegradable materials. Adv. Mater. Technol. 8, 2201302 (2023).

    Article  CAS  Google Scholar 

  318. Ko, G.-J. et al. Biodegradable, flexible silicon nanomembrane-based NOx gas sensor system with record-high performance for transient environmental monitors and medical implants. NPG Asia Mater. 12, 71 (2020).

    Article  CAS  Google Scholar 

  319. Gopalakrishnan, S. et al. A biodegradable chipless sensor for wireless subsoil health monitoring. Sci. Rep. 12, 8011 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  320. Nguyen, T. P. et al. Polypeptide organic radical batteries. Nature 593, 61–66 (2021).

    Article  CAS  PubMed  Google Scholar 

  321. Huang, X. et al. Fully biodegradable and long-term operational primary zinc batteries as power sources for electronic medicine. ACS Nano 17, 5727–5739 (2023).

    Article  CAS  PubMed  Google Scholar 

  322. Huang, I. et al. High performance dual-electrolyte magnesium–iodine batteries that can harmlessly resorb in the environment or in the body. Energy Environ. Sci. 15, 4095–4108 (2022).

    Article  CAS  Google Scholar 

  323. Shao, M. et al. High-performance biodegradable energy storage devices enabled by heterostructured MoO3–MoS2 composites. Small 19, 2205529 (2023).

    Article  CAS  Google Scholar 

  324. Tian, W. et al. Implantable and biodegradable micro-supercapacitor based on a superassembled three-dimensional network Zn@PPy hybrid electrode. ACS Appl. Mater. Interfaces 13, 8285–8293 (2021).

    Article  CAS  PubMed  Google Scholar 

  325. Chen, K. et al. An edible and nutritive zinc-ion micro-supercapacitor in the stomach with ultrahigh energy density. ACS Nano 16, 15261–15272 (2022).

    Article  CAS  PubMed  Google Scholar 

  326. Tsang, M., Armutlulu, A., Martinez, A. W., Allen, S. A. B. & Allen, M. G. Biodegradable magnesium/iron batteries with polycaprolactone encapsulation: a microfabricated power source for transient implantable devices. Microsyst. Nanoeng. 1, 15024 (2015).

    Article  CAS  Google Scholar 

  327. Huang, X. et al. A fully biodegradable battery for self-powered transient implants. Small 14, 1800994 (2018).

    Article  Google Scholar 

  328. Delaporte, N., Lajoie, G., Collin-Martin, S. & Zaghib, K. Toward low-cost all-organic and biodegradable Li-ion batteries. Sci. Rep. 10, 3812 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  329. Wu, L. et al. A biodegradable high-performance microsupercapacitor for environmentally friendly and biocompatible energy storage. ACS Nano 17, 22580–22590 (2023).

    Article  CAS  PubMed  Google Scholar 

  330. Winfield, J. et al. Fade to green: a biodegradable stack of microbial fuel cells. ChemSusChem 8, 2705–2712 (2015).

    Article  CAS  PubMed  Google Scholar 

  331. Huang, Y. et al. Bioresorbable thin-film silicon diodes for the optoelectronic excitation and inhibition of neural activities. Nat. Biomed. Eng. 7, 486–498 (2023).

    Article  CAS  PubMed  Google Scholar 

  332. Lu, L. et al. Biodegradable monocrystalline silicon photovoltaic microcells as power supplies for transient biomedical implants. Adv. Energy Mater. 8, 1703035 (2018).

    Article  Google Scholar 

  333. Qi, J. et al. Large-grained perovskite films enabled by one-step meniscus-assisted solution printing of cross-aligned conductive nanowires for biodegradable flexible solar cells. Adv. Energy Mater. 10, 2001185 (2020).

    Article  CAS  Google Scholar 

  334. Aktas, E. et al. Challenges and strategies toward long-term stability of lead-free tin-based perovskite solar cells. Commun. Mater. 3, 104 (2022).

    Article  CAS  Google Scholar 

  335. Klochko, N. P. et al. Use of biomass for a development of nanocellulose-based biodegradable flexible thin film thermoelectric material. Sol. Energy 201, 21–27 (2020).

    Article  CAS  Google Scholar 

  336. Li, H. et al. Biodegradable CuI/BCNF composite thermoelectric film for wearable energy harvesting. Cellulose 28, 10707–10714 (2021).

    Article  CAS  Google Scholar 

  337. Wang, T. et al. Fully biodegradable water-soluble triboelectric nanogenerator for human physiological monitoring. Nano Energy 93, 106787 (2022).

    Article  CAS  Google Scholar 

  338. Kang, M. et al. Nature-derived highly tribopositive ϰ-carrageenan-agar composite-based fully biodegradable triboelectric nanogenerators. Nano Energy 100, 107480 (2022).

    Article  CAS  Google Scholar 

  339. Novelli, G. et al. A biodegradable surface drifter for ocean sampling on a massive scale. J. Atmos. Ocean. Technol. 34, 2509–2532 (2017).

    Article  Google Scholar 

  340. Sun, W. et al. Biodegradable, sustainable hydrogel actuators with shape and stiffness morphing capabilities via embedded 3D printing. Adv. Funct. Mater. 33, 2303659 (2023).

    Article  CAS  Google Scholar 

  341. Koo, J. et al. Wireless bioresorbable electronic system enables sustained nonpharmacological neuroregenerative therapy. Nat. Med. 24, 1830–1836 (2018).

    Article  CAS  PubMed  Google Scholar 

  342. Koo, J. et al. Wirelessly controlled, bioresorbable drug delivery device with active valves that exploit electrochemically triggered crevice corrosion. Sci. Adv. 6, eabb1093 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  343. Choi, Y. S. et al. Stretchable, dynamic covalent polymers for soft, long-lived bioresorbable electronic stimulators designed to facilitate neuromuscular regeneration. Nat. Commun. 11, 5990 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  344. Li, J. et al. Anhydride-assisted spontaneous room temperature sintering of printed bioresorbable electronics. Adv. Funct. Mater. 30, 1905024 (2020).

    Article  CAS  Google Scholar 

  345. Xu, W. et al. Food-based edible and nutritive electronics. Adv. Mater. Technol. 2, 1700181 (2017).

    Article  Google Scholar 

  346. Boutry, C. M. et al. Biodegradable and flexible arterial-pulse sensor for the wireless monitoring of blood flow. Nat. Biomed. Eng. 3, 47–57 (2019).

    Article  CAS  PubMed  Google Scholar 

  347. Chang, J.-K. et al. Materials and processing approaches for foundry-compatible transient electronics. Proc. Natl Acad. Sci. USA 114, E5522–E5529 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  348. Zhong, D. et al. High-speed and large-scale intrinsically stretchable integrated circuits. Nature 627, 313–320 (2024).

    Article  CAS  PubMed  Google Scholar 

  349. Costa, F. et al. A review of RFID sensors, the new frontier of internet of things. Sensors 21, 3138 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  350. Bourely, J. et al. Degradable and printed microstrip line for chipless temperature and humidity sensing. Adv. Electron. Mater. 10, 2400229 (2024).

    Article  CAS  Google Scholar 

  351. Genovesi, S., Costa, F., Dicandia, F. A., Borgese, M. & Manara, G. Orientation-insensitive and normalization-free reading chipless RFID system based on circular polarization interrogation. IEEE Trans. Antennas Propag. 68, 2370–2378 (2020).

    Article  Google Scholar 

  352. Costa, F. et al. A depolarizing chipless RF label for dielectric permittivity sensing. IEEE Microw. Wirel. Compon. Lett. 28, 371–373 (2018).

    Article  Google Scholar 

  353. Plessky, V. P. & Reindl, L. M. Review on SAW RFID tags. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 57, 654–668 (2010).

    Article  PubMed  Google Scholar 

  354. Wu, P. et al. Ultrasound-driven in vivo electrical stimulation based on biodegradable piezoelectric nanogenerators for enhancing and monitoring the nerve tissue repair. Nano Energy 102, 107707 (2022).

    Article  CAS  Google Scholar 

  355. Raja, B. et al. An embedded microretroreflector-based microfluidic immunoassay platform. Lab Chip 16, 1625–1635 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  356. Switkes, M., Ervin, B. L., Kingsborough, R. P., Rothschild, M. & Sworin, M. Retroreflectors for remote readout of colorimetric sensors. Sens. Actuators B Chem. 160, 1244–1249 (2011).

    Article  CAS  Google Scholar 

  357. Oku, H., Sato, M. & Funato, Y. Edible retroreflector made of candy. IEEE Access 10, 24749–24758 (2022).

    Article  Google Scholar 

  358. Wu, M., Tan, L. & Xiong, N. Data prediction, compression, and recovery in clustered wireless sensor networks for environmental monitoring applications. Inf. Sci. 329, 800–818 (2016).

    Article  Google Scholar 

  359. Deng, F., Zuo, P., Wen, K. & Wu, X. Novel soil environment monitoring system based on RFID sensor and LoRa. Comput. Electron. Agr. 169, 105169 (2020).

    Article  Google Scholar 

  360. Vacek, L. et al. sUAS for deployment and recovery of an environmental sensor probe. In Int. Conf. Unmanned Aircr. Syst. 1022–1029 (IEEE, 2017).

  361. Zhong, S. et al. Machine learning: new ideas and tools in environmental science and engineering. Environ. Sci. Technol. 55, 12741–12754 (2021).

    CAS  PubMed  Google Scholar 

  362. Rossi, L. et al. Using artificial neural network to investigate physiological changes and cerium oxide nanoparticles and cadmium uptake by Brassica napus plants. Environ. Pollut. 246, 381–389 (2019).

    Article  CAS  PubMed  Google Scholar 

  363. Podgorski, J. & Berg, M. Global threat of arsenic in groundwater. Science 368, 845–850 (2020).

    Article  CAS  PubMed  Google Scholar 

  364. Hu, X. et al. Estimating PM2.5 concentrations in the conterminous United States using the random forest approach. Environ. Sci. Technol. 51, 6936–6944 (2017).

    Article  CAS  PubMed  Google Scholar 

  365. Hwangbo, J. et al. Bioresorbable polymers for electronic medicine. Cell Rep. Phys. Sci. 5, 102099 (2024).

    Article  CAS  Google Scholar 

  366. Yoshinaka, Y. & Miller, S. A. Bio-oil derived polyesteramides as water-degradable replacements for polyethylene. Green Chem. 27, 4152–4164 (2025).

    Article  CAS  Google Scholar 

  367. Lee, G. et al. Fully biodegradable microsupercapacitor for power storage in transient electronics. Adv. Energy Mater. 7, 1700157 (2017).

    Article  Google Scholar 

  368. Pal, R. K. et al. Conducting polymer-silk biocomposites for flexible and biodegradable electrochemical sensors. Biosens. Bioelectron. 81, 294–302 (2016).

    Article  CAS  PubMed  Google Scholar 

  369. Li, L., Ge, J., Guo, B. & Ma, P. X. In situ forming biodegradable electroactive hydrogels. Polym. Chem. 5, 2880–2890 (2014).

    Article  CAS  Google Scholar 

  370. Zelikin, A. N. et al. Erodible conducting polymers for potential biomedical applications. Angew. Chem. Int. Ed. 41, 141–144 (2002).

    Article  CAS  Google Scholar 

  371. Kang, S.-K. et al. Dissolution chemistry and biocompatibility of silicon- and germanium-based semiconductors for transient electronics. ACS Appl. Mater. Interfaces 7, 9297–9305 (2015).

    Article  CAS  PubMed  Google Scholar 

  372. Lu, D. et al. Transient light-emitting diodes constructed from semiconductors and transparent conductors that biodegrade under physiological conditions. Adv. Mater. 31, 1902739 (2019).

    Article  CAS  Google Scholar 

  373. Chen, X. et al. CVD-grown monolayer MoS2 in bioabsorbable electronics and biosensors. Nat. Commun. 9, 1690 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  374. Matatagui, D. et al. Eco-friendly disposable WS2 paper sensor for sub-ppm NO2 detection at room temperature. Nanomaterials 12, 1213 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  375. Yang, S. M. et al. Hetero-integration of silicon nanomembranes with 2D materials for bioresorbable, wireless neurochemical system. Adv. Mater. 34, 2108203 (2022).

    Article  CAS  Google Scholar 

  376. Palmroth, A., Salpavaara, T., Lekkala, J. & Kellomäki, M. Fabrication and characterization of a wireless bioresorbable pressure sensor. Adv. Mater. Technol. 4, 1900428 (2019).

    Article  CAS  Google Scholar 

  377. Shou, W. et al. Low-cost manufacturing of bioresorbable conductors by evaporation–condensation-mediated laser printing and sintering of Zn nanoparticles. Adv. Mater. 29, 1700172 (2017).

    Article  Google Scholar 

  378. Hyun, W. J., Secor, E. B., Hersam, M. C., Frisbie, C. D. & Francis, L. F. High-resolution patterning of graphene by screen printing with a silicon stencil for highly flexible printed electronics. Adv. Mater. 27, 109–115 (2015).

    Article  CAS  PubMed  Google Scholar 

  379. Kay, R. & Desmulliez, M. A review of stencil printing for microelectronic packaging. Solder. Surf. Mt Technol. 24, 38–50 (2012).

    Article  Google Scholar 

  380. Hussain, A., Abbas, N. & Ali, A. Inkjet printing: a viable technology for biosensor fabrication. Chemosensors 10, 103 (2022).

    Article  CAS  Google Scholar 

  381. Nalepa, M.-A. et al. Graphene derivative-based ink advances inkjet printing technology for fabrication of electrochemical sensors and biosensors. Biosens. Bioelectron. 256, 116277 (2024).

    Article  CAS  PubMed  Google Scholar 

  382. Mkhize, N. & Bhaskaran, H. Electrohydrodynamic jet printing: introductory concepts and considerations. Small Sci. 2, 2100073 (2022).

    Article  CAS  PubMed  Google Scholar 

  383. Barton, K. et al. A desktop electrohydrodynamic jet printing system. Mechatronics 20, 611–616 (2010).

    Article  Google Scholar 

  384. Mahajan, B. K. et al. Aerosol printing and photonic sintering of bioresorbable zinc nanoparticle ink for transient electronics manufacturing. Sci. China Inf. Sci. 61, 060412 (2018).

    Article  Google Scholar 

  385. Marchianò, V. et al. Tailoring water-based graphite conductive ink formulation for enzyme stencil-printing: experimental design to enhance wearable biosensor performance. Chem. Mater. 36, 358–370 (2024).

    Article  Google Scholar 

  386. Camargo, J. R., Silva, T. A., Rivas, G. A. & Janegitz, B. C. Novel eco-friendly water-based conductive ink for the preparation of disposable screen-printed electrodes for sensing and biosensing applications. Electrochim. Acta 409, 139968 (2022).

    Article  CAS  Google Scholar 

  387. Li, H. et al. Advances in the device design and printing technology for eco-friendly organic photovoltaics. Energy Environ. Sci. 16, 76–88 (2023).

    Article  CAS  Google Scholar 

  388. Sui, Y. et al. A reactive inkjet printing process for fabricating biodegradable conductive zinc structures. Adv. Eng. Mater. 25, 2200529 (2023).

    Article  CAS  Google Scholar 

  389. Poulin, A., Aeby, X., Siqueira, G. & Nyström, G. Versatile carbon-loaded shellac ink for disposable printed electronics. Sci. Rep. 11, 23784 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  390. Jaiswal, A. K. et al. Biodegradable cellulose nanocomposite substrate for recyclable flexible printed electronics. Adv. Electron. Mater. 9, 2201094 (2023).

    Article  CAS  Google Scholar 

  391. Qin, Y. et al. A review of carbon-based conductive inks and their printing technologies for integrated circuits. Coatings 13, 1769 (2023).

    Article  CAS  Google Scholar 

  392. Yang, Q. et al. High-speed, scanned laser structuring of multi-layered eco/bioresorbable materials for advanced electronic systems. Nat. Commun. 13, 6518 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  393. Baruah, R. K., Yoo, H. & Lee, E. K. Interconnection technologies for flexible electronics: materials, fabrications, and applications. Micromachines 14, 1131 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  394. Aradhana, R., Mohanty, S. & Nayak, S. K. A review on epoxy-based electrically conductive adhesives. Int. J. Adhes. Adhesives 99, 102596 (2020).

    Article  CAS  Google Scholar 

  395. Hwang, H. et al. Stretchable anisotropic conductive film (S-ACF) for electrical interfacing in high-resolution stretchable circuits. Sci. Adv. 7, eabh0171 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  396. Li, Y., Veronica, A., Ma, J. & Nyein, H. Y. Y. Materials, structure, and interface of stretchable interconnects for wearable bioelectronics. Adv. Mater. 37, 2408456 (2025).

    Article  CAS  PubMed  Google Scholar 

  397. Valentine, A. D. et al. Hybrid 3D printing of soft electronics. Adv. Mater. 29, 1703817 (2017).

    Article  Google Scholar 

  398. Lee, C. K. W., Pan, Y., Yang, R., Kim, M. & Li, M. G. Laser-induced transfer of functional materials. Top. Curr. Chem. 381, 18 (2023).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Querrey Simpson Institute for Bioelectronics. K.E.M. acknowledges support from an NIH NRSA sleep and circadian training grant (T32HL007909). M.T.F. acknowledges support from a pilot grant from the HERCULES Exposome Research Center. Figures 1b and 2b,c,e use assets obtained from Biorender.com.

Author information

Authors and Affiliations

Authors

Contributions

K.E.M. and M.T.F. researched data for the article and led drafting of the manuscript. J.A.R. reviewed and edited the manuscript before submission. All authors contributed substantially to the content and discussion disclosed within the manuscript.

Corresponding authors

Correspondence to Matthew T. Flavin or John A. Rogers.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Shyam Gollakota, Lining Yao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Marine Strategy Framework Directive: https://eur-lex.europa.eu/eli/dec/2017/848/oj

United States Environmental Protection Agency: https://www.epa.gov/scientific-leadership/probabilistic-risk-assessment-white-paper-and-supporting-documents

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madsen, K.E., Flavin, M.T. & Rogers, J.A. Materials advances for distributed environmental sensor networks at scale. Nat Rev Mater (2025). https://doi.org/10.1038/s41578-025-00838-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41578-025-00838-7

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene