Abstract
Historic and ongoing efforts in ecology and environmental science have highlighted the pressing need to monitor the health, sustainability and productivity of global and local ecosystems. Interest in these areas reflects a need both to determine the suitability of environments to support human activity (settlement, agriculture and industry) and to evaluate the impacts of such anthropogenic action. Of interest are chemical, biological and physical factors that reduce ecosystem viability owing to human intervention. Evaluating these factors and their impact on global health, ecological stability and resource availability demands improvements to existing environmental sensing technologies. Current methods to quantify chemical pollutants, biological factors and deleterious physical conditions affecting target ecosystems suffer from lack of automation and narrow spatiotemporal range. Recent advances in materials science, chemistry, electronics and robotics offer solutions to this problem. A vision emerges for fully autonomous, networked and ecoresorbable sensing systems that can be deployed over large aerial, terrestrial and aquatic environments. This Review describes ongoing efforts in these areas, focusing on materials advances supporting the accurate quantification of environmental factors with apparatus that accommodates full or partial device resorption. Discussion begins with an overview of hazards affecting global ecosystems, followed by a description of existing detection methods to quantify their severity. We proceed with an exploration of existing and developing technologies affecting sensor dispersion, motility, communication and power. Finally, we describe exciting recent efforts in the development of environmentally degradable materials that could prove beneficial in the realization of massively distributed (millions of individual sensors) transient sensor networks.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
References
Myers, S. S. et al. Human health impacts of ecosystem alteration. Proc. Natl Acad. Sci. USA 110, 18753–18760 (2013).
Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).
Ehrlich, P. R., Raven, P. H. & Gustafson, J. P. Population, Agriculture, and Biodiversity: Problems and Prospects (Univ. Missouri Press, 2020).
Häder, D.-P. et al. Anthropogenic pollution of aquatic ecosystems: emerging problems with global implications. Sci. Total Environ. 713, 136586 (2020).
Rhind, S. M. Anthropogenic pollutants: a threat to ecosystem sustainability? Phil. Trans. R. Soc. B 364, 3391–3401 (2009).
Fuller, R. et al. Pollution and health: a progress update. Lancet Planet. Health 6, e535–e547 (2022).
Keith, L. Environmental Sampling and Analysis: A Practical Guide (Routledge, 2017).
US Environmental Protection Agency. Guidance on Choosing a Sampling Design for Environmental Data Collection (Office of Environmental Information, 2002).
Corke, P. et al. Environmental wireless sensor networks. Proc. IEEE 98, 1903–1917 (2010).
Cao, R. et al. Using a distributed air sensor network to investigate the spatiotemporal patterns of PM2.5 concentrations. Environ. Pollut. 264, 114549 (2020).
Gunawardena, N., Pardyjak, E. R., Stoll, R. & Khadka, A. Development and evaluation of an open-source, low-cost distributed sensor network for environmental monitoring applications. Meas. Sci. Technol. 29, 024008 (2018).
Jin, J., Wang, Y., Jiang, H. & Chen, X. Evaluation of microclimatic detection by a wireless sensor network in forest ecosystems. Sci. Rep. 8, 16433 (2018).
Lloret, J., Sendra, S., Garcia, L. & Jimenez, J. M. A wireless sensor network deployment for soil moisture monitoring in precision agriculture. Sensors 21, 7243 (2021).
Thakur, D., Kumar, Y., Kumar, A. & Singh, P. K. Applicability of wireless sensor networks in precision agriculture: a review. Wirel. Pers. Commun. 107, 471–512 (2019).
Sethi, S. S., Kovac, M., Wiesemüller, F., Miriyev, A. & Boutry, C. M. Biodegradable sensors are ready to transform autonomous ecological monitoring. Nat. Ecol. Evol. 6, 1245–1247 (2022).
Radović, J. R. et al. Post-incident monitoring to evaluate environmental damage from shipping incidents: chemical and biological assessments. J. Environ. Manag. 109, 136–153 (2012).
Gray, W. B. & Shimshack, J. P. The effectiveness of environmental monitoring and enforcement: a review of the empirical evidence. Rev. Environ. Econ. Policy 5, 3–24 (2011).
DeFord, L. & Yoon, J.-Y. Soil microbiome characterization and its future directions with biosensing. J. Biol. Eng. 18, 50 (2024).
Ahmad, W. et al. Toxic and heavy metals contamination assessment in soil and water to evaluate human health risk. Sci. Rep. 11, 17006 (2021).
Alengebawy, A., Abdelkhalek, S. T., Qureshi, S. R. & Wang, M.-Q. Heavy metals and pesticides toxicity in agricultural soil and plants: ecological risks and human health implications. Toxics 9, 42 (2021).
Hu, Q.-H., Weng, J.-Q. & Wang, J.-S. Sources of anthropogenic radionuclides in the environment: a review. J. Environ. Radioact. 101, 426–437 (2010).
Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).
Sousa, J. C. G., Ribeiro, A. R., Barbosa, M. O., Pereira, M. F. R. & Silva, A. M. T. A review on environmental monitoring of water organic pollutants identified by EU guidelines. J. Hazard. Mater. 344, 146–162 (2018).
Sunderland, E. M. et al. A review of the pathways of human exposure to poly- and perfluoroalkyl substances (PFASs) and present understanding of health effects. J. Expo. Sci. Environ. Epidemiol. 29, 131–147 (2019).
Dickman, R. A. & Aga, D. S. A review of recent studies on toxicity, sequestration, and degradation of per- and polyfluoroalkyl substances (PFAS). J. Hazard. Mater. 436, 129120 (2022).
Fenton, S. E. et al. Per- and polyfluoroalkyl substance toxicity and human health review: current state of knowledge and strategies for informing future research. Environ. Toxicol. Chem. 40, 606–630 (2021).
Tang, Y. et al. A review: research progress on microplastic pollutants in aquatic environments. Sci. Total Environ. 766, 142572 (2021).
Sajjad, M. et al. Microplastics in the soil environment: a critical review. Environ. Technol. Innov. 27, 102408 (2022).
Barrett, J. et al. Microplastic pollution in deep-sea sediments from the Great Australian bight. Front. Mar. Sci. 7, 576170 (2020).
Mohamed Nor, N. H., Kooi, M., Diepens, N. J. & Koelmans, A. A. Lifetime accumulation of microplastic in children and adults. Environ. Sci. Technol. 55, 5084–5096 (2021).
Boots, B., Russell, C. W. & Green, D. S. Effects of microplastics in soil ecosystems: above and below ground. Environ. Sci. Technol. 53, 11496–11506 (2019).
Li, Y. et al. Potential health impact of microplastics: a review of environmental distribution, human exposure, and toxic effects. Environ. Health 1, 249–257 (2023).
Badmus, S. O., Amusa, H. K., Oyehan, T. A. & Saleh, T. A. Environmental risks and toxicity of surfactants: overview of analysis, assessment, and remediation techniques. Environ. Sci. Pollut. Res. 28, 62085–62104 (2021).
Lu, Q. et al. Spatial distribution, bioconversion and ecological risk of PCBs and PBDEs in the surface sediment of contaminated urban rivers: a nationwide study in China. Environ. Sci. Technol. 55, 9579–9590 (2021).
Tudi, M. et al. Agriculture development, pesticide application and its impact on the environment. Int. J. Environ. Res. Public Health 18, 1112 (2021).
Wilkinson, J. L. et al. Pharmaceutical pollution of the world’s rivers. Proc. Natl Acad. Sci. USA 119, e2113947119 (2022).
Kolpin, D. W. et al. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999−2000: a national reconnaissance. Environ. Sci. Technol. 36, 1202–1211 (2002).
Tang, F. et al. Pollution characteristics of groundwater in an agricultural hormone-contaminated site and implementation of Fenton oxidation process. Environ. Sci. Pollut. Res. 30, 35670–35682 (2023).
Manyi-Loh, C., Mamphweli, S., Meyer, E. & Okoh, A. Antibiotic use in agriculture and its consequential resistance in environmental sources: potential public health implications. Molecules 23, 795 (2018).
Cycoń, M., Mrozik, A. & Piotrowska-Seget, Z. Antibiotics in the soil environment — degradation and their impact on microbial activity and diversity. Front. Microbiol. 10, 338 (2019).
Delgado-Baquerizo, M. et al. The global distribution and environmental drivers of the soil antibiotic resistome. Microbiome 10, 219 (2022).
Friedman, N. D., Temkin, E. & Carmeli, Y. The negative impact of antibiotic resistance. Clin. Microbiol. Infect. 22, 416–422 (2016).
Schultze, S. R., Campbell, M. N., Walley, S., Pfeiffer, K. & Wilkins, B. Exploration of sub-field microclimates and winter temperatures: implications for precision agriculture. Int. J. Biometeorol. 65, 1043–1052 (2021).
Wahid, A., Gelani, S., Ashraf, M. & Foolad, M. R. Heat tolerance in plants: an overview. Environ. Exp. Bot. 61, 199–223 (2007).
Farooq, M. S., Riaz, S., Abid, A., Umer, T. & Zikria, Y. B. Role of IoT technology in agriculture: a systematic literature review. Electronics 9, 319 (2020).
Imam, S. A., Choudhary, A. & Sachan, V. K. Design issues for wireless sensor networks and smart humidity sensors for precision agriculture: a review. In Int. Conf. Soft Comput. Tech. Implement. 181–187 (IEEE, 2015).
Wang, J. et al. Remote sensing of soil degradation: progress and perspective. Int. Soil Water Conserv. Res. 11, 429–454 (2023).
Kashyap, B. & Kumar, R. Sensing methodologies in agriculture for soil moisture and nutrient monitoring. IEEE Access 9, 14095–14121 (2021).
Atreya, M. et al. A transient printed soil decomposition sensor based on a biopolymer composite conductor. Adv. Sci. 10, 2205785 (2023).
Shah, A. N. et al. Soil compaction effects on soil health and crop productivity: an overview. Environ. Sci. Pollut. Res. 24, 10056–10067 (2017).
Knox, J. E. & Mittelstet, A. R. Application of an ultrasonic sensor to monitor soil erosion and deposition. Trans. ASABE 64, 963–974 (2021).
Soussi, A., Zero, E., Sacile, R., Trinchero, D. & Fossa, M. Smart sensors and smart data for precision agriculture: a review. Sensors 24, 2647 (2024).
Babaeian, E. et al. Ground, proximal, and satellite remote sensing of soil moisture. Rev. Geophys. 57, 530–616 (2019).
Merl, T. et al. Optical chemical sensors for soil analysis: possibilities and challenges of visualising NH3 concentrations as well as pH and O2 microscale heterogeneity. Environ. Sci. Adv. 2, 1210–1219 (2023).
Hossain, M. I. et al. Development of electrochemical sensors for quick detection of environmental (soil and water) NPK ions. RSC Adv. 14, 9137–9158 (2024).
Liu, J., Cai, H., Chen, S., Pi, J. & Zhao, L. A review on soil nitrogen sensing technologies: challenges, progress and perspectives. Agriculture 13, 743 (2023).
Guo, M., Li, J., Sheng, C., Xu, J. & Wu, L. A review of wetland remote sensing. Sensors 17, 777 (2017).
Torresan, C. et al. A new generation of sensors and monitoring tools to support climate-smart forestry practices. Can. J. Res. 51, 1751–1765 (2021).
Llaver, M., Fiorentini, E. F., Oviedo, M. N., Quintas, P. Y. & Wuilloud, R. G. Elemental speciation analysis in environmental studies: latest trends and ecological impact. Int. J. Environ. Res. Public Health 18, 12135 (2021).
Cortés-Bautista, S., Molins-Legua, C. & Campíns-Falcó, P. Miniaturized liquid chromatography in environmental analysis: a review. J. Chromatogr. A 1730, 465101 (2024).
Lebedev, A. T. Environmental mass spectrometry. Annu. Rev. Anal. Chem. 6, 163–189 (2013).
Duan, C. F. et al. Portable instruments for on-site analysis of environmental samples. Trends Anal. Chem. 154, 116653 (2022).
Zhang, C. Fundamentals of Environmental Sampling and Analysis (Wiley, 2024).
Hussain, C. M. & Kecili, R. Modern Environmental Analysis Techniques for Pollutants (Elsevier, 2019).
Bickerdike, E. L. & Willard, H. H. Dimethylglyoxime for determination of nickel in large amounts. Anal. Chem. 24, 1026–1026 (1952).
Patra, S. G., Mandal, N., Datta, A. & Datta, D. On bonding in bis(dimethylglyoximato)nickel(II). Comput. Theor. Chem. 1114, 118–124 (2017).
Yan, X., Li, H. X. & Su, X. G. Review of optical sensors for pesticides. Trends Anal. Chem. 103, 1–20 (2018).
Dey, S. et al. Ultrasensitive colorimetric detection of fluoride and arsenate in water and mammalian cells using recyclable metal oxacalixarene probe: a lateral flow assay. Sci. Rep. 12, 17119 (2022).
Sallam, G., Shaban, S. Y., Nassar, A. & El-Khouly, M. E. Water soluble porphyrin as optical sensor for the toxic heavy metal ions in an aqueous medium. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 241, 118609 (2020).
Fang, X., Zong, B. & Mao, S. Metal–organic framework-based sensors for environmental contaminant sensing. Nanomicro Lett. 10, 64 (2018).
Wang, J. & Zhuang, S. Covalent organic frameworks (COFs) for environmental applications. Coord. Chem. Rev. 400, 213046 (2019).
Goswami, S., Sen, D., Das, N. K. & Hazra, G. Highly selective colorimetric fluorescence sensor for Cu2+: cation-induced ‘switching on’ of fluorescence due to excited state internal charge transfer in the red/near-infrared region of emission spectra. Tetrahedron Lett. 51, 5563–5566 (2010).
Sivaraman, G. et al. Chemically diverse small molecule fluorescent chemosensors for copper ion. Coord. Chem. Rev. 357, 50–104 (2018).
Rasheed, T. et al. Fluorescent sensor based models for the detection of environmentally-related toxic heavy metals. Sci. Total Environ. 615, 476–485 (2018).
Vahab, L. & Keshipour, S. Novel nanosensor of cobalt(II) and copper(II) constructed from graphene quantum dots modified with Eriochrome Black T. Sci. Rep. 12, 13179 (2022).
Chen, Q. et al. Colorimetric and fluorescent sensors for detection of nerve agents and organophosphorus pesticides. Sens. Actuators B Chem. 344, 130278 (2021).
Kumar, V. et al. Recent advances in fluorescent and colorimetric chemosensors for the detection of chemical warfare agents: a legacy of the 21st century. Chem. Soc. Rev. 52, 663–704 (2023).
Li, Z., Askim, J. R. & Suslick, K. S. The optoelectronic nose: colorimetric and fluorometric sensor arrays. Chem. Rev. 119, 231–292 (2019).
Willner, M. R. & Vikesland, P. J. Nanomaterial enabled sensors for environmental contaminants. J. Nanobiotechnol. 16, 95 (2018).
Stiles, P. L., Dieringer, J. A., Shah, N. C. & Van Duyne, R. P. Surface-enhanced Raman spectroscopy. Annu. Rev. Anal. Chem. 1, 601–626 (2008).
Singh, P. SPR biosensors: historical perspectives and current challenges. Sens. Actuators B Chem. 229, 110–130 (2016).
Priyadarshini, E. & Pradhan, N. Gold nanoparticles as efficient sensors in colorimetric detection of toxic metal ions: a review. Sens. Actuators B Chem. 238, 888–902 (2017).
Su, D., Li, H., Yan, X., Lin, Y. & Lu, G. Biosensors based on fluorescence carbon nanomaterials for detection of pesticides. Trends Anal. Chem. 134, 116126 (2021).
Girmatsion, M. et al. Rapid detection of antibiotic residues in animal products using surface-enhanced Raman spectroscopy: a review. Food Control 126, 108019 (2021).
Concellón, A., Castro-Esteban, J. & Swager, T. M. Ultratrace PFAS detection using amplifying fluorescent polymers. J. Am. Chem. Soc. 145, 11420–11430 (2023).
Burtsev, V. et al. Detection of trace amounts of insoluble pharmaceuticals in water by extraction and SERS measurements in a microfluidic flow regime. Analyst 146, 3686–3696 (2021).
Chen, W. H. et al. Application of smartphone-based spectroscopy to biosample analysis: a review. Biosens. Bioelectron. 172, 112788 (2021).
Kummari, S. et al. Trends in paper-based sensing devices for clinical and environmental monitoring. Biosensors 13, 420 (2023).
Kung, C. T., Hou, C. Y., Wang, Y. N. & Fu, L. M. Microfluidic paper-based analytical devices for environmental analysis of soil, air, ecology and river water. Sens. Actuators B Chem. 301, 126855 (2019).
Liu, B., Zhuang, J. & Wei, G. Recent advances in the design of colorimetric sensors for environmental monitoring. Environ. Sci. Nano 7, 2195–2213 (2020).
Chen, Z. et al. Colorimetric detection of heavy metal ions with various chromogenic materials: strategies and applications. J. Hazard. Mater. 441, 129889 (2023).
Chen, Y., Zilberman, Y., Mostafalu, P. & Sonkusale, S. R. Paper based platform for colorimetric sensing of dissolved NH3 and CO2. Biosens. Bioelectron. 67, 477–484 (2015).
Huang, L. J. et al. Portable colorimetric detection of mercury(II) based on a non-noble metal nanozyme with tunable activity. Inorg. Chem. 58, 1638–1646 (2019).
Deng, H. H. et al. Chitosan-stabilized platinum nanoparticles as effective oxidase mimics for colorimetric detection of acid phosphatase. Nanoscale 9, 10292–10300 (2017).
Liu, Q. et al. A facile strategy to prepare porphyrin functionalized ZnS nanoparticles and their peroxidase-like catalytic activity for colorimetric sensor of hydrogen peroxide and glucose. Sens. Actuators B Chem. 251, 339–348 (2017).
Kong, Q., Wang, Y., Zhang, L., Ge, S. & Yu, J. A novel microfluidic paper-based colorimetric sensor based on molecularly imprinted polymer membranes for highly selective and sensitive detection of bisphenol A. Sens. Actuators B Chem. 243, 130–136 (2017).
Singh, R. et al. Nanozyme-based pollutant sensing and environmental treatment: trends, challenges, and perspectives. Sci. Total Environ. 854, 158771 (2023).
Hyder, A. et al. Identification of heavy metal ions from aqueous environment through gold, silver and copper nanoparticles: an excellent colorimetric approach. Environ. Res. 205, 112475 (2022).
Prosposito, P., Burratti, L. & Venditti, I. Silver nanoparticles as colorimetric sensors for water pollutants. Chemosensors 8, 26 (2020).
Mochi, F. et al. Plasmonic sensor based on interaction between silver nanoparticles and Ni2+ or Co2+ in water. Nanomaterials 8, 488 (2018).
Huang, L. J. et al. A colorimetric paper sensor based on the domino reaction of acetylcholinesterase and degradable γ-MnOOH nanozyme for sensitive detection of organophosphorus pesticides. Sens. Actuators B Chem. 290, 573–580 (2019).
Idros, N. & Chu, D. Triple-indicator-based multidimensional colorimetric sensing platform for heavy metal ion detections. ACS Sens. 3, 1756–1764 (2018).
Umapathi, R. et al. Colorimetric based on-site sensing strategies for the rapid detection of pesticides in agricultural foods: new horizons, perspectives, and challenges. Coord. Chem. Rev. 446, 214061 (2021).
Park, D.-H. et al. Smartphone-based VOC sensor using colorimetric polydiacetylenes. ACS Appl. Mater. Interfaces 10, 5014–5021 (2018).
Karimi-Maleh, H., Karimi, F., Alizadeh, M. & Sanati, A. L. Electrochemical sensors, a bright future in the fabrication of portable kits in analytical systems. Chem. Rec. 20, 682–692 (2020).
Sophocleous, M. & Atkinson, J. K. A review of screen-printed silver/silver chloride (Ag/AgCl) reference electrodes potentially suitable for environmental potentiometric sensors. Sens. Actuators A Phys. 267, 106–120 (2017).
Rojas, D., Torricelli, D., Cuartero, M. & Crespo, G. A. 3D-printed transducers for solid contact potentiometric ion sensors: improving reproducibility by fabrication automation. Anal. Chem. 96, 15572–15580 (2024).
Rebelo, P. et al. Molecularly imprinted polymer-based electrochemical sensors for environmental analysis. Biosens. Bioelectron. 172, 112719 (2021).
Guzinski, M. et al. PEDOT(PSS) as solid contact for ion-selective electrodes: the influence of the PEDOT(PSS) film thickness on the equilibration times. Anal. Chem. 89, 3508–3516 (2017).
Shao, Y., Ying, Y. & Ping, J. Recent advances in solid-contact ion-selective electrodes: functional materials, transduction mechanisms, and development trends. Chem. Soc. Rev. 49, 4405–4465 (2020).
Baumbauer, C. L. et al. Printed potentiometric nitrate sensors for use in soil. Sensors 22, 4095 (2022).
Belikova, V. et al. Continuous monitoring of water quality at aeration plant with potentiometric sensor array. Sens. Actuators B Chem. 282, 854–860 (2019).
Baracu, A. M. & Gugoasa, L. A. D. Recent advances in microfabrication, design and applications of amperometric sensors and biosensors. J. Electrochem. Soc. 168, 037503 (2021).
Bard, A. J. & Faulkner, L. R. Fundamentals and applications. Electrochem. Methods 2, 580–632 (2001).
Grieshaber, D., MacKenzie, R., Vörös, J. & Reimhult, E. Electrochemical biosensors — sensor principles and architectures. Sensors 8, 1400–1458 (2008).
Kumunda, C., Adekunle, A. S., Mamba, B. B., Hlongwa, N. W. & Nkambule, T. T. I. Electrochemical detection of environmental pollutants based on graphene derivatives: a review. Front. Mater. 7, 616787 (2021).
Butmee, P. et al. A portable selective electrochemical sensor amplified with Fe3O4@Au-cysteamine–thymine acetic acid as conductive mediator for determination of mercuric ion. Talanta 221, 121669 (2021).
Singh, S. et al. A novel highly efficient and ultrasensitive electrochemical detection of toxic mercury (II) ions in canned tuna fish and tap water based on a copper metal–organic framework. J. Hazard. Mater. 399, 123042 (2020).
Pathak, P. et al. Flexible copper–biopolymer nanocomposite sensors for trace level lead detection in water. Sens. Actuators B Chem. 344, 130263 (2021).
Hu, R., Zhang, X., Chi, K. N., Yang, T. & Yang, Y. H. Bifunctional MOFs-based ratiometric electrochemical sensor for multiplex heavy metal ions. ACS Appl. Mater. Interfaces 12, 30770–30778 (2020).
Lu, Y., Li, X., Li, D. & Compton, R. G. Amperometric environmental phosphate sensors. ACS Sens. 6, 3284–3294 (2021).
Pérez-Fernández, B. et al. Direct competitive immunosensor for imidacloprid pesticide detection on gold nanoparticle-modified electrodes. Talanta 209, 120465 (2020).
Song, D. et al. Metal−organic frameworks-derived MnO2/Mn3O4 microcuboids with hierarchically ordered nanosheets and Ti3C2 MXene/Au NPs composites for electrochemical pesticide detection. J. Hazard. Mater. 373, 367–376 (2019).
Motoc, S., Manea, F., Baciu, A., Vasilie, S. & Pop, A. Highly sensitive and simultaneous electrochemical determinations of non-steroidal anti-inflammatory drugs in water using nanostructured carbon-based paste electrodes. Sci. Total Environ. 846, 157412 (2022).
Li, X. et al. Emerging applications of nanozymes in environmental analysis: opportunities and trends. Trends Anal. Chem. 120, 115653 (2019).
Rebollar-Pérez, G., Campos-Terán, J., Ornelas-Soto, N., Méndez-Albores, A. & Torres, E. Biosensors based on oxidative enzymes for detection of environmental pollutants. Biocatalysis 1, 118–129 (2016).
Hara, T. O. & Singh, B. Electrochemical biosensors for detection of pesticides and heavy metal toxicants in water: recent trends and progress. ACS ES T Water 1, 462–478 (2021).
Khan, S. et al. DNAzyme-based biosensors: immobilization strategies, applications, and future prospective. ACS Nano 15, 13943–13969 (2021).
Rengaraj, S., Cruz-Izquierdo, Á., Scott, J. L. & Di Lorenzo, M. Impedimetric paper-based biosensor for the detection of bacterial contamination in water. Sens. Actuators B Chem. 265, 50–58 (2018).
Zhou, N. et al. Construction of Ce-MOF@COF hybrid nanostructure: label-free aptasensor for the ultrasensitive detection of oxytetracycline residues in aqueous solution environments. Biosens. Bioelectron. 127, 92–100 (2019).
Oloketuyi, S. et al. Electrochemical immunosensor functionalized with nanobodies for the detection of the toxic microalgae Alexandrium minutum using glassy carbon electrode modified with gold nanoparticles. Biosens. Bioelectron. 154, 112052 (2020).
Abdelrasoul, G. N. et al. DNA aptamer-based non-faradaic impedance biosensor for detecting E. coli. Anal. Chim. Acta 1107, 135–144 (2020).
Zouaoui, F. et al. Electrochemical impedance spectroscopy determination of glyphosate using a molecularly imprinted chitosan. Sens. Actuators B Chem. 309, 127753 (2020).
Magar, H. S., Hassan, R. Y. A. & Mulchandani, A. Electrochemical impedance spectroscopy (EIS): principles, construction, and biosensing applications. Sensors 21, 6578 (2021).
Cheng, Y. H. et al. Metal–organic framework-based microfluidic impedance sensor platform for ultrasensitive detection of perfluorooctanesulfonate. ACS Appl. Mater. Interfaces 12, 10503–10514 (2020).
Du, H., Chen, G. & Wang, J. Highly selective electrochemical impedance spectroscopy-based graphene electrode for rapid detection of microplastics. Sci. Total Environ. 862, 160873 (2023).
Zamfir, L.-G., Puiu, M. & Bala, C. Advances in electrochemical impedance spectroscopy detection of endocrine disruptors. Sensors 20, 6443 (2020).
Li, X., Huang, Y., Chen, M., Tong, Y. & Zhang, C. A label-free electrochemical bisphenol A immunosensor based on chlorogenic acid as a redox probe. Anal. Methods 9, 2183–2188 (2017).
Singh, A. C., Bacher, G. & Bhand, S. A label free immunosensor for ultrasensitive detection of 17β-estradiol in water. Electrochim. Acta 232, 30–37 (2017).
Radi, A.-E., Eissa, A. & Wahdan, T. Molecularly imprinted impedimetric sensor for determination of mycotoxin zearalenone. Electroanalysis 32, 1788–1794 (2020).
Karimzadeh, A., Hasanzadeh, M., Shadjou, N. & de la Guardia, M.Peptide based biosensors. Trends Anal. Chem. 107, 1–20 (2018).
Yin, W. -J et al. A highly sensitive electrochemical immunosensor based on electrospun nanocomposite for the detection of parathion. Food Chem. 404, 134371 (2023).
El-Moghazy, A. Y. et al. An innovative nanobody-based electrochemical immunosensor using decorated nylon nanofibers for point-of-care monitoring of human exposure to pyrethroid insecticides. ACS Appl. Mater. Interfaces 12, 6159–6168 (2020).
Abu-Ali, H., Nabok, A. & Smith, T. J. Development of novel and highly specific ssDNA-aptamer-based electrochemical biosensor for rapid detection of mercury (II) and lead (II) ions in water. Chemosensors 7, 27 (2019).
Cheng, C. et al. Bisphenol A sensors on polyimide fabricated by laser direct writing for onsite river water monitoring at attomolar concentration. ACS Appl. Mater. Interfaces 8, 17784–17792 (2016).
Lu, Q. et al. Selection of aptamers specific for DEHP based on ssDNA library immobilized SELEX and development of electrochemical impedance spectroscopy aptasensor. Molecules 25, 747 (2020).
Li, Y. et al. A robust electrochemical sensing of molecularly imprinted polymer prepared by using bifunctional monomer and its application in detection of cypermethrin. Biosens. Bioelectron. 127, 207–214 (2019).
Zamora-Gálvez, A. et al. Molecularly imprinted polymer-decorated magnetite nanoparticles for selective sulfonamide detection. Anal. Chem. 88, 3578–3584 (2016).
Zamora-Gálvez, A., Mayorga-Matinez, C. C., Parolo, C., Pons, J. & Merkoçi, A. Magnetic nanoparticle-molecular imprinted polymer: a new impedimetric sensor for tributyltin detection. Electrochem. Commun. 82, 6–11 (2017).
Hanssen, B. L., Siraj, S. & Wong, D. K. Y. Recent strategies to minimise fouling in electrochemical detection systems. Rev. Anal. Chem. 35, 1–28 (2016).
Saha, A. et al. A new paradigm of reliable sensing with field-deployed electrochemical sensors integrating data redundancy and source credibility. Sci. Rep. 13, 3101 (2023).
Saha, A., Mi, Y., Glassmaker, N., Shakouri, A. & Alam, M. A. In situ drift monitoring and calibration of field-deployed potentiometric sensors using temperature supervision. ACS Sens. 8, 2799–2808 (2023).
Malings, C. et al. Fine particle mass monitoring with low-cost sensors: corrections and long-term performance evaluation. Aerosol Sci. Technol. 54, 160–174 (2020).
Bulot, F. M. J. et al. Long-term field comparison of multiple low-cost particulate matter sensors in an outdoor urban environment. Sci. Rep. 9, 7497 (2019).
Singh, N., Elsayed, M. Y. & El-Gamal, M. N. Towards the world’s smallest gravimetric particulate matter sensor: a miniaturized virtual impactor with a folded design. Sensors 22, 1727 (2022).
Carminati, M. et al. Capacitive detection of micrometric airborne particulate matter for solid-state personal air quality monitors. Sens. Actuators A Phys. 219, 80–87 (2014).
Ciccarella, P., Carminati, M., Sampietro, M. & Ferrari, G. Multichannel 65 zF rms resolution CMOS monolithic capacitive sensor for counting single micrometer-sized airborne particles on chip. IEEE J. Solid State Circuits 51, 2545–2553 (2016).
Yin, R. et al. Flexible conductive Ag nanowire/cellulose nanofibril hybrid nanopaper for strain and temperature sensing applications. Sci. Bull. 65, 899–908 (2020).
Salvatore, G. A. et al. Biodegradable and highly deformable temperature sensors for the internet of things. Adv. Funct. Mater. 27, 1702390 (2017).
Park, S. Y. et al. Chemoresistive materials for electronic nose: progress, perspectives, and challenges. InfoMat 1, 289–316 (2019).
Mazumder, J. T., Jha, R. K., Kim, H. W. & Kim, S. S. Capacitive toxic gas sensors based on oxide composites: a review. IEEE Sens. J. 23, 17842–17853 (2023).
Peng, X., Wu, X., Zhang, M. & Yuan, H. Metal–organic framework coated devices for gas sensing. ACS Sens. 8, 2471–2492 (2023).
Wawrzynek, E., Baumbauer, C. & Arias, A. C. Characterization and comparison of biodegradable printed capacitive humidity sensors. Sensors 21, 6557 (2021).
Rathore, P. et al. Real-time urban microclimate analysis using internet of things. IEEE Internet Things J. 5, 500–511 (2017).
Dargie, W. et al. Monitoring toxic gases using nanotechnology and wireless sensor networks. IEEE Sens. J. 23, 12274–12283 (2023).
Wang, Z., Xu, J., He, X. & Wang, Y. Analysis of spatiotemporal influence patterns of toxic gas monitoring concentrations in an urban drainage network based on IoT and GIS. Pattern Recognit. Lett. 138, 237–246 (2020).
Cui, Y., Lai, B. & Tang, X. Microbial fuel cell-based biosensors. Biosensors 9, 92 (2019).
Sonawane, J. M., Ezugwu, C. I. & Ghosh, P. C. Microbial fuel cell-based biological oxygen demand sensors for monitoring wastewater: state-of-the-art and practical applications. ACS Sens. 5, 2297–2316 (2020).
Burge, S. R. et al. Microbial potentiometric sensor array measurements in unsaturated soils. Sci. Total Environ. 751, 142342 (2021).
ElMekawy, A., Hegab, H. M., Pant, D. & Saint, C. P. Bio-analytical applications of microbial fuel cell-based biosensors for onsite water quality monitoring. J. Appl. Microbiol. 124, 302–313 (2018).
Simoska, O. et al. Recent trends and advances in microbial electrochemical sensing technologies: an overview. Curr. Opin. Electrochem. 30, 100762 (2021).
Adão, T. et al. Hyperspectral imaging: a review on UAV-based sensors, data processing and applications for agriculture and forestry. Remote Sens. 9, 1110 (2017).
Pajares, G. Overview and current status of remote sensing applications based on unmanned aerial vehicles (UAVs). Photogramm. Eng. Remote Sensing 81, 281–329 (2015).
Ayaz, M., Ammad-Uddin, M., Sharif, Z., Mansour, A. & Aggoune, E. H. M. Internet-of-things (IoT)-based smart agriculture: toward making the fields talk. IEEE Access 7, 129551–129583 (2019).
Yuan, C., Zhang, Y. & Liu, Z. A survey on technologies for automatic forest fire monitoring, detection, and fighting using unmanned aerial vehicles and remote sensing techniques. Can. J. Res. 45, 783–792 (2015).
Burgués, J. & Marco, S. Environmental chemical sensing using small drones: a review. Sci. Total Environ. 748, 141172 (2020).
Burgués, J., Hernández, V., Lilienthal, A. J. & Marco, S. Smelling nano aerial vehicle for gas source localization and mapping. Sensors 19, 478 (2019).
Tackenberg, O., Poschlod, P. & Kahmen, S. Dandelion seed dispersal: the horizontal wind speed does not matter for long-distance dispersal - it is updraft! Plant Biol. 5, 451–454 (2003).
Greene, D. F. The role of abscission in long-distance seed dispersal by the wind. Ecology 86, 3105–3110 (2005).
Mazzolai, B. et al. Morphological computation in plant seeds for a new generation of self-burial and flying soft robots. Front. Robot. AI 8, 797556 (2021).
Lentink, D., Dickson, W. B., Van Leeuwen, J. L. & Dickinson, M. H. Leading-edge vortices elevate lift of autorotating plant seeds. Science 324, 1438–1440 (2009).
Cummins, C. et al. A separated vortex ring underlies the flight of the dandelion. Nature 562, 414–418 (2018).
Kim, B. H. et al. Three-dimensional electronic microfliers inspired by wind-dispersed seeds. Nature 597, 503–510 (2021).
Xu, S. et al. Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling. Science 347, 154–159 (2015).
Zhang, Y. et al. Printing, folding and assembly methods for forming 3D mesostructures in advanced materials. Nat. Rev. Mater. 2, 17019 (2017).
Yoon, H. J. et al. Biodegradable, three-dimensional colorimetric fliers for environmental monitoring. Sci. Adv. 8, eade3201 (2022).
Yang, W. et al. Bio-inspired propeller robot with controllable pitch driven by magnetic and optical coupling field. Sens. Actuators B Chem. 382, 133509 (2023).
Win, S. K. H., Win, L. S. T., Sufiyan, D., Soh, G. S. & Foong, S. An Agile Samara-inspired single-actuator aerial robot capable of autorotation and diving. IEEE Trans. Robot. 38, 1033–1046 (2022).
Win, S. K. H., Lim, K., Suhadi, B. L., Sufiyan, D. & Foong, S. Aerial deployment of novel gravity-assisted ground penetrating sensors using nature-inspired platform. In IEEE/ASME Int. Conf. Adv. Intell. Mechatron. 669–674 (IEEE, 2023).
Wang, D. et al. Bioinspired rotary flight of light-driven composite films. Nat. Commun. 14, 5070 (2023).
Wiesemüller, F. et al. Transient bio-inspired gliders with embodied humidity responsive actuators for environmental sensing. Front. Robot. AI 9, 1011793 (2022).
Cikalleshi, K. et al. A printed luminescent flier inspired by plant seeds for eco-friendly physical sensing. Sci. Adv. 9, eadi8492 (2023).
Cikalleshi, K., Mariani, S. & Mazzolai, B. A 3D-printed biomimetic porous cellulose-based artificial seed with photonic cellulose nanocrystals for colorimetric humidity sensing. In Biomimetic and Biohybrid Systems (eds Meder, F. et al.) 117–129 (Springer, 2023).
Chu, F. et al. Superhydrophobic strategy for nature-inspired rotating microfliers: enhancing spreading, reducing contact time, and weakening impact force of raindrops. ACS Appl. Mater. Interfaces 14, 57340–57349 (2022).
Yang, J., Shankar, M. R. & Zeng, H. Photochemically responsive polymer films enable tunable gliding flights. Nat. Commun. 15, 4684 (2024).
Iyer, V., Gaensbauer, H., Daniel, T. L. & Gollakota, S. Wind dispersal of battery-free wireless devices. Nature 603, 427–433 (2022).
Yang, J., Zhang, H., Berdin, A., Hu, W. & Zeng, H. Dandelion-inspired, wind-dispersed polymer-assembly controlled by light. Adv. Sci. 10, e2206752 (2023).
Yan, W. et al. Self-sensing dandelion-inspired flying soft actuator with multi-stimuli response. Adv. Mater. Technol. 9, 2400952 (2024).
Chen, Y. et al. Light-driven dandelion-inspired microfliers. Nat. Commun. 14, 3036 (2023).
Johnson, K. et al. Solar-powered shape-changing origami microfliers. Sci. Robot. 8, eadg4276 (2023).
Singh, R., Gupta, R., Bansal, D., Bhateria, R. & Sharma, M. A review on recent trends and future developments in electrochemical sensing. ACS Omega 9, 7336–7356 (2024).
Kim, J. T. et al. Functional bio-inspired hybrid fliers with separated ring and leading edge vortices. PNAS Nexus 3, pgae110 (2024).
Meng, Q. et al. Hydroactuated configuration alteration of fibrous dandelion Pappi: toward self-controllable transport behavior. Adv. Funct. Mater. 26, 7378–7385 (2016).
Luo, D. et al. Autonomous self-burying seed carriers for aerial seeding. Nature 614, 463–470 (2023).
Shen, W. et al. Sunlight-powered sustained flight of an ultralight micro aerial vehicle. Nature 631, 537–543 (2024).
Jafferis, N. T., Helbling, E. F., Karpelson, M. & Wood, R. J. Untethered flight of an insect-sized flapping-wing microscale aerial vehicle. Nature 570, 491–495 (2019).
Iyer, V., Najafi, A., James, J., Fuller, S. & Gollakota, S. Wireless steerable vision for live insects and insect-scale robots. Sci. Robot. 5, eabb0839 (2020).
Shaikh, S. F. et al. Noninvasive featherlight wearable compliant ‘Marine Skin’: standalone multisensory system for deep-sea environmental monitoring. Small 15, 1804385 (2019).
Nassar, J. M. et al. Compliant lightweight non-invasive standalone ‘Marine Skin’ tagging system. npj Flex. Electron. 2, 13 (2018).
Aubin, C. A. et al. Powerful, soft combustion actuators for insect-scale robots. Science 381, 1212–1217 (2023).
Hu, W., Lum, G. Z., Mastrangeli, M. & Sitti, M. Small-scale soft-bodied robot with multimodal locomotion. Nature 554, 81–85 (2018).
Wu, Y., Dong, X., Kim, J. K., Wang, C. & Sitti, M. Wireless soft millirobots for climbing three-dimensional surfaces in confined spaces. Sci. Adv. 8, eabn3431 (2022).
Cheng, K. et al. The role of soils in regulation of freshwater and coastal water quality. Phil. Trans. R. Soc. B 376, 20200176 (2021).
Arias-Estévez, M. et al. The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agric. Ecosyst. Environ. 123, 247–260 (2008).
Pan, M. & Chu, L. M. Occurrence of antibiotics and antibiotic resistance genes in soils from wastewater irrigation areas in the Pearl river delta region, southern China. Sci. Total Environ. 624, 145–152 (2018).
European Commission, Directorate-General for Environment. Commission Decision (EU) 2017/848 of 17 May 2017 Laying Down Criteria and Methodological Standards on Good Environmental Status of Marine Waters and Specifications and Standardised Methods for Monitoring and Assessment, and Repealing Decision 2010/477/EU (Publications Office of the European Union, 2017).
Jones, D. O. B., Gates, A. R., Huvenne, V. A. I., Phillips, A. B. & Bett, B. J. Autonomous marine environmental monitoring: application in decommissioned oil fields. Sci. Total Environ. 668, 835–853 (2019).
Liu, Z., Zhang, Y., Yu, X. & Yuan, C. Unmanned surface vehicles: an overview of developments and challenges. Annu. Rev. Control 41, 71–93 (2016).
Rudnick, D. L. Ocean research enabled by underwater gliders. Annu. Rev. Mar. Sci. 8, 519–541 (2016).
Aracri, S. et al. Soft robots for ocean exploration and offshore operations: a perspective. Soft Robot. 8, 625–639 (2021).
Gabl, R. et al. Hydrodynamic loads on a restrained ROV under waves and current. Ocean Eng. 234, 109279 (2021).
Qu, J. et al. Recent advances on underwater soft robots. Adv. Intell. Syst. 6, 2300299 (2024).
Li, G. et al. Self-powered soft robot in the Mariana Trench. Nature 591, 66–71 (2021).
Justus, K. B. et al. A biosensing soft robot: autonomous parsing of chemical signals through integrated organic and inorganic interfaces. Sci. Robot. 4, eaax0765 (2019).
Carrico, J. D., Hermans, T., Kim, K. J. & Leang, K. K. 3D-printing and machine learning control of soft ionic polymer–metal composite actuators. Sci. Rep. 9, 17482 (2019).
Palagi, S. et al. Structured light enables biomimetic swimming and versatile locomotion of photoresponsive soft microrobots. Nat. Mater. 15, 647–653 (2016).
Chen, T., Bilal, O. R., Shea, K. & Daraio, C. Harnessing bistability for directional propulsion of soft, untethered robots. Proc. Natl Acad. Sci. USA 115, 5698–5702 (2018).
Ren, Z., Hu, W., Dong, X. & Sitti, M. Multi-functional soft-bodied jellyfish-like swimming. Nat. Commun. 10, 2703 (2019).
Park, S.-J. et al. Phototactic guidance of a tissue-engineered soft-robotic ray. Science 353, 158–162 (2016).
Rumley, E. H. et al. Biodegradable electrohydraulic actuators for sustainable soft robots. Sci. Adv. 9, eadf5551 (2023).
Wang, T. et al. A versatile jellyfish-like robotic platform for effective underwater propulsion and manipulation. Sci. Adv. 9, eadg0292 (2023).
Na, H. et al. Hydrogel-based strong and fast actuators by electroosmotic turgor pressure. Science 376, 301–307 (2022).
Wehner, M. et al. An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 536, 451–455 (2016).
Katzschmann, R. K., DelPreto, J., MacCurdy, R. & Rus, D. Exploration of underwater life with an acoustically controlled soft robotic fish. Sci. Robot. 3, eaar3449 (2018).
Aubin, C. A. et al. Electrolytic vascular systems for energy-dense robots. Nature 571, 51–57 (2019).
Zufferey, R. et al. Consecutive aquatic jump-gliding with water-reactive fuel. Sci. Robot. 4, eaax7330 (2019).
Dai, M., Tu, C., Du, P., Bao, F. & Lin, J. Spontaneous rising of a whirling-swimmer driven by a bubble. Langmuir 39, 10638–10650 (2023).
Xiao, T. X. et al. Spherical triboelectric nanogenerators based on spring-assisted multilayered structure for efficient water wave energy harvesting. Adv. Funct. Mater. 28, 1802634 (2018).
Pan, L. et al. Liquid-FEP-based U-tube triboelectric nanogenerator for harvesting water-wave energy. Nano Res. 11, 4062–4073 (2018).
Liang, X. et al. Spherical triboelectric nanogenerator integrated with power management module for harvesting multidirectional water wave energy. Energy Environ. Sci. 13, 277–285 (2020).
Zheng, X., Kamat, A. M., Krushynska, A. O., Cao, M. & Kottapalli, A. G. P. 3D printed graphene piezoresistive microelectromechanical system sensors to explain the ultrasensitive wake tracking of wavy seal whiskers. Adv. Funct. Mater. 32, 2207274 (2022).
Kandris, D., Nakas, C., Vomvas, D. & Koulouras, G. Applications of wireless sensor networks: an up-to-date survey. Appl. Syst. Innov. 3, 14 (2020).
Jawad, H. M., Nordin, R., Gharghan, S. K., Jawad, A. M. & Ismail, M. Energy-efficient wireless sensor networks for precision agriculture: a review. Sensors 17, 1781 (2017).
Sinha, B. B. & Dhanalakshmi, R. Recent advancements and challenges of internet of things in smart agriculture: a survey. Future Gener. Comput. Syst. 126, 169–184 (2022).
Awan, K. M. et al. Underwater wireless sensor networks: a review of recent issues and challenges. Wirel. Commun. Mob. Comput. 2019, 6470359 (2019).
Wang, C., Zhang, B., Li, Y. & Zhao, X. Suspended graphene hydroacoustic sensor for broadband underwater wireless communications. IEEE Wirel. Commun. 27, 44–52 (2020).
Schirripa Spagnolo, G., Cozzella, L. & Leccese, F. Underwater optical wireless communications: overview. Sensors 20, 2261 (2020).
Lloret, J., Sendra, S., Ardid, M. & Rodrigues, J. J. P. C. Underwater wireless sensor communications in the 2.4 GHz ISM frequency band. Sensors 12, 4237–4264 (2012).
Che, X., Wells, I., Dickers, G., Kear, P. & Gong, X. Re-evaluation of RF electromagnetic communication in underwater sensor networks. IEEE Commun. Mag. 48, 143–151 (2010).
Yang, T. et al. A soft artificial muscle driven robot with reinforcement learning. Sci. Rep. 8, 14518 (2018).
Fascista, A. Toward integrated large-scale environmental monitoring using WSN/UAV/crowdsensing: a review of applications, signal processing, and future perspectives. Sensors 22, 1824 (2022).
Sanislav, T., Mois, G. D., Zeadally, S. & Folea, S. C. Energy harvesting techniques for internet of things (IoT). IEEE Access 9, 39530–39549 (2021).
Pecunia, V., Occhipinti, L. G. & Hoye, R. L. Z. Emerging indoor photovoltaic technologies for sustainable internet of things. Adv. Energy Mater. 11, 2100698 (2021).
Nguyen, H.-U.-D., Nguyen, D.-T. & Taguchi, K. A portable soil microbial fuel cell for sensing soil water content. Measur. Sens. 18, 100231 (2021).
Lin, F. T. et al. A self-powering wireless environment monitoring system using soil energy. IEEE Sens. J. 15, 3751–3758 (2015).
Liu, L., Lu, Y., Zhong, W., Meng, L. & Deng, H. On-line monitoring of repeated copper pollutions using sediment microbial fuel cell based sensors in the field environment. Sci. Total Environ. 748, 141544 (2020).
Pappinisseri Puluckul, P. & Weyn, M. Battery-less environment sensor using thermoelectric energy harvesting from soil-ambient air temperature differences. Sensors 22, 4737 (2022).
Paterova, T. et al. Environment-monitoring IoT devices powered by a TEG which converts thermal flux between air and near-surface soil into electrical energy. Sensors 21, 8098 (2021).
Li, Z. et al. Towards self-powered technique in underwater robots via a high-efficiency electromagnetic transducer with circularly abrupt magnetic flux density change. Appl. Energy 302, 117569 (2021).
Zou, H.-X. et al. A magnetically coupled bistable piezoelectric harvester for underwater energy harvesting. Energy 217, 119429 (2021).
Vinh, N. D. & Kim, H.-M. Ocean-based electricity generating system utilizing the electrochemical conversion of wave energy by ionic polymer–metal composites. Electrochem. Commun. 75, 64–68 (2017).
Wang, Y. et al. Flexible seaweed-like triboelectric nanogenerator as a wave energy harvester powering marine internet of things. ACS Nano 15, 15700–15709 (2021).
Zhao, T. et al. Recent progress in blue energy harvesting for powering distributed sensors in ocean. Nano Energy 88, 106199 (2021).
Moretti, G. et al. Modelling and field testing of a breakwater-integrated U-OWC wave energy converter with dielectric elastomer generator. Renew. Energy 146, 628–642 (2020).
Wang, Y. et al. A rolling-mode triboelectric nanogenerator with multi-tunnel grating electrodes and opposite-charge-enhancement for wave energy harvesting. Nat. Commun. 15, 6834 (2024).
Jung, H., Ouro-Koura, H., Salalila, A., Salalila, M. & Deng, Z. D. Frequency-multiplied cylindrical triboelectric nanogenerator for harvesting low frequency wave energy to power ocean observation system. Nano Energy 99, 107365 (2022).
Zhao, L.-C. et al. Mechanical intelligent wave energy harvesting and self-powered marine environment monitoring. Nano Energy 108, 108222 (2023).
Feng, Y., Liang, X., An, J., Jiang, T. & Wang, Z. L. Soft-contact cylindrical triboelectric–electromagnetic hybrid nanogenerator based on swing structure for ultra-low frequency water wave energy harvesting. Nano Energy 81, 105625 (2021).
Wang, Q. et al. A synergetic hybrid mechanism of piezoelectric and triboelectric for galloping wind energy harvesting. Appl. Phys. Lett. 117, 043902 (2020).
Zhang, Y. et al. Advances in bioresorbable materials and electronics. Chem. Rev. 123, 11722–11773 (2023).
Choi, Y., Koo, J. & Rogers, J. A. Inorganic materials for transient electronics in biomedical applications. MRS Bull. 45, 103–112 (2020).
Lee, Y. K. et al. Dissolution of monocrystalline silicon nanomembranes and their use as encapsulation layers and electrical interfaces in water-soluble electronics. ACS Nano 11, 12562–12572 (2017).
Lee, Y. K. et al. Kinetics and chemistry of hydrolysis of ultrathin, thermally grown layers of silicon oxide as biofluid barriers in flexible electronic systems. ACS Appl. Mater. Interfaces 9, 42633–42638 (2017).
Kang, S.-K. et al. Dissolution behaviors and applications of silicon oxides and nitrides in transient electronics. Adv. Funct. Mater. 24, 4427–4434 (2014).
Hwang, S.-W. et al. A physically transient form of silicon electronics. Science 337, 1640–1644 (2012).
Lang, A. W., Österholm, A. M. & Reynolds, J. R. Paper-based electrochromic devices enabled by nanocellulose-coated substrates. Adv. Funct. Mater. 29, 1903487 (2019).
Li, A. et al. High-performance, breathable, and degradable fully cellulose-based sensor for multifunctional human activity monitoring. Chem. Eng. J. 505, 159564 (2025).
Wen, D.-L. et al. Recent progress in silk fibroin-based flexible electronics. Microsyst. Nanoeng. 7, 35 (2021).
Atreya, M. et al. Wax blends as tunable encapsulants for soil-degradable electronics. ACS Appl. Electron. Mater. 4, 4912–4920 (2022).
Li, W. et al. Biodegradable materials and green processing for green electronics. Adv. Mater. 32, 2001591 (2020).
Camus, A. et al. Electrical response and biodegradation of sepia melanin-shellac films printed on paper. Commun. Mater. 5, 173 (2024).
Wang, L. L. et al. Biocompatible and biodegradable functional polysaccharides for flexible humidity sensors. Research 2020, 8716847 (2020).
Miao, J. L., Liu, H. H., Li, Y. B. & Zhang, X. X. Biodegradable transparent substrate based on edible starch-chitosan embedded with nature-inspired three-dimensionally interconnected conductive nanocomposites for wearable green electronics. ACS Appl. Mater. Interfaces 10, 23037–23047 (2018).
Ilyas, R. A. et al. Natural fiber-reinforced polylactic acid, polylactic acid blends and their composites for advanced applications. Polymers 14, 202 (2022).
Huang, Y. et al. Implantable electronic medicine enabled by bioresorbable microneedles for wireless electrotherapy and drug delivery. Nano Lett. 22, 5944–5953 (2022).
Lee, J., Park, S. & Choi, Y. Organic encapsulants for bioresorbable medical electronics. MRS Bull. 49, 247–255 (2024).
Kim, H. et al. Bioresorbable, miniaturized porous silicon needles on a flexible water-soluble backing for unobtrusive, sustained delivery of chemotherapy. ACS Nano 14, 7227–7236 (2020).
Mndlovu, H., Kumar, P., du Toit, L. C. & Choonara, Y. E. A review of biomaterial degradation assessment approaches employed in the biomedical field. npj Mater. Degrad. 8, 66 (2024).
Choi, Y. S. et al. Biodegradable polyanhydrides as encapsulation layers for transient electronics. Adv. Funct. Mater. 30, 2000941 (2020).
McDonald, S. M. et al. Resorbable barrier polymers for flexible bioelectronics. Nat. Commun. 14, 7299 (2023).
Ko, G.-J. et al. Materials and designs for extremely efficient encapsulation of soft, biodegradable electronics. Adv. Funct. Mater. 34, 2403427 (2024).
Han, W. B. et al. Micropatterned elastomeric composites for encapsulation of transient electronics. ACS Nano 17, 14822–14830 (2023).
Park, C. W. et al. Thermally triggered degradation of transient electronic devices. Adv. Mater. 27, 3783–3788 (2015).
Istif, E., Ali, M., Ozuaciksoz, E. Y., Morova, Y. & Beker, L. Near-infrared triggered degradation for transient electronics. ACS Omega 9, 2528–2535 (2024).
Zhong, S., Ji, X., Song, L., Zhang, Y. & Zhao, R. Enabling transient electronics with degradation on demand via light-responsive encapsulation of a hydrogel–oxide bilayer. ACS Appl. Mater. Interfaces 10, 36171–36176 (2018).
Son, D. et al. Bioresorbable electronic stent integrated with therapeutic nanoparticles for endovascular diseases. ACS Nano 9, 5937–5946 (2015).
Bai, W. et al. Bioresorbable photonic devices for the spectroscopic characterization of physiological status and neural activity. Nat. Biomed. Eng. 3, 644–654 (2019).
Yin, L. et al. Dissolvable metals for transient electronics. Adv. Funct. Mater. 24, 645–658 (2014).
Gu, J.-W. et al. Corrosion characteristics of single-phase Mg–3Zn alloy thin film for biodegradable electronics. J. Magnes. Alloy. 11, 3241–3254 (2023).
Lee, S. et al. Metal microparticle–polymer composites as printable, bio/ecoresorbable conductive inks. Mater. Today 21, 207–215 (2018).
Kang, S.-K. et al. Biodegradable thin metal foils and spin-on glass materials for transient electronics. Adv. Funct. Mater. 25, 1789–1797 (2015).
Wu, Y. et al. A sewing approach to the fabrication of eco/bioresorbable electronics. Small 19, 2305017 (2023).
Zhao, H. et al. Biodegradable germanium electronics for integrated biosensing of physiological signals. npj Flex. Electron. 6, 63 (2022).
Song, F. et al. ZnO-based physically transient and bioresorbable memory on silk protein. IEEE Electron. Device Lett. 39, 31–34 (2018).
Sundaram, J. et al. Fabrication and microstructural characterization of MgO composites for biomedical applications using the bottom pour stir casting process. Mater. Today. Proc. 72, 2289–2293 (2023).
Vidakis, N. et al. Polylactic acid/silicon nitride biodegradable and biomedical nanocomposites with optimized rheological and thermomechanical response for material extrusion additive manufacturing. Biomed. Eng. Adv. 6, 100103 (2023).
Alahmad, W., Cetinkaya, A., Kaya, S. I., Varanusupakul, P. & Ozkan, S. A. Electrochemical paper-based analytical devices for environmental analysis: current trends and perspectives. Trends Environ. Anal. Chem. 40, e00220 (2023).
Patel, S. et al. Recent development in nanomaterials fabricated paper-based colorimetric and fluorescent sensors: a review. Trends Environ. Anal. Chem. 31, e00136 (2021).
Xiang, H. et al. Green flexible electronics based on starch. npj Flex. Electron. 6, 15 (2022).
Miao, J., Liu, H., Li, Y. & Zhang, X. Biodegradable transparent substrate based on edible starch–chitosan embedded with nature-inspired three-dimensionally interconnected conductive nanocomposites for wearable green electronics. ACS Appl. Mater. Interfaces 10, 23037–23047 (2018).
Cheng, H. et al. Starch-based biodegradable packaging materials: a review of their preparation, characterization and diverse applications in the food industry. Trends Food Sci. Technol. 114, 70–82 (2021).
Ahamed, A. et al. Environmental footprint of voltammetric sensors based on screen-printed electrodes: an assessment towards ‘green’ sensor manufacturing. Chemosphere 278, 130462 (2021).
Vyas, R. et al. Inkjet printed, self powered, wireless sensors for environmental, gas, and authentication-based sensing. IEEE Sens. J. 11, 3139–3152 (2011).
Ju, K. et al. Laser direct writing of carbonaceous sensors on cardboard for human health and indoor environment monitoring. RSC Adv. 10, 18694–18703 (2020).
Jadoun, S., Riaz, U. & Budhiraja, V. Biodegradable conducting polymeric materials for biomedical applications: a review. Med. Devices Sens. 4, e10141 (2021).
Hwang, S.-W. et al. Biodegradable elastomers and silicon nanomembranes/nanoribbons for stretchable, transient electronics, and biosensors. Nano Lett. 15, 2801–2808 (2015).
Aeby, X. et al. Printed humidity sensors from renewable and biodegradable materials. Adv. Mater. Technol. 8, 2201302 (2023).
Ko, G.-J. et al. Biodegradable, flexible silicon nanomembrane-based NOx gas sensor system with record-high performance for transient environmental monitors and medical implants. NPG Asia Mater. 12, 71 (2020).
Gopalakrishnan, S. et al. A biodegradable chipless sensor for wireless subsoil health monitoring. Sci. Rep. 12, 8011 (2022).
Nguyen, T. P. et al. Polypeptide organic radical batteries. Nature 593, 61–66 (2021).
Huang, X. et al. Fully biodegradable and long-term operational primary zinc batteries as power sources for electronic medicine. ACS Nano 17, 5727–5739 (2023).
Huang, I. et al. High performance dual-electrolyte magnesium–iodine batteries that can harmlessly resorb in the environment or in the body. Energy Environ. Sci. 15, 4095–4108 (2022).
Shao, M. et al. High-performance biodegradable energy storage devices enabled by heterostructured MoO3–MoS2 composites. Small 19, 2205529 (2023).
Tian, W. et al. Implantable and biodegradable micro-supercapacitor based on a superassembled three-dimensional network Zn@PPy hybrid electrode. ACS Appl. Mater. Interfaces 13, 8285–8293 (2021).
Chen, K. et al. An edible and nutritive zinc-ion micro-supercapacitor in the stomach with ultrahigh energy density. ACS Nano 16, 15261–15272 (2022).
Tsang, M., Armutlulu, A., Martinez, A. W., Allen, S. A. B. & Allen, M. G. Biodegradable magnesium/iron batteries with polycaprolactone encapsulation: a microfabricated power source for transient implantable devices. Microsyst. Nanoeng. 1, 15024 (2015).
Huang, X. et al. A fully biodegradable battery for self-powered transient implants. Small 14, 1800994 (2018).
Delaporte, N., Lajoie, G., Collin-Martin, S. & Zaghib, K. Toward low-cost all-organic and biodegradable Li-ion batteries. Sci. Rep. 10, 3812 (2020).
Wu, L. et al. A biodegradable high-performance microsupercapacitor for environmentally friendly and biocompatible energy storage. ACS Nano 17, 22580–22590 (2023).
Winfield, J. et al. Fade to green: a biodegradable stack of microbial fuel cells. ChemSusChem 8, 2705–2712 (2015).
Huang, Y. et al. Bioresorbable thin-film silicon diodes for the optoelectronic excitation and inhibition of neural activities. Nat. Biomed. Eng. 7, 486–498 (2023).
Lu, L. et al. Biodegradable monocrystalline silicon photovoltaic microcells as power supplies for transient biomedical implants. Adv. Energy Mater. 8, 1703035 (2018).
Qi, J. et al. Large-grained perovskite films enabled by one-step meniscus-assisted solution printing of cross-aligned conductive nanowires for biodegradable flexible solar cells. Adv. Energy Mater. 10, 2001185 (2020).
Aktas, E. et al. Challenges and strategies toward long-term stability of lead-free tin-based perovskite solar cells. Commun. Mater. 3, 104 (2022).
Klochko, N. P. et al. Use of biomass for a development of nanocellulose-based biodegradable flexible thin film thermoelectric material. Sol. Energy 201, 21–27 (2020).
Li, H. et al. Biodegradable CuI/BCNF composite thermoelectric film for wearable energy harvesting. Cellulose 28, 10707–10714 (2021).
Wang, T. et al. Fully biodegradable water-soluble triboelectric nanogenerator for human physiological monitoring. Nano Energy 93, 106787 (2022).
Kang, M. et al. Nature-derived highly tribopositive ϰ-carrageenan-agar composite-based fully biodegradable triboelectric nanogenerators. Nano Energy 100, 107480 (2022).
Novelli, G. et al. A biodegradable surface drifter for ocean sampling on a massive scale. J. Atmos. Ocean. Technol. 34, 2509–2532 (2017).
Sun, W. et al. Biodegradable, sustainable hydrogel actuators with shape and stiffness morphing capabilities via embedded 3D printing. Adv. Funct. Mater. 33, 2303659 (2023).
Koo, J. et al. Wireless bioresorbable electronic system enables sustained nonpharmacological neuroregenerative therapy. Nat. Med. 24, 1830–1836 (2018).
Koo, J. et al. Wirelessly controlled, bioresorbable drug delivery device with active valves that exploit electrochemically triggered crevice corrosion. Sci. Adv. 6, eabb1093 (2020).
Choi, Y. S. et al. Stretchable, dynamic covalent polymers for soft, long-lived bioresorbable electronic stimulators designed to facilitate neuromuscular regeneration. Nat. Commun. 11, 5990 (2020).
Li, J. et al. Anhydride-assisted spontaneous room temperature sintering of printed bioresorbable electronics. Adv. Funct. Mater. 30, 1905024 (2020).
Xu, W. et al. Food-based edible and nutritive electronics. Adv. Mater. Technol. 2, 1700181 (2017).
Boutry, C. M. et al. Biodegradable and flexible arterial-pulse sensor for the wireless monitoring of blood flow. Nat. Biomed. Eng. 3, 47–57 (2019).
Chang, J.-K. et al. Materials and processing approaches for foundry-compatible transient electronics. Proc. Natl Acad. Sci. USA 114, E5522–E5529 (2017).
Zhong, D. et al. High-speed and large-scale intrinsically stretchable integrated circuits. Nature 627, 313–320 (2024).
Costa, F. et al. A review of RFID sensors, the new frontier of internet of things. Sensors 21, 3138 (2021).
Bourely, J. et al. Degradable and printed microstrip line for chipless temperature and humidity sensing. Adv. Electron. Mater. 10, 2400229 (2024).
Genovesi, S., Costa, F., Dicandia, F. A., Borgese, M. & Manara, G. Orientation-insensitive and normalization-free reading chipless RFID system based on circular polarization interrogation. IEEE Trans. Antennas Propag. 68, 2370–2378 (2020).
Costa, F. et al. A depolarizing chipless RF label for dielectric permittivity sensing. IEEE Microw. Wirel. Compon. Lett. 28, 371–373 (2018).
Plessky, V. P. & Reindl, L. M. Review on SAW RFID tags. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 57, 654–668 (2010).
Wu, P. et al. Ultrasound-driven in vivo electrical stimulation based on biodegradable piezoelectric nanogenerators for enhancing and monitoring the nerve tissue repair. Nano Energy 102, 107707 (2022).
Raja, B. et al. An embedded microretroreflector-based microfluidic immunoassay platform. Lab Chip 16, 1625–1635 (2016).
Switkes, M., Ervin, B. L., Kingsborough, R. P., Rothschild, M. & Sworin, M. Retroreflectors for remote readout of colorimetric sensors. Sens. Actuators B Chem. 160, 1244–1249 (2011).
Oku, H., Sato, M. & Funato, Y. Edible retroreflector made of candy. IEEE Access 10, 24749–24758 (2022).
Wu, M., Tan, L. & Xiong, N. Data prediction, compression, and recovery in clustered wireless sensor networks for environmental monitoring applications. Inf. Sci. 329, 800–818 (2016).
Deng, F., Zuo, P., Wen, K. & Wu, X. Novel soil environment monitoring system based on RFID sensor and LoRa. Comput. Electron. Agr. 169, 105169 (2020).
Vacek, L. et al. sUAS for deployment and recovery of an environmental sensor probe. In Int. Conf. Unmanned Aircr. Syst. 1022–1029 (IEEE, 2017).
Zhong, S. et al. Machine learning: new ideas and tools in environmental science and engineering. Environ. Sci. Technol. 55, 12741–12754 (2021).
Rossi, L. et al. Using artificial neural network to investigate physiological changes and cerium oxide nanoparticles and cadmium uptake by Brassica napus plants. Environ. Pollut. 246, 381–389 (2019).
Podgorski, J. & Berg, M. Global threat of arsenic in groundwater. Science 368, 845–850 (2020).
Hu, X. et al. Estimating PM2.5 concentrations in the conterminous United States using the random forest approach. Environ. Sci. Technol. 51, 6936–6944 (2017).
Hwangbo, J. et al. Bioresorbable polymers for electronic medicine. Cell Rep. Phys. Sci. 5, 102099 (2024).
Yoshinaka, Y. & Miller, S. A. Bio-oil derived polyesteramides as water-degradable replacements for polyethylene. Green Chem. 27, 4152–4164 (2025).
Lee, G. et al. Fully biodegradable microsupercapacitor for power storage in transient electronics. Adv. Energy Mater. 7, 1700157 (2017).
Pal, R. K. et al. Conducting polymer-silk biocomposites for flexible and biodegradable electrochemical sensors. Biosens. Bioelectron. 81, 294–302 (2016).
Li, L., Ge, J., Guo, B. & Ma, P. X. In situ forming biodegradable electroactive hydrogels. Polym. Chem. 5, 2880–2890 (2014).
Zelikin, A. N. et al. Erodible conducting polymers for potential biomedical applications. Angew. Chem. Int. Ed. 41, 141–144 (2002).
Kang, S.-K. et al. Dissolution chemistry and biocompatibility of silicon- and germanium-based semiconductors for transient electronics. ACS Appl. Mater. Interfaces 7, 9297–9305 (2015).
Lu, D. et al. Transient light-emitting diodes constructed from semiconductors and transparent conductors that biodegrade under physiological conditions. Adv. Mater. 31, 1902739 (2019).
Chen, X. et al. CVD-grown monolayer MoS2 in bioabsorbable electronics and biosensors. Nat. Commun. 9, 1690 (2018).
Matatagui, D. et al. Eco-friendly disposable WS2 paper sensor for sub-ppm NO2 detection at room temperature. Nanomaterials 12, 1213 (2022).
Yang, S. M. et al. Hetero-integration of silicon nanomembranes with 2D materials for bioresorbable, wireless neurochemical system. Adv. Mater. 34, 2108203 (2022).
Palmroth, A., Salpavaara, T., Lekkala, J. & Kellomäki, M. Fabrication and characterization of a wireless bioresorbable pressure sensor. Adv. Mater. Technol. 4, 1900428 (2019).
Shou, W. et al. Low-cost manufacturing of bioresorbable conductors by evaporation–condensation-mediated laser printing and sintering of Zn nanoparticles. Adv. Mater. 29, 1700172 (2017).
Hyun, W. J., Secor, E. B., Hersam, M. C., Frisbie, C. D. & Francis, L. F. High-resolution patterning of graphene by screen printing with a silicon stencil for highly flexible printed electronics. Adv. Mater. 27, 109–115 (2015).
Kay, R. & Desmulliez, M. A review of stencil printing for microelectronic packaging. Solder. Surf. Mt Technol. 24, 38–50 (2012).
Hussain, A., Abbas, N. & Ali, A. Inkjet printing: a viable technology for biosensor fabrication. Chemosensors 10, 103 (2022).
Nalepa, M.-A. et al. Graphene derivative-based ink advances inkjet printing technology for fabrication of electrochemical sensors and biosensors. Biosens. Bioelectron. 256, 116277 (2024).
Mkhize, N. & Bhaskaran, H. Electrohydrodynamic jet printing: introductory concepts and considerations. Small Sci. 2, 2100073 (2022).
Barton, K. et al. A desktop electrohydrodynamic jet printing system. Mechatronics 20, 611–616 (2010).
Mahajan, B. K. et al. Aerosol printing and photonic sintering of bioresorbable zinc nanoparticle ink for transient electronics manufacturing. Sci. China Inf. Sci. 61, 060412 (2018).
Marchianò, V. et al. Tailoring water-based graphite conductive ink formulation for enzyme stencil-printing: experimental design to enhance wearable biosensor performance. Chem. Mater. 36, 358–370 (2024).
Camargo, J. R., Silva, T. A., Rivas, G. A. & Janegitz, B. C. Novel eco-friendly water-based conductive ink for the preparation of disposable screen-printed electrodes for sensing and biosensing applications. Electrochim. Acta 409, 139968 (2022).
Li, H. et al. Advances in the device design and printing technology for eco-friendly organic photovoltaics. Energy Environ. Sci. 16, 76–88 (2023).
Sui, Y. et al. A reactive inkjet printing process for fabricating biodegradable conductive zinc structures. Adv. Eng. Mater. 25, 2200529 (2023).
Poulin, A., Aeby, X., Siqueira, G. & Nyström, G. Versatile carbon-loaded shellac ink for disposable printed electronics. Sci. Rep. 11, 23784 (2021).
Jaiswal, A. K. et al. Biodegradable cellulose nanocomposite substrate for recyclable flexible printed electronics. Adv. Electron. Mater. 9, 2201094 (2023).
Qin, Y. et al. A review of carbon-based conductive inks and their printing technologies for integrated circuits. Coatings 13, 1769 (2023).
Yang, Q. et al. High-speed, scanned laser structuring of multi-layered eco/bioresorbable materials for advanced electronic systems. Nat. Commun. 13, 6518 (2022).
Baruah, R. K., Yoo, H. & Lee, E. K. Interconnection technologies for flexible electronics: materials, fabrications, and applications. Micromachines 14, 1131 (2023).
Aradhana, R., Mohanty, S. & Nayak, S. K. A review on epoxy-based electrically conductive adhesives. Int. J. Adhes. Adhesives 99, 102596 (2020).
Hwang, H. et al. Stretchable anisotropic conductive film (S-ACF) for electrical interfacing in high-resolution stretchable circuits. Sci. Adv. 7, eabh0171 (2021).
Li, Y., Veronica, A., Ma, J. & Nyein, H. Y. Y. Materials, structure, and interface of stretchable interconnects for wearable bioelectronics. Adv. Mater. 37, 2408456 (2025).
Valentine, A. D. et al. Hybrid 3D printing of soft electronics. Adv. Mater. 29, 1703817 (2017).
Lee, C. K. W., Pan, Y., Yang, R., Kim, M. & Li, M. G. Laser-induced transfer of functional materials. Top. Curr. Chem. 381, 18 (2023).
Acknowledgements
This work was supported by the Querrey Simpson Institute for Bioelectronics. K.E.M. acknowledges support from an NIH NRSA sleep and circadian training grant (T32HL007909). M.T.F. acknowledges support from a pilot grant from the HERCULES Exposome Research Center. Figures 1b and 2b,c,e use assets obtained from Biorender.com.
Author information
Authors and Affiliations
Contributions
K.E.M. and M.T.F. researched data for the article and led drafting of the manuscript. J.A.R. reviewed and edited the manuscript before submission. All authors contributed substantially to the content and discussion disclosed within the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Materials thanks Shyam Gollakota, Lining Yao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Related links
Marine Strategy Framework Directive: https://eur-lex.europa.eu/eli/dec/2017/848/oj
United States Environmental Protection Agency: https://www.epa.gov/scientific-leadership/probabilistic-risk-assessment-white-paper-and-supporting-documents
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Madsen, K.E., Flavin, M.T. & Rogers, J.A. Materials advances for distributed environmental sensor networks at scale. Nat Rev Mater (2025). https://doi.org/10.1038/s41578-025-00838-7
Accepted:
Published:
DOI: https://doi.org/10.1038/s41578-025-00838-7