Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Malaria vaccines: a new era of prevention and control

Abstract

Malaria killed over 600,000 people in 2022, a death toll that has not improved since 2015. Additionally, parasites and mosquitoes resistant to existing interventions are spreading across Africa and other regions. Vaccines offer hope to reduce the mortality burden: the first licensed malaria vaccines, RTS,S and R21, will be widely deployed in 2024 and should substantially reduce childhood deaths. In this Review, we provide an overview of the malaria problem and the Plasmodium parasite, then describe the RTS,S and R21 vaccines (the first vaccines for any human parasitic disease), summarizing their benefits and limitations. We explore next-generation vaccines designed using new knowledge of malaria pathogenesis and protective immunity, which incorporate antigens and platforms to elicit effective immune responses against different parasite stages in human or mosquito hosts. We describe a decision-making process that prioritizes malaria vaccine candidates for development in a resource-constrained environment. Future vaccines might improve upon the protective efficacy of RTS,S or R21 for children, or address the wider malaria scourge by preventing pregnancy malaria, reducing the burden of Plasmodium vivax or accelerating malaria elimination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Malaria vaccine classes targeting different stages of the parasite life cycle with associated bioassays.
Fig. 2: Circumsporozoite protein is the major surface antigen of sporozoites and the target for several vaccines and therapeutic human monoclonal antibodies.
Fig. 3: Whole-sporozoite malaria vaccines targeting sporozoites and liver-stage parasites.
Fig. 4: Blood-stage and mosquito-stage vaccines.
Fig. 5: The vaccine development funnel.

Similar content being viewed by others

References

  1. Antonelli, L. R. et al. The immunology of Plasmodium vivax malaria. Immunol. Rev. 293, 163–189 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. World Health Organization. World Malaria Report 2023 (WHO, 2023).

  3. Singh, B. et al. A large focus of naturally acquired Plasmodium knowlesi infections in human beings. Lancet 363, 1017–1024 (2004).

    Article  PubMed  Google Scholar 

  4. Millar, S. B. & Cox-Singh, J. Human infections with Plasmodium knowlesi–zoonotic malaria. Clin. Microbiol. Infect. 21, 640–648 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Cheaveau, J. et al. Asymptomatic malaria in the clinical and public health context. Expert Rev. Anti Infect. Ther. 17, 997–1010 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. Shretta, R. et al. in Disease Control Priorities: Major Infectious Diseases 3rd edn, Vol. 6 315–346 (World Bank Publications, 2017).

  7. Fowkes, F. J. I., Davidson, E., Moore, K. A., McGready, R. & Simpson, J. A. The invisible burden of malaria-attributable stillbirths. Lancet 395, 268 (2020).

    Article  PubMed  Google Scholar 

  8. Bardaji, A. et al. Impact of malaria at the end of pregnancy on infant mortality and morbidity. J. Infect. Dis. 203, 691–699 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Katz, J. et al. Mortality risk in preterm and small-for-gestational-age infants in low-income and middle-income countries: a pooled country analysis. Lancet 382, 417–425 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gallup, J. L. & Sachs, J. D. The economic burden of malaria. Am. Soc. Trop. Med. Hyg. 64, 85–96 (2001).

  11. UNRIC. Malaria: a disease of poverty. UNRIC https://unric.org/en/malaria-a-disease-of-poverty/ (2023).

  12. Sachs, J. & Malaney, P. The economic and social burden of malaria. Nature 415, 680–685 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Woodrow, C. J. & White, N. J. The clinical impact of artemisinin resistance in Southeast Asia and the potential for future spread. FEMS Microbiol. Rev. 41, 34–48 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. World Health Organization. Global Database on Antimalarial Drug Efficacy and Resistance (WHO, accessed 1 October 2023); https://www.who.int/teams/global-malaria-programme/case-management/drug-efficacy-and-resistance/antimalarial-drug-efficacy-database.

  15. World Health Organization. Global Report on Insecticide Resistance in Malaria Vectors: 2010–2016 (WHO, 2018).

  16. Russell, T. L., Beebe, N. W., Cooper, R. D., Lobo, N. F. & Burkot, T. R. Successful malaria elimination strategies require interventions that target changing vector behaviours. Malar. J. 12, 56 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  17. World Health Organization. Mosquito on the move: a new WHO initiative takes aim at Anopheles stephensi, an invasive malarial mosquito species that thrives in cities and is expanding across Africa. WHO https://www.who.int/news-room/feature-stories/detail/mosquito-on-the-move (2022).

  18. World Health Organization. Malaria Eradication: Benefits, Future Scenarios & Feasibility (WHO, 2020).

  19. World Health Organization. WHO recommends groundbreaking malaria vaccine for children at risk. WHO https://www.who.int/news/item/06-10-2021-who-recommends-groundbreaking-malaria-vaccine-for-children-at-risk (2021).

  20. RTS,S Clinical Trials Partnership. Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial. Lancet 386, 31–45 (2015).

    Article  Google Scholar 

  21. RTS,S Clinical Trials Partnership. First results of phase 3 trial of RTS,S/AS01 malaria vaccine in African children. N. Engl. J. Med. 365, 1863–1875 (2011).

    Article  Google Scholar 

  22. Wadman, M. First malaria vaccines slashes early childhood mortality. Science https://www.science.org/content/article/first-malaria-vaccine-slashes-early-childhood-deaths (2023).

  23. Oxford R21/Matrix-M™ malaria vaccine receives WHO recommendation for use paving the way for global roll-out. University of Oxford https://www.ox.ac.uk/news/2023-10-02-oxford-r21matrix-m-malaria-vaccine-receives-who-recommendation-use-paving-way-global (2023).

  24. Datoo, M. S. et al. Safety and efficacy of malaria vaccine candidate R21/Matrix-M in African children: a multicentre, double-blind, randomised, phase 3 trial. Lancet 403, 533–544 (2024).

    Article  CAS  PubMed  Google Scholar 

  25. Half a million children die of malaria every year. Finally we can change that. Nature 622, 218 (2023).

  26. Graumans, W., Jacobs, E., Bousema, T. & Sinnis, P. When is a Plasmodium-infected mosquito an infectious mosquito? Trends Parasitol. 36, 705–716 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Baer, K., Klotz, C., Kappe, S. H., Schnieder, T. & Frevert, U. Release of hepatic Plasmodium yoelii merozoites into the pulmonary microvasculature. PLoS Pathog. 3, e171 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Vaughan, A. M. et al. Complete Plasmodium falciparum liver-stage development in liver-chimeric mice. J. Clin. Invest. 122, 3618–3628 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sturm, A. et al. Manipulation of host hepatocytes by the malaria parasite for delivery into liver sinusoids. Science 313, 1287–1290 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Dondorp, A. M. et al. Estimation of the total parasite biomass in acute falciparum malaria from plasma PfHRP2. PLoS Med. 2, e204 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hirai, M. in Sexual Reproduction in Animals and Plants (eds Sawada, H., Inoue, N. & Iwano, M.) Ch. 27 (Springer, 2014).

  32. Kappe, S. H., Kaiser, K. & Matuschewski, K. The Plasmodium sporozoite journey: a rite of passage. Trends Parasitol. 19, 135–143 (2003).

    Article  PubMed  Google Scholar 

  33. Gordon, D. M. et al. Safety, immunogenicity, and efficacy of a recombinantly produced Plasmodium falciparum circumsporozoite protein-hepatitis B surface antigen subunit vaccine. J. Infect. Dis. 171, 1576–1585 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Stoute, J. A. et al. A preliminary evaluation of a recombinant circumsporozoite protein vaccine against Plasmodium falciparum malaria. N. Engl. J. Med. 336, 86–91 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Gaudinski, M. R. et al. A monoclonal antibody for malaria prevention. N. Engl. J. Med. 385, 803–814 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lyke, K. E. et al. Low-dose intravenous and subcutaneous CIS43LS monoclonal antibody for protection against malaria (VRC 612 Part C): a phase 1, adaptive trial. Lancet Infect. Dis. 23, 578–588 (2023).

    Article  CAS  PubMed  Google Scholar 

  37. Wu, R. L. et al. Low-dose subcutaneous or intravenous monoclonal antibody to prevent malaria. N. Engl. J. Med. 387, 397–407 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sirima, S. B. et al. A randomized controlled trial showing safety and efficacy of a whole sporozoite vaccine against endemic malaria. Sci. Transl. Med. 14, eabj3776 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sissoko, M. S. et al. Safety and efficacy of PfSPZ Vaccine against Plasmodium falciparum via direct venous inoculation in healthy malaria-exposed adults in Mali: a randomised, double-blind phase 1 trial. Lancet Infect. Dis. 17, 498–509 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sissoko, M. S. et al. Safety and efficacy of a three-dose regimen of Plasmodium falciparum sporozoite vaccine in adults during an intense malaria transmission season in Mali: a randomised, controlled phase 1 trial. Lancet Infect. Dis. 22, 377–389 (2022).

    Article  CAS  PubMed  Google Scholar 

  41. Epstein, J. E. et al. Live attenuated malaria vaccine designed to protect through hepatic CD8+ T cell immunity. Science 334, 475–480 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Cohen, S., Mc, G. I. & Carrington, S. Gamma-globulin and acquired immunity to human malaria. Nature 192, 733–737 (1961).

    Article  CAS  PubMed  Google Scholar 

  43. Siddiqui, W. A. An effective immunization of experimental monkeys against a human malaria parasite, Plasmodium falciparum. Science 197, 388–389 (1977).

    Article  CAS  PubMed  Google Scholar 

  44. Duffy, P. E. & Patrick Gorres, J. Malaria vaccines since 2000: progress, priorities, products. NPJ Vaccines 5, 48 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Alves, K. C. S., Guimaraes, J. M., Almeida, M. E. M. & Mariuba, L. A. M. Plasmodium falciparum merozoite surface protein 3 as a vaccine candidate: a brief review. Rev. Inst. Med. Trop. Sao Paulo 64, e23 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dassah, S. et al. Extended follow-up of children in a phase2b trial of the GMZ2 malaria vaccine. Vaccine 39, 4314–4319 (2021).

    Article  CAS  PubMed  Google Scholar 

  47. Spring, M. D. et al. Phase 1/2a study of the malaria vaccine candidate apical membrane antigen-1 (AMA-1) administered in adjuvant system AS01B or AS02A. PLoS ONE 4, e5254 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Chan, J. A. et al. Targets of antibodies against Plasmodium falciparum-infected erythrocytes in malaria immunity. J. Clin. Invest. 122, 3227–3238 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Salanti, A. et al. Selective upregulation of a single distinctly structured var gene in chondroitin sulphate A-adhering Plasmodium falciparum involved in pregnancy-associated malaria. Mol. Microbiol. 49, 179–191 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Gamain, B., Chene, A., Viebig, N. K., Tuikue Ndam, N. & Nielsen, M. A. Progress and insights toward an effective placental malaria vaccine. Front. Immunol. 12, 634508 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Duffy, P. E. Transmission-blocking vaccines: harnessing herd immunity for malaria elimination. Expert Rev. Vaccines 20, 185–198 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Carter, R. & Chen, D. H. Malaria transmission blocked by immunisation with gametes of the malaria parasite. Nature 263, 57–60 (1976).

    Article  CAS  PubMed  Google Scholar 

  53. Gwadz, R. W. Successful immunization against the sexual stages of Plasmodium gallinaceum. Science 193, 1150–1151 (1976).

    Article  CAS  PubMed  Google Scholar 

  54. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT02942277 (2022).

  55. International Clinical Trials Registry. BMC https://www.isrctn.com/ISRCTN13649456 (2022).

  56. Sagara, I. et al. Safety and immunogenicity of Pfs25H-EPA/Alhydrogel, a transmission-blocking vaccine against Plasmodium falciparum: a randomised, double-blind, comparator-controlled, dose-escalation study in healthy Malian adults. Lancet Infect. Dis. 18, 969–982 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sagara, I. et al. Malaria transmission-blocking vaccines Pfs230D1-EPA and Pfs25-EPA in Alhydrogel in healthy Malian adults; a phase 1, randomised, controlled trial. Lancet Infect. Dis. https://doi.org/10.1016/S1473-3099(23)00276-1 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Brickley, E. B. et al. Utilizing direct skin feeding assays for development of vaccines that interrupt malaria transmission: a systematic review of methods and case study. Vaccine 34, 5863–5870 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03917654 (2023).

  60. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05400746 (2022).

  61. UNICEF. Malaria vaccine: questions and answers on vaccine supply, price, and market shaping. UNICEF https://www.unicef.org/supply/media/13396/file/Malaria-Vaccine-Supply-Price-Market-Questions-Answers-August2022.pdf (2022).

  62. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05816330 (2024).

  63. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05400655 (2024).

  64. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05304611 (2023).

  65. Hutter, J. N. et al. First-in-human assessment of safety and immunogenicity of low and high doses of Plasmodium falciparum malaria protein 013 (FMP013) administered intramuscularly with ALFQ adjuvant in healthy malaria-naive adults. Vaccine 40, 5781–5790 (2022).

    Article  CAS  PubMed  Google Scholar 

  66. Williams, K. L. et al. A candidate antibody drug for prevention of malaria. Nat. Med. 30, 117–129 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang, L. T. et al. Protective effects of combining monoclonal antibodies and vaccines against the Plasmodium falciparum circumsporozoite protein. PLoS Pathog. 17, e1010133 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mwakingwe-Omari, A. et al. Two chemoattenuated PfSPZ malaria vaccines induce sterile hepatic immunity. Nature 595, 289–294 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Roestenberg, M. et al. A double-blind, placebo-controlled phase 1/2a trial of the genetically attenuated malaria vaccine PfSPZ-GA1. Sci. Transl. Med. 12, eaaz5629 (2020).

  70. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04577066 (2023).

  71. Richie, T. L. et al. Sporozoite immunization: innovative translational science to support the fight against malaria. Expert Rev. Vaccines 22, 964–1007 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Reuling, I. J. et al. An open-label phase 1/2a trial of a genetically modified rodent malaria parasite for immunization against Plasmodium falciparum malaria. Sci. Transl. Med. 12, eaay2578 (2020).

    Article  CAS  PubMed  Google Scholar 

  73. Rampling, T. et al. Safety and high level efficacy of the combination malaria vaccine regimen of RTS,S/AS01B with chimpanzee adenovirus 63 and modified vaccinia ankara vectored vaccines expressing ME-TRAP. J. Infect. Dis. 214, 772–781 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Davies, D. H., Duffy, P., Bodmer, J. L., Felgner, P. L. & Doolan, D. L. Large screen approaches to identify novel malaria vaccine candidates. Vaccine 33, 7496–7505 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Doolan, D. L. et al. Identification of Plasmodium falciparum antigens by antigenic analysis of genomic and proteomic data. Proc. Natl Acad. Sci. USA 100, 9952–9957 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bergmann-Leitner, E. S. et al. Immunization with pre-erythrocytic antigen CelTOS from Plasmodium falciparum elicits cross-species protection against heterologous challenge with Plasmodium berghei. PLoS ONE 5, e12294 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Speake, C. et al. Identification of novel pre-erythrocytic malaria antigen candidates for combination vaccines with circumsporozoite protein. PLoS ONE 11, e0159449 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Daniel, S. et al. Plasmodium preerythrocytic vaccine antigens enhance sterile protection in mice induced by circumsporozoite protein. Infect. Immun. 89, e0016521 (2021).

    Article  PubMed  Google Scholar 

  79. Vigdorovich, V. et al. Coimmunization with preerythrocytic antigens alongside circumsporozoite protein can enhance sterile protection against Plasmodium sporozoite infection. Microbiol. Spectr. 11, e0379122 (2023).

    Article  PubMed  Google Scholar 

  80. Dragovic, S. M. et al. Immunization with AgTRIO, a protein in Anopheles saliva, contributes to protection against Plasmodium infection in mice. Cell Host Microbe 23, 523–535.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Pala, Z. R. et al. Anopheles salivary apyrase regulates blood meal hemostasis and drives malaria parasite transmission. Preprint at bioRxiv https://doi.org/10.1101/2023.05.22.541827 (2023).

  82. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05905432 (2023).

  83. Patel, P. N. et al. Structure-based design of a strain transcending AMA1-RON2L malaria vaccine. Nat. Commun. 14, 5345 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Srinivasan, P. et al. A malaria vaccine protects Aotus monkeys against virulent Plasmodium falciparum infection. NPJ Vaccines 2, 14 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Douglas, A. D. et al. The blood-stage malaria antigen PfRH5 is susceptible to vaccine-inducible cross-strain neutralizing antibody. Nat. Commun. 2, 601 (2011).

    Article  PubMed  Google Scholar 

  86. Douglas, A. D. et al. A PfRH5-based vaccine is efficacious against heterologous strain blood-stage Plasmodium falciparum infection in Aotus monkeys. Cell Host Microbe 17, 130–139 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Minassian, A. M. et al. Reduced blood-stage malaria growth and immune correlates in humans following RH5 vaccination. Med 2, 701–719.e19 (2021).

    Article  CAS  PubMed  Google Scholar 

  88. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05790889 (2023).

  89. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04318002 (2023).

  90. Duffy, P. E., Gunalan, K. & Miller, L. H. Vivax malaria and Duffy antigen: stop being so negative. Cell Host Microbe 31, 1959–1960 (2023).

    Article  CAS  PubMed  Google Scholar 

  91. Kanjee, U. et al. Plasmodium vivax strains use alternative pathways for invasion. J. Infect. Dis. 223, 1817–1821 (2021).

    Article  CAS  PubMed  Google Scholar 

  92. Popovici, J., Roesch, C. & Rougeron, V. The enigmatic mechanisms by which Plasmodium vivax infects Duffy-negative individuals. PLoS Pathog. 16, e1008258 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hou, M. M. et al. Vaccination with Plasmodium vivax Duffy-binding protein inhibits parasite growth during controlled human malaria infection. Sci. Transl. Med. 15, eadf1782 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Raj, D. K. et al. Anti-PfGARP activates programmed cell death of parasites and reduces severe malaria. Nature 582, 104–108 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Perrin, A. J. et al. Malaria parasite schizont egress antigen-1 plays an essential role in nuclear segregation during schizogony. mBio 12, e03377–e03420 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Raj, D. K. et al. Antibodies to PfSEA-1 block parasite egress from RBCs and protect against malaria infection. Science 344, 871–877 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Illingworth, J. J. et al. Functional comparison of blood-stage Plasmodium falciparum malaria vaccine candidate antigens. Front. Immunol. 10, 1254 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Mordmuller, B. et al. First-in-human, randomized, double-blind clinical trial of differentially adjuvanted PAMVAC, a vaccine candidate to prevent pregnancy-associated malaria. Clin. Infect. Dis. 69, 1509–1516 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Sirima, S. B. et al. PRIMVAC vaccine adjuvanted with Alhydrogel or GLA-SE to prevent placental malaria: a first-in-human, randomised, double-blind, placebo-controlled study. Lancet Infect. Dis. 20, 585–597 (2020).

    Article  CAS  PubMed  Google Scholar 

  100. Doritchamou, J. et al. Aotus nancymaae model predicts human immune response to the placental malaria vaccine candidate VAR2CSA. Lab Anim. 52, 315–323 (2023).

    Article  Google Scholar 

  101. Ma, R. et al. Structural basis for placental malaria mediated by Plasmodium falciparum VAR2CSA. Nat. Microbiol. 6, 380–391 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wang, K. et al. Cryo-EM reveals the architecture of placental malaria VAR2CSA and provides molecular insight into chondroitin sulfate binding. Nat. Commun. 12, 2956 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Doritchamou, J. Y. A. et al. A single full-length VAR2CSA ectodomain variant purifies broadly neutralizing antibodies against placental malaria isolates. eLife 11, e76264 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kapulu, M. C. et al. Comparative assessment of transmission-blocking vaccine candidates against Plasmodium falciparum. Sci. Rep. 5, 11193 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Menon, V. et al. Assessment of antibodies induced by multivalent transmission-blocking malaria vaccines. Front. Immunol. 8, 1998 (2017).

    Article  PubMed  Google Scholar 

  106. Healy, S. A. et al. Pfs230 yields higher malaria transmission-blocking vaccine activity than Pfs25 in humans but not mice. J. Clin. Invest 131, e146221 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Talaat, K. R. et al. Safety and immunogenicity of Pfs25-EPA/Alhydrogel®, a transmission blocking vaccine against Plasmodium falciparum: an open label study in malaria naive adults. PLoS ONE 11, e0163144 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Coelho, C. H. et al. A human monoclonal antibody blocks malaria transmission and defines a highly conserved neutralizing epitope on gametes. Nat. Commun. 12, 1750 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Tang, W. K. et al. A human antibody epitope map of Pfs230D1 derived from analysis of individuals vaccinated with a malaria transmission-blocking vaccine. Immunity 56, 433–443.e5 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Singh, S. K. et al. Pfs230 and Pfs48/45 fusion proteins elicit strong transmission-blocking antibody responses against Plasmodium falciparum. Front. Immunol. 10, 1256 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. van der Boor, S. C. et al. Safety, tolerability, and Plasmodium falciparum transmission-reducing activity of monoclonal antibody TB31F: a single-centre, open-label, first-in-human, dose-escalation, phase 1 trial in healthy malaria-naive adults. Lancet Infect. Dis. 22, 1596–1605 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  112. McLeod, B. et al. Vaccination with a structure-based stabilized version of malarial antigen Pfs48/45 elicits ultra-potent transmission-blocking antibody responses. Immunity 55, 1680–1692.e8 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zaidi, I. et al. γδ T cells are required for the induction of sterile immunity during irradiated sporozoite vaccinations. J. Immunol. 199, 3781–3788 (2017).

    Article  CAS  PubMed  Google Scholar 

  114. Das, J. et al. Delayed fractional dosing with RTS,S/AS01 improves humoral immunity to malaria via a balance of polyfunctional NANP6- and Pf16-specific antibodies. Med 2, 1269–1286.e9 (2021).

    Article  CAS  PubMed  Google Scholar 

  115. Dennison, S. M. et al. Qualified biolayer interferometry avidity measurements distinguish the heterogeneity of antibody interactions with Plasmodium falciparum circumsporozoite protein antigens. J. Immunol. 201, 1315–1326 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Dobano, C. et al. Concentration and avidity of antibodies to different circumsporozoite epitopes correlate with RTS,S/AS01E malaria vaccine efficacy. Nat. Commun. 10, 2174 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Feng, G. et al. Induction, decay, and determinants of functional antibodies following vaccination with the RTS,S malaria vaccine in young children. BMC Med. 20, 289 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Suscovich, T. J. et al. Mapping functional humoral correlates of protection against malaria challenge following RTS,S/AS01 vaccination. Sci. Transl. Med. 12, eabb4757 (2020).

    Article  CAS  PubMed  Google Scholar 

  119. Miura, K. et al. Assessment of precision in growth inhibition assay (GIA) using human anti-PfRH5 antibodies. Malar. J. 22, 159 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Miura, K. Progress and prospects for blood-stage malaria vaccines. Expert Rev. Vaccines 15, 765–781 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Dutta, S. et al. High antibody titer against apical membrane antigen-1 is required to protect against malaria in the Aotus model. PLoS ONE 4, e8138 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Singh, S. et al. Immunity to recombinant Plasmodium falciparum merozoite surface protein 1 (MSP1): protection in Aotus nancymai monkeys strongly correlates with anti-MSP1 antibody titer and in vitro parasite-inhibitory activity. Infect. Immun. 74, 4573–4580 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Martinez, F. J. et al. PvDBPII elicits multiple antibody-mediated mechanisms that reduce growth in a Plasmodium vivax challenge trial. NPJ Vaccines 9, 10 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Fried, M. & Duffy, P. E. Malaria during pregnancy. Cold Spring Harb. Perspect. Med. https://doi.org/10.1101/cshperspect.a025551 (2017).

  125. Duffy, P. E. & Fried, M. Antibodies that inhibit Plasmodium falciparum adhesion to chondroitin sulfate A are associated with increased birth weight and the gestational age of newborns. Infect. Immun. 71, 6620–6623 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Mahamar, A. et al. Acquisition of antibodies that block Plasmodium falciparum adhesion to placental receptor chondroitin sulfate A with increasing gravidity in Malian women. Front. Immunol. 14, 1330962 (2023).

    Article  CAS  PubMed  Google Scholar 

  127. Ndam, N. T. et al. Protective antibodies against placental malaria and poor outcomes during pregnancy, benin. Emerg. Infect. Dis. 21, 813–823 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Stone, W. J. et al. The relevance and applicability of oocyst prevalence as a read-out for mosquito feeding assays. Sci. Rep. 3, 3418 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Laurens, M. B. RTS,S/AS01 vaccine (Mosquirix): an overview. Hum. Vaccin. Immunother. 16, 480–489 (2020).

    Article  CAS  PubMed  Google Scholar 

  130. Krenger, P. S. et al. Influence of antigen density and TLR ligands on preclinical efficacy of a VLP-based vaccine against peanut allergy. Allergy 79, 184–199 (2024).

    Article  CAS  PubMed  Google Scholar 

  131. Tarres-Freixas, F. et al. An engineered HIV-1 Gag-based VLP displaying high antigen density induces strong antibody-dependent functional immune responses. NPJ Vaccines 8, 51 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Thrane, S. et al. Bacterial superglue enables easy development of efficient virus-like particle based vaccines. J. Nanobiotechnol. 14, 30 (2016).

    Article  Google Scholar 

  133. Chandramohan, D. et al. Seasonal malaria vaccination with or without seasonal malaria chemoprevention. N. Engl. J. Med. 385, 1005–1017 (2021).

    Article  CAS  PubMed  Google Scholar 

  134. Li, X. et al. Colocalization of a CD1d-binding glycolipid with a radiation-attenuated sporozoite vaccine in lymph node-resident dendritic cells for a robust adjuvant effect. J. Immunol. 195, 2710–2721 (2015).

    Article  CAS  PubMed  Google Scholar 

  135. Coelho-Dos-Reis, J. G. et al. Co-administration of α-GalCer analog and TLR4 agonist induces robust CD8+ T-cell responses to PyCS protein and WT-1 antigen and activates memory-like effector NKT cells. Clin. Immunol. 168, 6–15 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Li, X. et al. Design of a potent CD1d-binding NKT cell ligand as a vaccine adjuvant. Proc. Natl Acad. Sci. USA 107, 13010–13015 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Li, X. et al. Co-localization of a CD1d-binding glycolipid with an adenovirus-based malaria vaccine for a potent adjuvant effect. Vaccine 35, 3171–3177 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Ganley, M. et al. mRNA vaccine against malaria tailored for liver-resident memory T cells. Nat. Immunol. 24, 1487–1498 (2023).

    Article  CAS  PubMed  Google Scholar 

  139. Malkin, E. et al. Phase 1 study of two merozoite surface protein 1 (MSP1(42)) vaccines for Plasmodium falciparum malaria. PLoS Clin. Trials 2, e12 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Sirima, S. B. et al. Safety and immunogenicity of a recombinant Plasmodium falciparum AMA1-DiCo malaria vaccine adjuvanted with GLA-SE or Alhydrogel® in European and African adults: a phase 1a/1b, randomized, double-blind multi-centre trial. Vaccine 35, 6218–6227 (2017).

    Article  CAS  PubMed  Google Scholar 

  141. Thera, M. A. et al. Safety and allele-specific immunogenicity of a malaria vaccine in Malian adults: results of a phase I randomized trial. PLoS Clin. Trials 1, e34 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  142. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03435874 (2019).

  143. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05357560 (2023).

  144. Scaria, P. V. et al. Comparison of carrier proteins to conjugate malaria transmission blocking vaccine antigens, Pfs25 and Pfs230. Vaccine 38, 5480–5489 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Scaria, P. V. et al. Outer membrane protein complex as a carrier for malaria transmission blocking antigen Pfs230. NPJ Vaccines 4, 24 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Rausch, K. M. et al. Preclinical evaluations of Pfs25-EPA and Pfs230D1-EPA in AS01 for a vaccine to reduce malaria transmission. iScience 26, 107192 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Scaria, P. V. et al. Malaria transmission-blocking conjugate vaccine in ALFQ adjuvant induces durable functional immune responses in rhesus macaques. NPJ Vaccines 6, 148 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05135273 (2024).

  149. Hayashi, C. T. H. et al. mRNA-LNP expressing PfCSP and Pfs25 vaccine candidates targeting infection and transmission of Plasmodium falciparum. NPJ Vaccines 7, 155 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Nakamae, S. et al. Induction of liver-resident memory T cells and protection at liver-stage malaria by mRNA-containing lipid nanoparticles. Front. Immunol. 14, 1116299 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Kunkeaw, N. et al. A Pvs25 mRNA vaccine induces complete and durable transmission-blocking immunity to Plasmodium vivax. NPJ Vaccines 8, 187 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Chuang, Y. M. et al. A mosquito AgTRIO mRNA vaccine contributes to immunity against malaria. NPJ Vaccines 8, 88 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Lutz, J. et al. Unmodified mRNA in LNPs constitutes a competitive technology for prophylactic vaccines. NPJ Vaccines 2, 29 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Scaria, P. V. et al. mRNA vaccines expressing malaria transmission-blocking antigens Pfs25 and Pfs230D1 induce a functional immune response. NPJ Vaccines 9, 9 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05581641 (2024).

  156. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT06069544 (2023).

  157. Pollet, J., Chen, W. H. & Strych, U. Recombinant protein vaccines, a proven approach against coronavirus pandemics. Adv. Drug. Deliv. Rev. 170, 71–82 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Lowe, D. A tuberculosis vaccine candidate — finally. Science https://www.science.org/content/blog-post/tuberculosis-vaccine-candidate-finally (2023).

  159. Regules, J. A. et al. Fractional third and fourth dose of RTS,S/AS01 malaria candidate vaccine: a phase 2a controlled human malaria parasite infection and immunogenicity study. J. Infect. Dis. 214, 762–771 (2016).

    Article  CAS  PubMed  Google Scholar 

  160. Samuels, A. M. et al. Efficacy of RTS,S/AS01E malaria vaccine administered according to different full, fractional, and delayed third or early fourth dose regimens in children aged 5-17 months in Ghana and Kenya: an open-label, phase 2b, randomised controlled trial. Lancet Infect. Dis. 22, 1329–1342 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03970993 (2021).

  162. Datoo, M. S. et al. Efficacy of a low-dose candidate malaria vaccine, R21 in adjuvant Matrix-M, with seasonal administration to children in Burkina Faso: a randomised controlled trial. Lancet 397, 1809–1818 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Datoo, M. S. et al. Efficacy and immunogenicity of R21/Matrix-M vaccine against clinical malaria after 2 years’ follow-up in children in Burkina Faso: a phase 1/2b randomised controlled trial. Lancet Infect. Dis. 22, 1728–1736 (2022).

    Article  CAS  PubMed  Google Scholar 

  164. World Health Organization. WHO Guidelines for Malaria (WHO, 2023).

  165. Murphy, S. C. et al. PfSPZ-CVac efficacy against malaria increases from 0% to 75% when administered in the absence of erythrocyte stage parasitemia: a randomized, placebo-controlled trial with controlled human malaria infection. PLoS Pathog. 17, e1009594 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT02996695 (2019).

  167. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03952650 (2019).

  168. Oneko, M. et al. Safety, immunogenicity and efficacy of PfSPZ Vaccine against malaria in infants in Western Kenya: a double-blind, randomized, placebo-controlled phase 2 trial. Nat. Med. 27, 1636–1645 (2021).

    Article  CAS  PubMed  Google Scholar 

  169. Cunnington, A. J. & Riley, E. M. Suppression of vaccine responses by malaria: insignificant or overlooked? Expert Rev. Vaccines 9, 409–429 (2010).

    Article  CAS  PubMed  Google Scholar 

  170. Goldberg, J. et al. Effects of vaccine dosing schedule and artemether-lumefantrine treatment on the immunogenicity of the transmission blocking vaccine Pfs230D1-EPA/AS01. In ASTMH 2022 Annual Meeting (ASTMH, 2022).

  171. Bandara, S. et al. Analysis of the health product pipeline for poverty-related and neglected diseases using the Portfolio-to-Impact (P2I) modeling tool. F1000Res 9, 416 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Cauchemez, S. et al. Influenza infection rates, measurement errors and the interpretation of paired serology. PLoS Pathog. 8, e1003061 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Sharma, A. et al. Plasmodium falciparum in Aotus nancymaae: a new model for placental malaria. J. Infect. Dis. 226, 521–527 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Duffy, P. E. et al. First liver and blood stage infection of Aotus lemurinus griseimembra with aseptic, purified, cryopreserved NF54 Plasmodium falciparum sporozoites. In ASTMH 2021 Annual Meeting (ASTMH, 2021).

  175. Onditi, F. et al. First liver and blood stage infection of Saimiri boliviensis and Saimiri sciureus by inoculation of Sanaria® PvSPZ challenge. In ASTMH 2023 Annual Meeting (ASTMH, 2023).

  176. International clinical trials registry. BMC https://www.isrctn.com/ISRCTN12174271 (2022).

  177. Silva, J. C. et al. Plasmodium falciparum 7G8 challenge provides conservative prediction of efficacy of PfNF54-based PfSPZ Vaccine in Africa. Nat. Commun. 13, 3390 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. UNICEF. Malaria vaccines: questions and answers on supply, price, and market shaping. UNICEF https://www.unicef.org/supply/media/19456/file/Malaria-Vaccine-QA-October-2023-English.pdf (2023).

  179. Dicko, A. et al. Seasonal vaccination with RTS,S/AS01E vaccine with or without seasonal malaria chemoprevention in children up to the age of 5 years in Burkina Faso and Mali: a double-blind, randomised, controlled, phase 3 trial. Lancet Infect. Dis. https://doi.org/10.1016/S1473-3099(23)00368-7 (2023).

  180. World Health Organization. Malaria vaccines (RTS,S and R21) WHO https://www.who.int/news-room/questions-and-answers/item/q-a-on-rts-s-malaria-vaccine (2024).

  181. Coulibaly, D. et al. Shifts in the clinical epidemiology of severe malaria after scaling up control strategies in Mali. Front. Neurol. 13, 988960 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Harrington, W. E. et al. Competitive facilitation of drug-resistant Plasmodium falciparum malaria parasites in pregnant women who receive preventive treatment. Proc. Natl Acad. Sci. USA 106, 9027–9032 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Kajubi, R. et al. Monthly sulfadoxine-pyrimethamine versus dihydroartemisinin-piperaquine for intermittent preventive treatment of malaria in pregnancy: a double-blind, randomised, controlled, superiority trial. Lancet 393, 1428–1439 (2019).

    Article  CAS  PubMed  Google Scholar 

  184. Madanitsa, M. et al. Effect of monthly intermittent preventive treatment with dihydroartemisinin-piperaquine with and without azithromycin versus monthly sulfadoxine-pyrimethamine on adverse pregnancy outcomes in Africa: a double-blind randomised, partly placebo-controlled trial. Lancet 401, 1020–1036 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Andemel, N. et al. Adverse pregnancy outcomes among women presenting at antenatal clinics in Ouelessebougou, Mali. Reprod. Health 17, 39 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Mahamar, A. et al. Malaria infection is common and associated with perinatal mortality and preterm delivery despite widespread use of chemoprevention in Mali: an observational study 2010 to 2014. Clin. Infect. Dis. 73, 1355–1361 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Moore, K. A. et al. Influence of the number and timing of malaria episodes during pregnancy on prematurity and small-for-gestational-age in an area of low transmission. BMC Med. 15, 117 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Fried, M. & Duffy, P. E. Designing a VAR2CSA-based vaccine to prevent placental malaria. Vaccine 33, 7483–7488 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Salanti, A. et al. Evidence for the involvement of VAR2CSA in pregnancy-associated malaria. J. Exp. Med. 200, 1197–1203 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Diawara, H. et al. Protection from malaria after pre-conception PfSPZ Vaccine. Preprint at the Lancet https://doi.org/10.2139/ssrn.4769103 (2024).

  191. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT06080243 (2023).

  192. Delrieu, I., Leboulleux, D., Ivinson, K. & Gessner, B. D. Design of a phase III cluster randomized trial to assess the efficacy and safety of a malaria transmission blocking vaccine. Vaccine 33, 1518–1526 (2015).

    Article  CAS  PubMed  Google Scholar 

  193. Challenger, J. D. et al. Predicting the public health impact of a malaria transmission-blocking vaccine. Nat. Commun. 12, 1494 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Camponovo, F., Ockenhouse, C. F., Lee, C. & Penny, M. A. Mass campaigns combining antimalarial drugs and anti-infective vaccines as seasonal interventions for malaria control, elimination and prevention of resurgence: a modelling study. BMC Infect. Dis. 19, 920 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  195. World Health Organization. Malaria Vaccines: Preferred Product Characteristics and Clinical Development Considerations (WHO, 2022).

  196. Sherrard-Smith, E. et al. Inferring the epidemiological benefit of indoor vector control interventions against malaria from mosquito data. Nat. Commun. 13, 3862 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Phyo, A. P., Dahal, P., Mayxay, M. & Ashley, E. A. Clinical impact of vivax malaria: a collection review. PLoS Med. 19, e1003890 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  198. World Health Organization. Control and Elimination of Plasmodium vivax Malaria: A Technical Brief (WHO, 2015).

  199. Baird, J. K., Battle, K. E. & Howes, R. E. Primaquine ineligibility in anti-relapse therapy of Plasmodium vivax malaria: the problem of G6PD deficiency and cytochrome P-450 2D6 polymorphisms. Malar. J. 17, 42 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Bouyssou, I. et al. Unveiling P. vivax invasion pathways in Duffy-negative individuals. Cell Host Microbe 31, 2080–2092.e85 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Dechavanne, C. et al. Duffy antigen is expressed during erythropoiesis in Duffy-negative individuals. Cell Host Microbe 31, 2093–2106.e7 (2023).

    Article  CAS  PubMed  Google Scholar 

  202. Bennett, J. W. et al. Phase 1/2a trial of Plasmodium vivax malaria vaccine candidate VMP001/AS01B in malaria-naive adults: safety, immunogenicity, and efficacy. PLoS Negl. Trop. Dis. 10, e0004423 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Malkin, E. M. et al. Phase 1 vaccine trial of Pvs25H: a transmission blocking vaccine for Plasmodium vivax malaria. Vaccine 23, 3131–3138 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05913973 (2024).

  205. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/search?cond=malaria&term=Plasmodium%20Vivax&start=2019-01-01_&aggFilters=studyType:int&intr=Vaccine (2024).

  206. Fried, M., Nosten, F., Brockman, A., Brabin, B. J. & Duffy, P. E. Maternal antibodies block malaria. Nature 395, 851–852 (1998).

    Article  CAS  PubMed  Google Scholar 

  207. Miura, K. et al. Transmission-blocking activity is determined by transmission-reducing activity and number of control oocysts in Plasmodium falciparum standard membrane-feeding assay. Vaccine 34, 4145–4151 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Miura, K. et al. Evaluation and modeling of direct membrane-feeding assay with Plasmodium vivax to support development of transmission blocking vaccines. Sci. Rep. 10, 12569 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Conteh, S. et al. Grammomys surdaster, the natural host for Plasmodium berghei parasites, as a model to study whole-organism vaccines against malaria. Am. J. Trop. Med. Hyg. 96, 835–841 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Conteh, S. et al. Dynamics and outcomes of Plasmodium infections in Grammomys surdaster (Grammomys dolichurus) thicket rats versus inbred mice. Am. J. Trop. Med. Hyg. 103, 1893–1901 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Collins, K. A. et al. A controlled human malaria infection model enabling evaluation of transmission-blocking interventions. J. Clin. Invest. 128, 1551–1562 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Payne, R. O. et al. Demonstration of the blood-stage Plasmodium falciparum controlled human malaria infection model to assess efficacy of the P. falciparum apical membrane antigen 1 vaccine, FMP2.1/AS01. J. Infect. Dis. 213, 1743–1751 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Caspers, P., Gentz, R., Matile, H., Pink, J. R. & Sinigaglia, F. The circumsporozoite protein gene from NF54, a Plasmodium falciparum isolate used in malaria vaccine trials. Mol. Biochem. Parasitol. 35, 185–189 (1989).

    Article  CAS  PubMed  Google Scholar 

  214. De Wilde, M. & Cohen, J. Hybrid protein between CS from Plasmodium and HBsAG. International patent WO 93/10152 (10127.10105.11993 Gazette 11993/10113) (1999).

  215. Collins, K. R21, A Novel Particle Based Vaccine for a Multi-Component Approach to Malaria Vaccination. PhD thesis, Oxford Univ. (2014).

  216. Kisalu, N. K. et al. A human monoclonal antibody prevents malaria infection by targeting a new site of vulnerability on the parasite. Nat. Med. 24, 408–416 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Kayentao, K. et al. Safety and efficacy of a monoclonal antibody against malaria in Mali. N. Engl. J. Med. 387, 1833–1842 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Wang, L. T. et al. A potent anti-malarial human monoclonal antibody targets circumsporozoite protein minor repeats and neutralizes sporozoites in the liver. Immunity 53, 733–744.e8 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05891236 (2024).

  220. Aliprandini, E. et al. Cytotoxic anti-circumsporozoite antibodies target malaria sporozoites in the host skin. Nat. Microbiol. 3, 1224–1233 (2018).

    Article  CAS  PubMed  Google Scholar 

  221. Livingstone, M. C. et al. In vitro and in vivo inhibition of malaria parasite infection by monoclonal antibodies against Plasmodium falciparum circumsporozoite protein (CSP). Sci. Rep. 11, 5318 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Roth, A. et al. A comprehensive model for assessment of liver stage therapies targeting Plasmodium vivax and Plasmodium falciparum. Nat. Commun. 9, 1837 (2018); erratum 9, 2317 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Kucharska, I. et al. Structural ordering of the Plasmodium berghei circumsporozoite protein repeats by inhibitory antibody 3D11. eLife 9, e59018 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Pholcharee, T. et al. Structural and biophysical correlation of anti-NANP antibodies with in vivo protection against P. falciparum. Nat. Commun. 12, 1063 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Mueller, A. K., Labaied, M., Kappe, S. H. & Matuschewski, K. Genetically modified Plasmodium parasites as a protective experimental malaria vaccine. Nature 433, 164–167 (2005).

    Article  CAS  PubMed  Google Scholar 

  226. Richie, T. L. et al. Progress with Plasmodium falciparum sporozoite (PfSPZ)-based malaria vaccines. Vaccine 33, 7452–7461 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Bijker, E. M. et al. Protection against malaria after immunization by chloroquine prophylaxis and sporozoites is mediated by preerythrocytic immunity. Proc. Natl Acad. Sci. USA 110, 7862–7867 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank their colleagues from the Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases (LMIV–NIAID) for the discussions, ideas and vaccine development contributions that informed the content of this manuscript. A. Hoofring from NIH Medical Arts prepared the main figures. R. Morrison (LMIV–NIAID) prepared Supplementary Fig. 1. The authors are supported by the Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article and contributed substantially to discussion of the content. P.E.D. wrote the first draft with contributions from all authors. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Patrick E. Duffy.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Microbiology thanks James Kazura, who co-reviewed with Katherine Dobbs, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duffy, P.E., Gorres, J.P., Healy, S.A. et al. Malaria vaccines: a new era of prevention and control. Nat Rev Microbiol 22, 756–772 (2024). https://doi.org/10.1038/s41579-024-01065-7

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41579-024-01065-7

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology