Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Aspergillus fumigatus biology, immunopathogenicity and drug resistance

Abstract

Aspergillus fumigatus is a saprophytic fungus prevalent in the environment and capable of causing severe invasive infection in humans. This organism can use strategies such as molecule masking, immune response manipulation and gene expression alteration to evade host defences. Understanding these mechanisms is essential for developing effective diagnostics and therapies to improve patient outcomes in Aspergillus-related diseases. In this Review, we explore the biology and pathogenesis of A. fumigatus in the context of host biology and disease, highlighting virus-associated pulmonary aspergillosis, a newly identified condition that arises in patients with severe pulmonary viral infections. In the post-pandemic landscape, in which immunotherapy is gaining attention for managing severe infections, we examine the host immune responses that are critical for controlling invasive aspergillosis and how A. fumigatus circumvents these defences. Additionally, we address the emerging issue of azole resistance in A. fumigatus, emphasizing the urgent need for greater understanding in an era marked by increasing antimicrobial resistance. This Review provides timely insights necessary for developing new immunotherapeutic strategies against invasive aspergillosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Habitats and life cycles of Aspergillus fumigatus.
Fig. 2: Mechanisms of Aspergillus fumigatus adaptation to the host.
Fig. 3: Physiological innate immune response to Aspergillus fumigatus infection.
Fig. 4: Influenza-associated and COVID-19-associated pulmonary aspergillosis.
Fig. 5: Ability of Aspergillus fumigatus to generate genetic variation according to the reproduction mode, frequency and potential sites for resistance selection.

Similar content being viewed by others

References

  1. Wang, F. et al. Transcription in fungal conidia before dormancy produces phenotypically variable conidia that maximize survival in different environments. Nat. Microbiol. 6, 1066–1081 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Blatzer, M. & Latge, J. P. Fungal spores are future-proofed. Nat. Microbiol. 6, 979–980 (2021). This study shows that dormant fungal spores exhibit diversity and anticipate future conditions by activating transcriptional processes influenced by their developmental environment.

    Article  CAS  PubMed  Google Scholar 

  3. Taha, M. P., Pollard, S. J., Sarkar, U. & Longhurst, P. Estimating fugitive bioaerosol releases from static compost windrows: feasibility of a portable wind tunnel approach. Waste Manag. 25, 445–450 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. O’Gorman, C. M., Fuller, H. & Dyer, P. S. Discovery of a sexual cycle in the opportunistic fungal pathogen Aspergillus fumigatus. Nature 457, 471–474 (2009).

    Article  PubMed  Google Scholar 

  5. Auxier, B. et al. The human fungal pathogen Aspergillus fumigatus can produce the highest known number of meiotic crossovers. PLoS Biol. 21, e3002278 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fang, W. & Latge, J. P. Microbe profile: Aspergillus fumigatus: a saprotrophic and opportunistic fungal pathogen. Microbiology 164, 1009–1011 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ries, L. N. A., Beattie, S., Cramer, R. A. & Goldman, G. H. Overview of carbon and nitrogen catabolite metabolism in the virulence of human pathogenic fungi. Mol. Microbiol. 107, 277–297 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Wiesner, D. L. et al. Club cell TRPV4 serves as a damage sensor driving lung allergic inflammation. Cell Host Microbe 27, 614–628.e616 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Griffiths, J. S. et al. Differential susceptibility of Dectin-1 isoforms to functional inactivation by neutrophil and fungal proteases. FASEB J. 32, 3385–3397 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Beattie, S. R. et al. Filamentous fungal carbon catabolite repression supports metabolic plasticity and stress responses essential for disease progression. PLoS Pathog. 13, e1006340 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ries, L. N. A. et al. Aspergillus fumigatus acetate utilization impacts virulence traits and pathogenicity. mBio 12, e0168221 (2021).

    Article  PubMed  Google Scholar 

  12. Krappmann, S. et al. The Aspergillus fumigatus transcriptional activator CpcA contributes significantly to the virulence of this fungal pathogen. Mol. Microbiol. 52, 785–799 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Amich, J. & Bignell, E. Amino acid biosynthetic routes as drug targets for pulmonary fungal pathogens: what is known and why do we need to know more? Curr. Opin. Microbiol. 32, 151–158 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Zelante, T. et al. Aspergillus fumigatus tryptophan metabolic route differently affects host immunity. Cell Rep. 34, 108673 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Barber, A. E. et al. Aspergillus fumigatus pan-genome analysis identifies genetic variants associated with human infection. Nat. Microbiol. 6, 1526–1536 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Mirhakkak, M. H. et al. Genome-scale metabolic modeling of Aspergillus fumigatus strains reveals growth dependencies on the lung microbiome. Nat. Commun. 14, 4369 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Misslinger, M., Hortschansky, P., Brakhage, A. A. & Haas, H. Fungal iron homeostasis with a focus on Aspergillus fumigatus. Biochim. Biophys. Acta Mol. Cell Res. 1868, 118885 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Schrettl, M. et al. SreA-mediated iron regulation in Aspergillus fumigatus. Mol. Microbiol. 70, 27–43 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schrettl, M. et al. HapX-mediated adaption to iron starvation is crucial for virulence of Aspergillus fumigatus. PLoS Pathog. 6, e1001124 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Gsaller, F. et al. The Janus transcription factor HapX controls fungal adaptation to both iron starvation and iron excess. EMBO J. 33, 2261–2276 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yap, A., Volz, R., Paul, S., Moye-Rowley, W. S. & Haas, H. Regulation of high-affinity iron acquisition, including acquisition mediated by the iron permease FtrA, is coordinated by AtrR, SrbA, and SreA in Aspergillus fumigatus. mBio 14, e0075723 (2023).

    Article  PubMed  Google Scholar 

  22. Amich, J. et al. The ZrfC alkaline zinc transporter is required for Aspergillus fumigatus virulence and its growth in the presence of the Zn/Mn-chelating protein calprotectin. Cell. Microbiol. 16, 548–564 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Moreno, M. A. et al. The regulation of zinc homeostasis by the ZafA transcriptional activator is essential for Aspergillus fumigatus virulence. Mol. Microbiol. 64, 1182–1197 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Vicentefranqueira, R. et al. The transcription factor ZafA regulates the homeostatic and adaptive response to zinc starvation in Aspergillus fumigatus. Genes https://doi.org/10.3390/genes9070318 (2018).

  25. Wiemann, P. et al. Aspergillus fumigatus copper export machinery and reactive oxygen intermediate defense counter host copper-mediated oxidative antimicrobial offense. Cell Rep. 19, 1008–1021 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lim, F. Y. et al. Fungal isocyanide synthases and xanthocillin biosynthesis in Aspergillus fumigatus. mBio https://doi.org/10.1128/mBio.00785-18 (2018).

  27. Steinbach, W. J. et al. Calcineurin controls growth, morphology, and pathogenicity in Aspergillus fumigatus. Eukaryot. Cell 5, 1091–1103 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cramer, R. A. Jr. et al. Calcineurin target CrzA regulates conidial germination, hyphal growth, and pathogenesis of Aspergillus fumigatus. Eukaryot. Cell 7, 1085–1097 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. de Castro, P. A. et al. Aspergillus fumigatus calcium-responsive transcription factors regulate cell wall architecture promoting stress tolerance, virulence and caspofungin resistance. PLoS Genet. 15, e1008551 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Grahl, N. et al. In vivo hypoxia and a fungal alcohol dehydrogenase influence the pathogenesis of invasive pulmonary aspergillosis. PLoS Pathog. 7, e1002145 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Grahl, N., Dinamarco, T. M., Willger, S. D., Goldman, G. H. & Cramer, R. A. Aspergillus fumigatus mitochondrial electron transport chain mediates oxidative stress homeostasis, hypoxia responses and fungal pathogenesis. Mol. Microbiol. 84, 383–399 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ben-Ami, R., Lewis, R. E., Leventakos, K. & Kontoyiannis, D. P. Aspergillus fumigatus inhibits angiogenesis through the production of gliotoxin and other secondary metabolites. Blood 114, 5393–5399 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gresnigt, M. S. et al. Reducing hypoxia and inflammation during invasive pulmonary aspergillosis by targeting the interleukin-1 receptor. Sci. Rep. 6, 26490 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kowalski, C. H. et al. Heterogeneity among isolates reveals that fitness in low oxygen correlates with Aspergillus fumigatus virulence. mBio https://doi.org/10.1128/mBio.01515-16 (2016).

  35. Willger, S. D. et al. A sterol-regulatory element binding protein is required for cell polarity, hypoxia adaptation, azole drug resistance, and virulence in Aspergillus fumigatus. PLoS Pathog. 4, e1000200 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Chung, D. et al. ChIP-seq and in vivo transcriptome analyses of the Aspergillus fumigatus SREBP SrbA reveals a new regulator of the fungal hypoxia response and virulence. PLoS Pathog. 10, e1004487 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Le Mauff, F. & Sheppard, D. C. Understanding Aspergillus fumigatus galactosaminogalactan biosynthesis: a few questions remain. Cell Surf. 9, 100095 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Speth, C., Rambach, G., Lass-Florl, C., Howell, P. L. & Sheppard, D. C. Galactosaminogalactan (GAG) and its multiple roles in Aspergillus pathogenesis. Virulence 10, 976–983 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gravelat, F. N. et al. Aspergillus galactosaminogalactan mediates adherence to host constituents and conceals hyphal β-glucan from the immune system. PLoS Pathog. 9, e1003575 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lee, M. J. et al. Deacetylation of fungal exopolysaccharide mediates adhesion and biofilm formation. mBio 7, e00252–00216 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bamford, N. C. et al. Ega3 from the fungal pathogen Aspergillus fumigatus is an endo-α-1,4-galactosaminidase that disrupts microbial biofilms. J. Biol. Chem. 294, 13833–13849 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kerkaert, J. D. et al. An alanine aminotransferase is required for biofilm-specific resistance of Aspergillus fumigatus to echinocandin treatment. mBio 13, e0293321 (2022).

    Article  PubMed  Google Scholar 

  43. Morelli, K. A., Kerkaert, J. D. & Cramer, R. A. Aspergillus fumigatus biofilms: toward understanding how growth as a multicellular network increases antifungal resistance and disease progression. PLoS Pathog. 17, e1009794 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kowalski, C. H., Morelli, K. A., Schultz, D., Nadell, C. D. & Cramer, R. A. Fungal biofilm architecture produces hypoxic microenvironments that drive antifungal resistance. Proc. Natl Acad. Sci. USA 117, 22473–22483 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kowalski, C. H. et al. Fungal biofilm morphology impacts hypoxia fitness and disease progression. Nat. Microbiol. 4, 2430–2441 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kowalski, C. H., Morelli, K. A., Stajich, J. E., Nadell, C. D. & Cramer, R. A. A heterogeneously expressed gene family modulates the biofilm architecture and hypoxic growth of Aspergillus fumigatus. mBio https://doi.org/10.1128/mBio.03579-20 (2021).

  47. Westphalen, K. et al. Sessile alveolar macrophages communicate with alveolar epithelium to modulate immunity. Nature 506, 503–506 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Neupane, A. S. et al. Patrolling alveolar macrophages conceal bacteria from the immune system to maintain homeostasis. Cell 183, 110–125.e111 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Hatinguais, R., Willment, J. A. & Brown, G. D. PAMPs of the fungal cell wall and mammalian PRRs. Curr. Top. Microbiol. Immunol. 425, 187–223 (2020).

    CAS  PubMed  Google Scholar 

  50. Plato, A., Hardison, S. E. & Brown, G. D. Pattern recognition receptors in antifungal immunity. Semin. Immunopathol. 37, 97–106 (2015).

    Article  CAS  PubMed  Google Scholar 

  51. Heung, L. J., Wiesner, D. L., Wang, K., Rivera, A. & Hohl, T. M. Immunity to fungi in the lung. Semin. Immunol. 66, 101728 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Becker, K. L., Ifrim, D. C., Quintin, J., Netea, M. G. & van de Veerdonk, F. L. Antifungal innate immunity: recognition and inflammatory networks. Semin. Immunopathol. 37, 107–116 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Jhingran, A. et al. Compartment-specific and sequential role of MyD88 and CARD9 in chemokine induction and innate defense during respiratory fungal infection. PLoS Pathog. 11, e1004589 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Caffrey, A. K. et al. IL-1α signaling is critical for leukocyte recruitment after pulmonary Aspergillus fumigatus challenge. PLoS Pathog. 11, e1004625 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Rieber, N. et al. Extrapulmonary Aspergillus infection in patients with CARD9 deficiency. JCI Insight 1, e89890 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Mills, K. A. M. et al. GM-CSF-mediated epithelial-immune cell crosstalk orchestrates pulmonary immunity to Aspergillus fumigatus. Sci. Immunol. 10, eadr0547 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Caffrey-Carr, A. K. et al. Host-derived leukotriene B4 is critical for resistance against invasive pulmonary aspergillosis. Front. Immunol. 8, 1984 (2017).

    Article  PubMed  Google Scholar 

  58. Shende, R. et al. Protective role of host complement system in Aspergillus fumigatus infection. Front. Immunol. 13, 978152 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Garlanda, C. et al. Non-redundant role of the long pentraxin PTX3 in anti-fungal innate immune response. Nature 420, 182–186 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Cunha, C. et al. Genetic PTX3 deficiency and aspergillosis in stem-cell transplantation. N. Engl. J. Med. 370, 421–432 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. Sarden, N. et al. A B1a-natural IgG-neutrophil axis is impaired in viral- and steroid-associated aspergillosis. Sci. Transl. Med. 14, eabq6682 (2022). This study shows that viral pneumonia depletes circulating innate B1a cells and lowers anti-A. fumigatus IgG levels, resulting in reduced opsonization and neutrophil uptake and killing of conidia.

    Article  CAS  PubMed  Google Scholar 

  62. Espinosa, V. et al. Inflammatory monocytes orchestrate innate antifungal immunity in the lung. PLoS Pathog. 10, e1003940 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Hohl, T. M. et al. Inflammatory monocytes facilitate adaptive CD4 T cell responses during respiratory fungal infection. Cell Host Microbe 6, 470–481 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Guo, Y. et al. During Aspergillus infection, monocyte-derived DCs, neutrophils, and plasmacytoid DCs enhance innate immune defense through CXCR3-dependent crosstalk. Cell Host Microbe 28, 104–116.e104 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Espinosa, V. et al. Type III interferon is a critical regulator of innate antifungal immunity. Sci. Immunol. https://doi.org/10.1126/sciimmunol.aan5357 (2017). This study shows that type III interferons regulate NADPH oxidase activity in neutrophils and are critical regulators of anti-A. fumigatus immunity.

  66. Guo, Y. et al. An IFN–STAT1–CYBB axis defines protective plasmacytoid DC to neutrophil crosstalk during Aspergillus fumigatus infection. Preprint at bioRxiv https://doi.org/10.1101/2024.10.24.620079 (2024).

  67. Dutta, O., Espinosa, V., Wang, K., Avina, S. & Rivera, A. Dectin-1 promotes type I and III interferon expression to support optimal antifungal immunity in the lung. Front. Cell Infect. Microbiol. 10, 321 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Reedy, J. L. et al. The C-type lectin receptor dectin-2 is a receptor for Aspergillus fumigatus galactomannan. mBio 14, e0318422 (2023).

    Article  PubMed  Google Scholar 

  69. Dichtl, K. et al. Aspergillus fumigatus devoid of cell wall β-1,3-glucan is viable, massively sheds galactomannan and is killed by septum formation inhibitors. Mol. Microbiol. 95, 458–471 (2015).

    Article  CAS  PubMed  Google Scholar 

  70. Ballou, E. R. et al. Lactate signalling regulates fungal β-glucan masking and immune evasion. Nat. Microbiol. 2, 16238 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gresnigt, M. S. et al. A polysaccharide virulence factor from Aspergillus fumigatus elicits anti-inflammatory effects through induction of interleukin-1 receptor antagonist. PLoS Pathog. 10, e1003936 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Heilig, L. et al. CD56-mediated activation of human natural killer cells is triggered by Aspergillus fumigatus galactosaminogalactan. PLoS Pathog. 20, e1012315 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Briard, B. et al. Galactosaminogalactan activates the inflammasome to provide host protection. Nature 588, 688–692 (2020). First demonstration that galactosaminogalactan of A. fumigatus is a pathogen-associated molecular pattern molecule that activates the NLRP3 inflammasome by binding to ribosomal proteins and inhibiting cellular translation machinery.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Delliere, S. et al. Interplay between host humoral pattern recognition molecules controls undue immune responses against Aspergillus fumigatus. Nat. Commun. 15, 6966 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Becker, K. L. et al. Aspergillus cell wall chitin induces anti- and proinflammatory cytokines in human PBMCs via the Fc-gamma receptor/Syk/PI3K pathway. mBio https://doi.org/10.1128/mBio.01823-15 (2016).

  76. Aimanianda, V. et al. Surface hydrophobin prevents immune recognition of airborne fungal spores. Nature 460, 1117–1121 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Pinzan, C. F. et al. Aspergillus fumigatus conidial surface-associated proteome reveals factors for fungal evasion and host immunity modulation. Nat. Microbiol. 9, 2710–2726 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Desai, J. V. & Lionakis, M. S. The role of neutrophils in host defense against invasive fungal infections. Curr. Clin. Microbiol. Rep. 5, 181–189 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Shlezinger, N. et al. Sterilizing immunity in the lung relies on targeting fungal apoptosis-like programmed cell death. Science 357, 1037–1041 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Desai, J. V. et al. BTK drives neutrophil activation for sterilizing antifungal immunity. J. Clin. Invest. https://doi.org/10.1172/JCI176142 (2024).

  81. Lionakis, M. S. et al. Inhibition of B cell receptor signaling by ibrutinib in primary CNS lymphoma. Cancer Cell 31, 833–843.e835 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kyrmizi, I. et al. Calcium sequestration by fungal melanin inhibits calcium-calmodulin signalling to prevent LC3-associated phagocytosis. Nat. Microbiol. 3, 791–803 (2018).

    Article  CAS  PubMed  Google Scholar 

  83. Kyrmizi, I. et al. Corticosteroids block autophagy protein recruitment in Aspergillus fumigatus phagosomes via targeting dectin-1/Syk kinase signaling. J. Immunol. 191, 1287–1299 (2013).

    Article  CAS  PubMed  Google Scholar 

  84. Akoumianaki, T. et al. Aspergillus cell wall melanin blocks LC3-associated phagocytosis to promote pathogenicity. Cell Host Microbe 19, 79–90 (2016).

    Article  CAS  PubMed  Google Scholar 

  85. Akoumianaki, T. et al. Uncoupling of IL-6 signaling and LC3-associated phagocytosis drives immunoparalysis during sepsis. Cell Host Microbe 29, 1277–1293.e1276 (2021).

    Article  CAS  PubMed  Google Scholar 

  86. Ibrahim-Granet, O. et al. Phagocytosis and intracellular fate of Aspergillus fumigatus conidia in alveolar macrophages. Infect. Immun. 71, 891–903 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hohl, T. M. et al. Aspergillus fumigatus triggers inflammatory responses by stage-specific β-glucan display. PLoS Pathog. 1, e30 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Mansour, M. K. et al. Dectin-1 activation controls maturation of β-1,3-glucan-containing phagosomes. J. Biol. Chem. 288, 16043–16054 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Carrion Sde, J. et al. The RodA hydrophobin on Aspergillus fumigatus spores masks dectin-1- and dectin-2-dependent responses and enhances fungal survival in vivo. J. Immunol. 191, 2581–2588 (2013).

    Article  PubMed  Google Scholar 

  90. Hooper, K. M. et al. V-ATPase is a universal regulator of LC3-associated phagocytosis and non-canonical autophagy. J. Cell Biol. https://doi.org/10.1083/jcb.202105112 (2022).

  91. Fletcher, K. et al. The WD40 domain of ATG16L1 is required for its non-canonical role in lipidation of LC3 at single membranes. EMBO J. https://doi.org/10.15252/embj.201797840 (2018).

  92. Xu, Y. et al. A bacterial effector reveals the V-ATPase–ATG16L1 axis that initiates xenophagy. Cell 178, 552–566.e520 (2019).

    Article  CAS  PubMed  Google Scholar 

  93. Shah, A. et al. Calcineurin orchestrates lateral transfer of Aspergillus fumigatus during macrophage cell death. Am. J. Respir. Crit. Care Med. 194, 1127–1139 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Bruns, S. et al. Production of extracellular traps against Aspergillus fumigatus in vitro and in infected lung tissue is dependent on invading neutrophils and influenced by hydrophobin RodA. PLoS Pathog. 6, e1000873 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Hopke, A. et al. Neutrophil swarming delays the growth of clusters of pathogenic fungi. Nat. Commun. 11, 2031 (2020).

    Article  PubMed  Google Scholar 

  96. Song, Z. et al. NADPH oxidase controls pulmonary neutrophil infiltration in the response to fungal cell walls by limiting LTB4. Blood 135, 891–903 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Gazendam, R. P. et al. Human neutrophils use different mechanisms to kill Aspergillus fumigatus conidia and hyphae: evidence from phagocyte defects. J. Immunol. 196, 1272–1283 (2016).

    Article  CAS  PubMed  Google Scholar 

  98. Malamud, M. et al. Recognition and control of neutrophil extracellular trap formation by MICL. Nature 633, 442–450 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Clark, H. L. et al. Zinc and manganese chelation by neutrophil S100A8/A9 (calprotectin) limits extracellular Aspergillus fumigatus hyphal growth and corneal infection. J. Immunol. 196, 336–344 (2016).

    Article  CAS  PubMed  Google Scholar 

  100. Happacher, I. et al. The siderophore ferricrocin mediates iron acquisition in Aspergillus fumigatus. Microbiol. Spectr. 11, e0049623 (2023).

    Article  PubMed  Google Scholar 

  101. Leal, S. M. Jr. et al. Targeting iron acquisition blocks infection with the fungal pathogens Aspergillus fumigatus and Fusarium oxysporum. PLoS Pathog. 9, e1003436 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Hsu, J. L. et al. Microhemorrhage-associated tissue iron enhances the risk for Aspergillus fumigatus invasion in a mouse model of airway transplantation. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aag2616 (2018).

  103. Fallon, J. P., Reeves, E. P. & Kavanagh, K. Inhibition of neutrophil function following exposure to the Aspergillus fumigatus toxin fumagillin. J. Med. Microbiol. 59, 625–633 (2010).

    Article  CAS  PubMed  Google Scholar 

  104. Lionakis, M. S., Drummond, R. A. & Hohl, T. M. Immune responses to human fungal pathogens and therapeutic prospects. Nat. Rev. Immunol. 23, 433–452 (2023).

    Article  CAS  PubMed  Google Scholar 

  105. Desai, J. V. et al. C5a-licensed phagocytes drive sterilizing immunity during systemic fungal infection. Cell 186, 2802–2822.e2822 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. McDermott, A. J. & Klein, B. S. Helper T-cell responses and pulmonary fungal infections. Immunology 155, 155–163 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Feys, S. et al. Lower respiratory tract single-cell RNA sequencing and neutrophil extracellular trap profiling of COVID-19-associated pulmonary aspergillosis: a single centre, retrospective, observational study. Lancet Microbe https://doi.org/10.1016/S2666-5247(23)00368-3 (2024).

  108. Song, L., Zhao, Y., Wang, G., Zou, W. & Sai, L. Investigation of predictors for invasive pulmonary aspergillosis in patients with severe fever with thrombocytopenia syndrome. Sci. Rep. 13, 1538 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Dewi, I. M. W., van de Veerdonk, F. L. & Gresnigt, M. S. The multifaceted role of T-helper responses in host defense against Aspergillus fumigatus. J. Fungi https://doi.org/10.3390/jof3040055 (2017).

  110. Cenci, E. et al. Cytokine- and T helper-dependent lung mucosal immunity in mice with invasive pulmonary aspergillosis. J. Infect. Dis. 178, 1750–1760 (1998).

    Article  CAS  PubMed  Google Scholar 

  111. Moss, R. B. Pathophysiology and immunology of allergic bronchopulmonary aspergillosis. Med. Mycol. 43, S203–S206 (2005).

    Article  CAS  PubMed  Google Scholar 

  112. Harrington, L. E. et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol. 6, 1123–1132 (2005).

    Article  CAS  PubMed  Google Scholar 

  113. Break, T. J. et al. Aberrant type 1 immunity drives susceptibility to mucosal fungal infections. Science https://doi.org/10.1126/science.aay5731 (2021).

  114. Romani, L. et al. Defective tryptophan catabolism underlies inflammation in mouse chronic granulomatous disease. Nature 451, 211–215 (2008).

    Article  CAS  PubMed  Google Scholar 

  115. Chamilos, G. & Carvalho, A. Aspergillus fumigatus DHN-Melanin. Curr. Top. Microbiol. Immunol. 425, 17–28 (2020).

    CAS  PubMed  Google Scholar 

  116. Graf, K. T., Liu, H., Filler, S. G. & Bruno, V. M. Depletion of extracellular chemokines by Aspergillus melanin. mBio 14, e0019423 (2023).

    Article  PubMed  Google Scholar 

  117. Jahn, B., Langfelder, K., Schneider, U., Schindel, C. & Brakhage, A. A. PKSP-dependent reduction of phagolysosome fusion and intracellular kill of Aspergillus fumigatus conidia by human monocyte-derived macrophages. Cell Microbiol. 4, 793–803 (2002).

    Article  CAS  PubMed  Google Scholar 

  118. Jia, L. J. et al. Aspergillus fumigatus hijacks human p11 to redirect fungal-containing phagosomes to non-degradative pathway. Cell Host Microbe 31, 373–388 e310 (2023). The study identifies the conidial HscA protein of A. fumigatus as an anchoring factor for host p11, which enables the fungus to divert phagosomal trafficking through the non-degradative pathway and favour immune evasion.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Robinet, P. et al. A polysaccharide virulence factor of a human fungal pathogen induces neutrophil apoptosis via NK cells. J. Immunol. 192, 5332–5342 (2014).

    Article  CAS  PubMed  Google Scholar 

  120. Lee, M. J. et al. The fungal exopolysaccharide galactosaminogalactan mediates virulence by enhancing resistance to neutrophil extracellular traps. PLoS Pathog. 11, e1005187 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Dagenais, T. R. & Keller, N. P. Pathogenesis of Aspergillus fumigatus in invasive aspergillosis. Clin. Microbiol. Rev. 22, 447–465 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Raffa, N. & Keller, N. P. A call to arms: mustering secondary metabolites for success and survival of an opportunistic pathogen. PLoS Pathog. 15, e1007606 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Arias, M. et al. Preparations for invasion: modulation of host lung immunity during pulmonary aspergillosis by gliotoxin and other fungal secondary metabolites. Front. Immunol. 9, 2549 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Sugui, J. A. et al. Host immune status-specific production of gliotoxin and bis-methyl-gliotoxin during invasive aspergillosis in mice. Sci. Rep. 7, 10977 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Gunther, K. et al. Aspergillus fumigatus-derived gliotoxin impacts innate immune cell activation through modulating lipid mediator production in macrophages. Immunology https://doi.org/10.1111/imm.13857 (2024).

  126. de Castro, P. A. et al. Regulation of gliotoxin biosynthesis and protection in Aspergillus species. PLoS Genet. 18, e1009965 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Alves de Castro, P. et al. Aspergillus fumigatus mitogen-activated protein kinase MpkA is involved in gliotoxin production and self-protection. Nat. Commun. 15, 33 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Guruceaga, X. et al. Aspergillus fumigatus fumagillin contributes to host cell damage. J. Fungi https://doi.org/10.3390/jof7110936 (2021).

  129. Niu, M. & Keller, N. P. Co-opting oxylipin signals in microbial disease. Cell. Microbiol. 21, e13025 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Niu, M. et al. Fungal oxylipins direct programmed developmental switches in filamentous fungi. Nat. Commun. 11, 5158 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Calise, D. G., Park, S. C., Bok, J. W., Goldman, G. H. & Keller, N. P. An oxylipin signal confers protection against antifungal echinocandins in pathogenic aspergilli. Nat. Commun. 15, 3770 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Steffan, B. N. et al. Loss of the mammalian G-protein coupled receptor, G2A, modulates severity of invasive pulmonary aspergillosis. Front. Immunol. 14, 1173544 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Arastehfar, A. et al. Aspergillus fumigatus and aspergillosis: from basics to clinics. Stud. Mycol. 100, 100115 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Donnelly, J. P. et al. Revision and update of the consensus definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer and the Mycoses Study Group Education and Research Consortium. Clin. Infect. Dis. 71, 1367–1376 (2020).

    Article  PubMed  Google Scholar 

  135. van de Veerdonk, F. L. et al. Influenza-associated aspergillosis in critically ill patients. Am. J. Respir. Crit. Care Med. 196, 524–527 (2017).

    Article  PubMed  Google Scholar 

  136. Schauwvlieghe, A. et al. Invasive aspergillosis in patients admitted to the intensive care unit with severe influenza: a retrospective cohort study. Lancet Respir. Med. https://doi.org/10.1016/S2213-2600(18)30274-1 (2018).

  137. Koehler, P. et al. Defining and managing COVID-19-associated pulmonary aspergillosis: the 2020 ECMM/ISHAM consensus criteria for research and clinical guidance. Lancet Infect Dis. https://doi.org/10.1016/S1473-3099(20)30847-1 (2020).

  138. Dewi, I. M. et al. Invasive pulmonary aspergillosis associated with viral pneumonitis. Curr. Opin. Microbiol. 62, 21–27 (2021).

    Article  CAS  PubMed  Google Scholar 

  139. Feys, S. et al. Influenza-associated and COVID-19-associated pulmonary aspergillosis in critically ill patients. Lancet Respir. Med. 12, 728–742 (2024).

    Article  CAS  PubMed  Google Scholar 

  140. van de Veerdonk, F. L. et al. COVID-19-associated Aspergillus tracheobronchitis: the interplay between viral tropism, host defence, and fungal invasion. Lancet Respir. Med. 9, 795–802 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  141. van de Veerdonk, F. L., Gresnigt, M. S., Verweij, P. E. & Netea, M. G. Personalized medicine in influenza: a bridge too far or the near future? Curr. Opin. Pulm. Med. 23, 237–240 (2017).

    Article  PubMed  Google Scholar 

  142. Konig, S. et al. The influenza A virus promotes fungal growth of Aspergillus fumigatus via direct interaction in vitro. Microbes Infect. 26, 105264 (2024).

    Article  PubMed  Google Scholar 

  143. Dewi, I. M. W. et al. Neuraminidase and SIGLEC15 modulate the host defense against pulmonary aspergillosis. Cell Rep. Med. 2, 100289 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Feys, S. et al. Lung epithelial and myeloid innate immunity in influenza-associated or COVID-19-associated pulmonary aspergillosis: an observational study. Lancet Respir. Med. 10, 1147–1159 (2022). This study reveals a three-level breach in antifungal immunity in influenza-associated and COVID-19-associated pulmonary aspergillosis, affecting epithelial barrier integrity, spores phagocytosis and killing, and destruction of A. fumigatus hyphae by neutrophils.

    Article  CAS  PubMed  Google Scholar 

  145. Wauters, E. et al. Discriminating mild from critical COVID-19 by innate and adaptive immune single-cell profiling of bronchoalveolar lavages. Cell Res. 31, 272–290 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Cambier, S. et al. Atypical response to bacterial coinfection and persistent neutrophilic bronchoalveolar inflammation distinguish critical COVID-19 from influenza. JCI Insight https://doi.org/10.1172/jci.insight.155055 (2022).

  147. Ghoneim, H. E., Thomas, P. G. & McCullers, J. A. Depletion of alveolar macrophages during influenza infection facilitates bacterial superinfections. J. Immunol. 191, 1250–1259 (2013).

    Article  CAS  PubMed  Google Scholar 

  148. Liu, K. W. et al. Postinfluenza environment reduces Aspergillus fumigatus conidium clearance and facilitates invasive aspergillosis in vivo. mBio 13, e0285422 (2022).

    Article  PubMed  Google Scholar 

  149. Seldeslachts, L. et al. Damping excessive viral-induced IFN-γ rescues the impaired anti-Aspergillus host immune response in influenza-associated pulmonary aspergillosis. eBioMedicine 108, 105347 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Vanderbeke, L. et al. A pathology-based case series of influenza- and COVID-19-associated pulmonary aspergillosis: the proof is in the tissue. Am. J. Respir. Crit. Care Med. 208, 301–311 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Wurster, S. et al. Development of a corticosteroid-immunosuppressed mouse model to study the pathogenesis and therapy of influenza-associated pulmonary aspergillosis. J. Infect. Dis. 227, 901–906 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Feys, S., Hoenigl, M., Gangneux, J. P., Verweij, P. E. & Wauters, J. Fungal fog in viral storms: necessity for rigor in aspergillosis diagnosis and research. Am. J. Respir. Crit. Care Med. 209, 631–633 (2024).

    Article  PubMed  Google Scholar 

  153. Zuniga-Moya, J. C. et al. Incidence and mortality of COVID-19-associated invasive fungal infections among critically ill intubated patients: a multicenter retrospective cohort analysis. Open. Forum Infect. Dis. 11, ofae108 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Vanderbeke, L. et al. Posaconazole for prevention of invasive pulmonary aspergillosis in critically ill influenza patients (POSA-FLU): a randomised, open-label, proof-of-concept trial. Intensive Care Med. 47, 674–686 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Hatzl, S. et al. Antifungal prophylaxis for prevention of COVID-19-associated pulmonary aspergillosis in critically ill patients: an observational study. Crit. Care 25, 335 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Rombauts, A. et al. Antifungal prophylaxis with nebulized amphotericin-B in solid-organ transplant recipients with severe COVID-19: a retrospective observational study. Front. Cell Infect. Microbiol. 13, 1165236 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Herivaux, A. et al. Lung microbiota predict invasive pulmonary aspergillosis and its outcome in immunocompromised patients. Thorax 77, 283–291 (2022).

    Article  PubMed  Google Scholar 

  158. Gow, N. A. R. et al. The importance of antimicrobial resistance in medical mycology. Nat. Commun. 13, 5352 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Hokken, M. W. J. et al. The transcriptome response to azole compounds in Aspergillus fumigatus shows differential gene expression across pathways essential for azole resistance and cell survival. J. Fungi https://doi.org/10.3390/jof9080807 (2023).

  160. Verweij, P. E. et al. In-host adaptation and acquired triazole resistance in Aspergillus fumigatus: a dilemma for clinical management. Lancet Infect. Dis. 16, e251–e260 (2016). This overview challenges current A. fumigatus management strategies and highlights the need to study genomic dynamics during infection to understand the key factors facilitating fungal adaptation.

    Article  CAS  PubMed  Google Scholar 

  161. Zhang, J., Verweij, P. E., Rijs, A., Debets, A. J. M. & Snelders, E. Flower bulb waste material is a natural niche for the sexual cycle in Aspergillus fumigatus. Front. Cell Infect. Microbiol. 11, 785157 (2021).

    Article  PubMed  Google Scholar 

  162. Zhang, J., Debets, A. J. M., Verweij, P. E. & Snelders, E. Azole-resistance development; how the Aspergillus fumigatus lifecycle defines the potential for adaptation. J. Fungi https://doi.org/10.3390/jof7080599 (2021).

  163. Engel, T. et al. Parasexual recombination enables Aspergillus fumigatus to persist in cystic fibrosis. ERJ Open Res. https://doi.org/10.1183/23120541.00020-2020 (2020).

  164. Howard, S. J. et al. Major variations in Aspergillus fumigatus arising within aspergillomas in chronic pulmonary aspergillosis. Mycoses 56, 434–441 (2013).

    Article  CAS  PubMed  Google Scholar 

  165. Fisher, M. C. et al. Tackling the emerging threat of antifungal resistance to human health. Nat. Rev. Microbiol. 20, 557–571 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Schoustra, S. E. et al. Environmental hotspots for azole resistance selection of Aspergillus fumigatus, the Netherlands. Emerg. Infect. Dis. 25, 1347–1353 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Rivelli Zea, S. M. & Toyotome, T. Azole-resistant Aspergillus fumigatus as an emerging worldwide pathogen. Microbiol. Immunol. 66, 135–144 (2022).

    Article  CAS  PubMed  Google Scholar 

  168. Snelders, E. et al. Triazole fungicides can induce cross-resistance to medical triazoles in Aspergillus fumigatus. PLoS ONE 7, e31801 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Shelton, J. M. G. et al. Citizen science reveals landscape-scale exposures to multiazole-resistant Aspergillus fumigatus bioaerosols. Sci. Adv. 9, eadh8839 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Kolwijck, E. et al. Voriconazole-susceptible and voriconazole-resistant Aspergillus fumigatus coinfection. Am. J. Respir. Crit. Care Med. 193, 927–929 (2016).

    Article  CAS  PubMed  Google Scholar 

  171. Herbrecht, R. et al. Voriconazole versus amphotericin B for primary therapy of invasive aspergillosis. N. Engl. J. Med. 347, 408–415 (2002).

    Article  CAS  PubMed  Google Scholar 

  172. Maertens, J. A. et al. Isavuconazole versus voriconazole for primary treatment of invasive mould disease caused by Aspergillus and other filamentous fungi (SECURE): a phase 3, randomised-controlled, non-inferiority trial. Lancet 387, 760–769 (2016).

    Article  CAS  PubMed  Google Scholar 

  173. Maertens, J. A. et al. Posaconazole versus voriconazole for primary treatment of invasive aspergillosis: a phase 3, randomised, controlled, non-inferiority trial. Lancet 397, 499–509 (2021).

    Article  CAS  PubMed  Google Scholar 

  174. Resendiz-Sharpe, A. et al. Prevalence of voriconazole-resistant invasive aspergillosis and its impact on mortality in haematology patients. J. Antimicrob. Chemother. 74, 2759–2766 (2019).

    Article  CAS  PubMed  Google Scholar 

  175. Lestrade, P. P. et al. Voriconazole resistance and mortality in invasive aspergillosis: a multicenter retrospective cohort study. Clin. Infect. Dis. 68, 1463–1471 (2019).

    Article  CAS  PubMed  Google Scholar 

  176. Hamaoui, D. & Subtil, A. ATG16L1 functions in cell homeostasis beyond autophagy. FEBS J. 289, 1779–1800 (2022).

    Article  CAS  PubMed  Google Scholar 

  177. Cunha, C. et al. Dectin-1 Y238X polymorphism associates with susceptibility to invasive aspergillosis in hematopoietic transplantation through impairment of both recipient- and donor-dependent mechanisms of antifungal immunity. Blood 116, 5394–5402 (2010).

    Article  CAS  PubMed  Google Scholar 

  178. Chai, L. Y. et al. The Y238X stop codon polymorphism in the human β-glucan receptor dectin-1 and susceptibility to invasive aspergillosis. J. Infect. Dis. 203, 736–743 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Fisher, C. E. et al. Validation of single nucleotide polymorphisms in invasive aspergillosis following hematopoietic cell transplantation. Blood 129, 2693–2701 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Feys, S. et al. A signature of differential gene expression in bronchoalveolar lavage fluid predicts mortality in influenza-associated pulmonary aspergillosis. Intensive Care Med. 49, 254–257 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Mezger, M. et al. Polymorphisms in the chemokine (C-X-C motif) ligand 10 are associated with invasive aspergillosis after allogeneic stem-cell transplantation and influence CXCL10 expression in monocyte-derived dendritic cells. Blood 111, 534–536 (2008).

    Article  CAS  PubMed  Google Scholar 

  182. Lupianez, C. B. et al. Polymorphisms in host immunity-modulating genes and risk of invasive aspergillosis: results from the AspBIOmics Consortium. Infect. Immun. 84, 643–657 (2015).

    Article  CAS  PubMed  Google Scholar 

  183. Wojtowicz, A. et al. IL1B and DEFB1 polymorphisms increase susceptibility to invasive mold infection after solid-organ transplantation. J. Infect. Dis. 211, 1646–1657 (2015).

    Article  CAS  PubMed  Google Scholar 

  184. Chorny, A. et al. The soluble pattern recognition receptor PTX3 links humoral innate and adaptive immune responses by helping marginal zone B cells. J. Exp. Med. 213, 2167–2185 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Fischer, M. et al. Polymorphisms of dectin-1 and TLR2 predispose to invasive fungal disease in patients with acute myeloid leukemia. PLoS ONE 11, e0150632 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Lionakis, M. S. Primary immunodeficiencies and invasive fungal infection: when to suspect and how to diagnose and manage. Curr. Opin. Infect. Dis. 32, 531–537 (2019).

    Article  PubMed  Google Scholar 

  187. Goncalves, S. M., Cunha, C. & Carvalho, A. Understanding the genetic basis of immune responses to fungal infection. Expert. Rev. Anti Infect. Ther. 20, 987–996 (2022).

    Article  CAS  PubMed  Google Scholar 

  188. Wojtowicz, A. et al. PTX3 polymorphisms and invasive mold infections after solid organ transplant. Clin. Infect. Dis. 61, 619–622 (2015).

    Article  PubMed  Google Scholar 

  189. Cunha, C. & Carvalho, A. Toward the identification of a genetic risk signature for pulmonary aspergillosis in chronic obstructive pulmonary disease. Clin. Infect. Dis. 66, 1153–1154 (2018).

    Article  PubMed  Google Scholar 

  190. He, Q. et al. Pentraxin 3 gene polymorphisms and pulmonary aspergillosis in chronic obstructive pulmonary disease patients. Clin. Infect. Dis. 66, 261–267 (2018).

    Article  CAS  PubMed  Google Scholar 

  191. Brunel, A. S. et al. Pentraxin-3 polymorphisms and invasive mold infections in acute leukemia patients receiving intensive chemotherapy. Haematologica 103, e527–e530 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Doni, A. et al. Serum amyloid P component is an essential element of resistance against Aspergillus fumigatus. Nat. Commun. 12, 3739 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Stappers, M. H. T. et al. Recognition of DHN-melanin by a C-type lectin receptor is required for immunity to Aspergillus. Nature https://doi.org/10.1038/nature25974 (2018).

  194. Gresnigt, M. S. et al. Genetic deficiency of NOD2 confers resistance to invasive aspergillosis. Nat. Commun. 9, 2636 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Schmidt, F. et al. Flotillin-dependent membrane microdomains are required for functional phagolysosomes against fungal infections. Cell Rep. 32, 108017 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Sueiro-Olivares, M. et al. Fungal and host protein persulfidation are functionally correlated and modulate both virulence and antifungal response. PLoS Biol. 19, e3001247 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Cunha, C. et al. IL-10 overexpression predisposes to invasive aspergillosis by suppressing antifungal immunity. J. Allergy Clin. Immunol. 140, 867–870 e869 (2017).

    Article  CAS  PubMed  Google Scholar 

  198. Goncalves, S. M. et al. Genetic variation in PFKFB3 impairs antifungal immunometabolic responses and predisposes to invasive pulmonary aspergillosis. mBio 12, e0036921 (2021).

    Article  PubMed  Google Scholar 

  199. Matzaraki, V. et al. Genetic determinants of fungi-induced ROS production are associated with the risk of invasive pulmonary aspergillosis. Redox Biol. 55, 102391 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

F.L.vdV. is supported by the European Union Horizon 2020 (EU H2020) programme HDM-FUN (847507) and the Dutch Research Council and Netherlands Organisation for Health Research CAPA (10430102110011). G.C. is supported by European Union grants (European Research Council Consolidator Grant, iMAC-FUN (864957) and the EU H2020 programme HDM-FUN) and a National Grant (GSRI-11412, Pro-sCAP). A.C. is supported by the EU H2020 programme HDM-FUN and the Fundação para a Ciência e a Tecnologia, Portugal (UIDB/50026/2020, UIDP/50026/2020, LA/P/0050/2020 and PTDC/MED-OUT/1112/2021). We thank Simon Feys for helping with Fig. 3 and Matthaios Sertedakis for helping with Fig. 2.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the preparation of this manuscript.

Corresponding author

Correspondence to Frank L. van de Veerdonk.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Microbiology thanks Gustavo Goldman, Jean-Paul Latge and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van de Veerdonk, F.L., Carvalho, A., Wauters, J. et al. Aspergillus fumigatus biology, immunopathogenicity and drug resistance. Nat Rev Microbiol 23, 652–666 (2025). https://doi.org/10.1038/s41579-025-01180-z

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41579-025-01180-z

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology