Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Three decades of protein-fragment complementation

This year marks the 30th anniversary of the publication of a novel approach to measuring protein–protein interactions (PPIs) in living cells, called the ubiquitin-based split-protein sensor (USPS), the inspiration for the protein-fragment complementation assays (PCAs) that followed. Here I provide a brief history of PCAs and discuss advances in their applications and possible future developments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Johnsson, N. & Varshavsky, A. Split ubiquitin as a sensor of protein interactions in vivo. Proc. Natl Acad. Sci. USA 91, 10340–10344 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Michnick, S., Remy, I., Campbell-Valois, F., Vallee-Belisle, A. & Pelletier, J. Detection of protein-protein interactions by protein fragment complementation strategies. Methods Enzymol. 328, 208–230 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Pelletier, J. N. & Michnick, S. W. A protein complementation assay for detection of protein-protein interactions in vivo. Protein Eng. 10, 89 (1997).

    CAS  Google Scholar 

  4. Pelletier, J. N., Campbell-Valois, F. X. & Michnick, S. W. Oligomerization domain-directed reassembly of active dihydrofolate reductase from rationally designed fragments. Proc. Natl Acad. Sci. USA 95, 12141–12146 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Remy, I., Wilson, I. A. & Michnick, S. W. Erythropoietin receptor activation by a ligand-induced conformation change. Science 283, 990–993 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Ghosh, I., Hamilton, A. D. & Regan, L. Antiparallel leucine zipper-directed protein reassembly: application to the green fluorescent protein. J. Am. Chem. Soc. 122, 5658–5659 (2000).

    Article  CAS  Google Scholar 

  7. Paulmurugan, R., Umezawa, Y. & Gambhir, S. S. Noninvasive imaging of protein-protein interactions in living subjects by using reporter protein complementation and reconstitution strategies. Proc. Natl Acad. Sci. USA 99, 15608–15613 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Miller, J. et al. Large-scale identification of yeast integral membrane protein interactions. Proc. Natl Acad. Sci. USA 102, 12123–12128 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tarassov, K. et al. An in vivo map of the yeast protein interactome. Science 320, 1465–1470 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Stynen, B. et al. Changes of cell biochemical states are revealed in protein homomeric complex dynamics. Cell 175, 1418–1429.e1419 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schlecht, U., Miranda, M., Suresh, S., Davis, R. W. & St Onge, R. P. Multiplex assay for condition-dependent changes in protein-protein interactions. Proc. Natl Acad. Sci. USA 109, 9213–9218 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ear, P. H. & Michnick, S. W. A general life-death selection strategy for dissecting protein functions. Nat. Methods 6, 813–816 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Diss, G. et al. Gene duplication can impart fragility, not robustness, in the yeast protein interaction network. Science 355, 630–634 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Faure, A. J. et al. Mapping the energetic and allosteric landscapes of protein binding domains. Nature 604, 175–183 (2022).

    Article  CAS  PubMed  Google Scholar 

  15. Besse, S. et al. Genetic landscape of an in vivo protein interactome. Preprint at bioRxiv https://doi.org/10.1101/2023.12.14.571726 (2023).

Download references

Acknowledgements

S.W.M. acknowledges the many contributors to development and applications of PCAs that, due to space constraints, could be not cited. Some further reading is available in the Supplementary Information and our website (https://michnicklab.ca/the-pca-page/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen W. Michnick.

Ethics declarations

Competing interests

The author declares no competing interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Michnick, S.W. Three decades of protein-fragment complementation. Nat Rev Mol Cell Biol 26, 3–4 (2025). https://doi.org/10.1038/s41580-024-00813-0

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41580-024-00813-0

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research