Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Network medicine: an approach to complex kidney disease phenotypes

Abstract

Scientific reductionism has been the basis of disease classification and understanding for more than a century. However, the reductionist approach of characterizing diseases from a limited set of clinical observations and laboratory evaluations has proven insufficient in the face of an exponential growth in data generated from transcriptomics, proteomics, metabolomics and deep phenotyping. A new systematic method is necessary to organize these datasets and build new definitions of what constitutes a disease that incorporates both biological and environmental factors to more precisely describe the ever-growing complexity of phenotypes and their underlying molecular determinants. Network medicine provides such a conceptual framework to bridge these vast quantities of data while providing an individualized understanding of disease. The modern application of network medicine principles is yielding new insights into the pathobiology of chronic kidney diseases and renovascular disorders by expanding the understanding of pathogenic mediators, novel biomarkers and new options for renal therapeutics. These efforts affirm network medicine as a robust paradigm for elucidating new advances in the diagnosis and treatment of kidney disorders.

Key points

  • Network medicine applies the principles of network theory to disease diagnostics and therapeutics to provide a novel understanding of disease.

  • Biological networks can be constructed from several different biomolecules, representing simple to complex inter-relationships between these entities.

  • The network basis of disease is the disease module or subnetwork.

  • Kidney diseases are well-positioned for exploitation by network medicine approaches to achieve a more personalized and precise approach to treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Basic properties of biological networks.
Fig. 2: Disease genes and modules.
Fig. 3: Network medicine and personalized precision therapeutics for kidney diseases.

Similar content being viewed by others

References

  1. Kauffman, S. & Clayton, P. On emergence, agency, and organization. Biol. Philos. 21, 501–521 (2006).

    Article  Google Scholar 

  2. Kesic, S. Systems biology, emergence and antireductionism. Saudi J. Biol. Sci. 23, 584–591 (2016).

    Article  PubMed  Google Scholar 

  3. Novikoff, A. B. The concept of integrative levels and biology. Science 101, 209–215 (1945).

    Article  CAS  PubMed  Google Scholar 

  4. Gevers, T. J. & Drenth, J. P. Diagnosis and management of polycystic liver disease. Nat. Rev. Gastroenterol. Hepatol. 10, 101–108 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Perrone, R. D., Malek, A. M. & Watnick, T. Vascular complications in autosomal dominant polycystic kidney disease. Nat. Rev. Nephrol. 11, 589–598 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lanktree, M. B. & Chapman, A. B. New treatment paradigms for ADPKD: moving towards precision medicine. Nat. Rev. Nephrol. 13, 750–768 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Barabasi, A. L. & Oltvai, Z. N. Network biology: understanding the cell’s functional organization. Nat. Rev. Genet. 5, 101–113 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Menche, J. et al. Disease networks. Uncovering disease–disease relationships through the incomplete interactome. Science 347, 1257601 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Yildirim, M. A., Goh, K. I., Cusick, M. E., Barabasi, A. L. & Vidal, M. Drug–target network. Nat. Biotechnol. 25, 1119–1126 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Ravasz, E., Somera, A. L., Mongru, D. A., Oltvai, Z. N. & Barabasi, A. L. Hierarchical organization of modularity in metabolic networks. Science 297, 1551–1555 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Peel, L., Peixoto, T. P. & De Domenico, M. Statistical inference links data and theory in network science. Nat. Commun. 13, 6794 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Barabási, A. L. & Albert, R. Emergence of scaling in random networks. Science 286, 509–512 (1999).

    Article  PubMed  Google Scholar 

  13. Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N. & Barabási, A. L. The large-scale organization of metabolic networks. Nature 407, 651–654 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Cohen, R. & Havlin, S. Scale-free networks are ultrasmall. Phys. Rev. Lett. 90, 058701 (2003).

    Article  PubMed  Google Scholar 

  15. Broido, A. D. & Clauset, A. Scale-free networks are rare. Nat. Commun. 10, 1017 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zhou, B., Meng, X. & Stanley, H. E. Power-law distribution of degree–degree distance: a better representation of the scale-free property of complex networks. Proc. Natl Acad. Sci. USA 117, 14812–14818 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Serafino, M. et al. True scale-free networks hidden by finite size effects. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2013825118 (2021).

    Article  PubMed  Google Scholar 

  18. Voitalov, I., van der Hoorn, P., van der Hofstad, R. & Krioukov, D. Scale-free networks well done. Phys. Rev. Res. 1, 033034 (2019).

    Article  CAS  Google Scholar 

  19. Albert, R., Jeong, H. & Barabási, A. L. Error and attack tolerance of complex networks. Nature 406, 378–382 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Jeong, H., Mason, S. P., Barabási, A. L. & Oltvai, Z. N. Lethality and centrality in protein networks. Nature 411, 41–42 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Liang, Y. & Kelemen, A. Dynamic modeling and network approaches for omics time course data: overview of computational approaches and applications. Brief. Bioinform. 19, 1051–1068 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. Emmert-Streib, F., Dehmer, M. & Haibe-Kains, B. Gene regulatory networks and their applications: understanding biological and medical problems in terms of networks. Front. Cell Dev. Biol. 2, 38 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Levine, M. & Davidson, E. H. Gene regulatory networks for development. Proc. Natl Acad. Sci. USA 102, 4936–4942 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Karlebach, G. & Shamir, R. Modelling and analysis of gene regulatory networks. Nat. Rev. Mol. Cell Biol. 9, 770–780 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Davidson, E. H. et al. A genomic regulatory network for development. Science 295, 1669–1678 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Laub, M. T., McAdams, H. H., Feldblyum, T., Fraser, C. M. & Shapiro, L. Global analysis of the genetic network controlling a bacterial cell cycle. Science 290, 2144–2148 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Cai, L., Friedman, N. & Xie, X. S. Stochastic protein expression in individual cells at the single molecule level. Nature 440, 358–362 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Segal, E., Raveh-Sadka, T., Schroeder, M., Unnerstall, U. & Gaul, U. Predicting expression patterns from regulatory sequence in Drosophila segmentation. Nature 451, 535–540 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Chen, K. C. et al. Integrative analysis of cell cycle control in budding yeast. Mol. Biol. Cell 15, 3841–3862 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Friedman, N., Linial, M., Nachman, I. & Pe’er, D. Using Bayesian networks to analyze expression data. J. Comput. Biol. 7, 601–620 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Huynh-Thu, V. A., Irrthum, A., Wehenkel, L. & Geurts, P. Inferring regulatory networks from expression data using tree-based methods. PLoS ONE https://doi.org/10.1371/journal.pone.0012776 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Gat-Viks, I., Tanay, A., Raijman, D. & Shamir, R. A probabilistic methodology for integrating knowledge and experiments on biological networks. J. Comput. Biol. 13, 165–181 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Huynh-Thu, V. A. & Geurts, P. dynGENIE3: dynamical GENIE3 for the inference of gene networks from time series expression data. Sci. Rep. 8, 3384 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Simao, E., Remy, E., Thieffry, D. & Chaouiya, C. Qualitative modelling of regulated metabolic pathways: application to the tryptophan biosynthesis in E. coli. Bioinformatics 21, ii190–ii196 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Covert, M. W. & Palsson, B. O. Transcriptional regulation in constraints-based metabolic models of Escherichia coli. J. Biol. Chem. 277, 28058–28064 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Covert, M. W., Knight, E. M., Reed, J. L., Herrgard, M. J. & Palsson, B. O. Integrating high-throughput and computational data elucidates bacterial networks. Nature 429, 92–96 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Ryu, J. Y., Kim, H. U. & Lee, S. Y. Framework and resource for more than 11,000 gene-transcript–protein-reaction associations in human metabolism. Proc. Natl Acad. Sci. USA 114, E9740–E9749 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Forster, J., Famili, I., Fu, P., Palsson, B. O. & Nielsen, J. Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res. 13, 244–253 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pols, T. et al. A synthetic metabolic network for physicochemical homeostasis. Nat. Commun. 10, 4239 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Gu, C., Kim, G. B., Kim, W. J., Kim, H. U. & Lee, S. Y. Current status and applications of genome-scale metabolic models. Genome Biol. 20, 121 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Boccard, J. et al. Gaining insights into metabolic networks using chemometrics and bioinformatics: chronic kidney disease as a clinical model. Front. Mol. Biosci. 8, 682559 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Thiele, I. et al. Personalized whole-body models integrate metabolism, physiology, and the gut microbiome. Mol. Syst. Biol. 16, e8982 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Brunk, E. et al. Recon3D enables a three-dimensional view of gene variation in human metabolism. Nat. Biotechnol. 36, 272–281 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Duarte, N. C. et al. Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc. Natl Acad. Sci. USA 104, 1777–1782 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ma, H. et al. The Edinburgh human metabolic network reconstruction and its functional analysis. Mol. Syst. Biol. 3, 135 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Bhalla, U. S. & Iyengar, R. Emergent properties of networks of biological signaling pathways. Science 283, 381–387 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Jordan, J. D., Landau, E. M. & Iyengar, R. Signaling networks: the origins of cellular multitasking. Cell 103, 193–200 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Handly, L. N., Yao, J. & Wollman, R. Signal transduction at the single-cell level: approaches to study the dynamic nature of signaling networks. J. Mol. Biol. 428, 3669–3682 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Csabai, L. et al. SignaLink3: a multi-layered resource to uncover tissue-specific signaling networks. Nucleic Acids Res. 50, D701–D709 (2022).

    Article  CAS  PubMed  Google Scholar 

  50. Licata, L. et al. SIGNOR 2.0, the signaling network open resource 2.0: 2019 update. Nucleic Acids Res. 48, D504–D510 (2020).

    CAS  PubMed  Google Scholar 

  51. Weidmann, C. A., Mustoe, A. M., Jariwala, P. B., Calabrese, J. M. & Weeks, K. M. Analysis of RNA-protein networks with RNP-MaP defines functional hubs on RNA. Nat. Biotechnol. 39, 347–356 (2021).

    Article  CAS  PubMed  Google Scholar 

  52. Lin, Y. et al. RNAInter in 2020: RNA interactome repository with increased coverage and annotation. Nucleic Acids Res. 48, D189–D197 (2020).

    Article  CAS  PubMed  Google Scholar 

  53. Piazza, I. et al. A map of protein-metabolite interactions reveals principles of chemical communication. Cell 172, 358–372.e23 (2018).

    Article  CAS  PubMed  Google Scholar 

  54. Luzarowski, M. et al. Global mapping of protein–metabolite interactions in Saccharomyces cerevisiae reveals that Ser-Leu dipeptide regulates phosphoglycerate kinase activity. Commun. Biol. 4, 181 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lee, L. Y., Pandey, A. K., Maron, B. A. & Loscalzo, J. Network medicine in cardiovascular research. Cardiovasc. Res. 117, 2186–2202 (2021).

    Article  CAS  PubMed  Google Scholar 

  56. Celine, S. & Jörg, M. in Networks of Networks in Biology: Concepts, Tools and Applications (eds Gomez-Cabrero, D., Bianconi, G. & Kiani, N. A.) 147–171 (Cambridge Univ. Press, 2021).

  57. Kanehisa, M. et al. From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res. 34, D354–D357 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Fabregat, A. et al. The reactome pathway knowledgebase. Nucleic Acids Res. 44, D481–D487 (2016).

    Article  CAS  PubMed  Google Scholar 

  59. Cerami, E. G. et al. Pathway commons, a web resource for biological pathway data. Nucleic Acids Res. 39, D685–D690 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. Kelder, T. et al. WikiPathways: building research communities on biological pathways. Nucleic Acids Res. 40, D1301–D1307 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Kramer, A., Green, J., Pollard, J. Jr. & Tugendreich, S. Causal analysis approaches in ingenuity pathway analysis. Bioinformatics 30, 523–530 (2014).

    Article  PubMed  Google Scholar 

  62. Cusick, M. E. et al. Literature-curated protein interaction datasets. Nat. Methods 6, 39–46 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hakes, L., Pinney, J. W., Robertson, D. L. & Lovell, S. C. Protein–protein interaction networks and biology – what’s the connection? Nat. Biotechnol. 26, 69–72 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Skinnider, M. A., Stacey, R. G. & Foster, L. J. Genomic data integration systematically biases interactome mapping. PLoS Comput. Biol. 14, e1006474 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Schaefer, M. H., Serrano, L. & Andrade-Navarro, M. A. Correcting for the study bias associated with protein–protein interaction measurements reveals differences between protein degree distributions from different cancer types. Front. Genet. 6, 260 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Cheng, F. et al. Comprehensive characterization of protein–protein interactions perturbed by disease mutations. Nat. Genet. 53, 342–353 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ruepp, A. et al. CORUM: the comprehensive resource of mammalian protein complexes. Nucleic Acids Res. 36, D646–D650 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Oughtred, R. et al. The BioGRID database: a comprehensive biomedical resource of curated protein, genetic, and chemical interactions. Protein Sci. 30, 187–200 (2021).

    Article  CAS  PubMed  Google Scholar 

  69. Szklarczyk, D. et al. The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 49, D605–D612 (2021).

    Article  CAS  PubMed  Google Scholar 

  70. Keshava Prasad, T. S. et al. Human protein reference database – 2009 update. Nucleic Acids Res. 37, D767–D772 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Gandhi, T. K. et al. Analysis of the human protein interactome and comparison with yeast, worm and fly interaction datasets. Nat. Genet. 38, 285–293 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Huttlin, E. L. et al. Architecture of the human interactome defines protein communities and disease networks. Nature 545, 505–509 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Makhnevych, T. et al. Global map of SUMO function revealed by protein–protein interaction and genetic networks. Mol. Cell 33, 124–135 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Hein, M. Y. et al. A human interactome in three quantitative dimensions organized by stoichiometries and abundances. Cell 163, 712–723 (2015).

    Article  CAS  PubMed  Google Scholar 

  75. Petschnigg, J. et al. The mammalian-membrane two-hybrid assay (MaMTH) for probing membrane–protein interactions in human cells. Nat. Methods 11, 585–592 (2014).

    Article  CAS  PubMed  Google Scholar 

  76. Rolland, T. et al. A proteome-scale map of the human interactome network. Cell 159, 1212–1226 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Stelzl, U. et al. A human protein–protein interaction network: a resource for annotating the proteome. Cell 122, 957–968 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Luo, Y., Batalao, A., Zhou, H. & Zhu, L. Mammalian two-hybrid system: a complementary approach to the yeast two-hybrid system. Biotechniques 22, 350–352 (1997).

    Article  CAS  PubMed  Google Scholar 

  79. Kovacs, I. A. et al. Network-based prediction of protein interactions. Nat. Commun. 10, 1240 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Keskin, O., Tuncbag, N. & Gursoy, A. Predicting protein–protein interactions from the molecular to the proteome level. Chem. Rev. 116, 4884–4909 (2016).

    Article  CAS  PubMed  Google Scholar 

  81. Zhang, B., Tian, Y. & Zhang, Z. Network biology in medicine and beyond. Circ. Cardiovasc. Genet. 7, 536–547 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Schaefer, M. H. et al. Adding protein context to the human protein–protein interaction network to reveal meaningful interactions. PLoS Comput. Biol. 9, e1002860 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lopes, T. J. et al. Tissue-specific subnetworks and characteristics of publicly available human protein interaction databases. Bioinformatics 27, 2414–2421 (2011).

    Article  CAS  PubMed  Google Scholar 

  84. Kotlyar, M., Pastrello, C., Malik, Z. & Jurisica, I. IID 2018 update: context-specific physical protein–protein interactions in human, model organisms and domesticated species. Nucleic Acids Res. 47, D581–D589 (2019).

    Article  CAS  PubMed  Google Scholar 

  85. Skinnider, M. A. et al. An atlas of protein–protein interactions across mouse tissues. Cell 184, 4073–4089.e17 (2021).

    Article  CAS  PubMed  Google Scholar 

  86. Bader, G. D. & Hogue, C. W. Analyzing yeast protein–protein interaction data obtained from different sources. Nat. Biotechnol. 20, 991–997 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Gavin, A. C. et al. Proteome survey reveals modularity of the yeast cell machinery. Nature 440, 631–636 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Stumpf, M. P. et al. Estimating the size of the human interactome. Proc. Natl Acad. Sci. USA 105, 6959–6964 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Luck, K. et al. A reference map of the human binary protein interactome. Nature 580, 402–408 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Vinayagam, A. et al. A directed protein interaction network for investigating intracellular signal transduction. Sci. Signal. 4, rs8 (2011).

    Article  PubMed  Google Scholar 

  91. Cao, M. et al. New directions for diffusion-based network prediction of protein function: incorporating pathways with confidence. Bioinformatics 30, i219–i227 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Silverbush, D. & Sharan, R. A systematic approach to orient the human protein–protein interaction network. Nat. Commun. 10, 3015 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Goh, K. I. et al. The human disease network. Proc. Natl Acad. Sci. USA 104, 8685–8690 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Fraser, H. B., Hirsh, A. E., Steinmetz, L. M., Scharfe, C. & Feldman, M. W. Evolutionary rate in the protein interaction network. Science 296, 750–752 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Yu, H. et al. High-quality binary protein interaction map of the yeast interactome network. Science 322, 104–110 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Feldman, I., Rzhetsky, A. & Vitkup, D. Network properties of genes harboring inherited disease mutations. Proc. Natl Acad. Sci. USA 105, 4323–4328 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Milo, R. et al. Network motifs: simple building blocks of complex networks. Science 298, 824–827 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. Xu, J. & Li, Y. Discovering disease-genes by topological features in human protein–protein interaction network. Bioinformatics 22, 2800–2805 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Kitsak, M. et al. Tissue specificity of human disease module. Sci. Rep. 6, 35241 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ghiassian, S. D. et al. Endophenotype network models: common core of complex diseases. Sci. Rep. 6, 27414 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Larsen, S. J., Schmidt, H. H. H. W. & Baumbach, J. De novo and supervised endophenotyping using network-guided ensemble learning. Syst. Med. 3, 8–21 (2020).

    Article  Google Scholar 

  102. Iossifov, I., Zheng, T., Baron, M., Gilliam, T. C. & Rzhetsky, A. Genetic-linkage mapping of complex hereditary disorders to a whole-genome molecular-interaction network. Genome Res. 18, 1150–1162 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Krauthammer, M., Kaufmann, C. A., Gilliam, T. C. & Rzhetsky, A. Molecular triangulation: bridging linkage and molecular-network information for identifying candidate genes in Alzheimer’s disease. Proc. Natl Acad. Sci. USA 101, 15148–15153 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Li, Z. et al. Integrating mouse and human genetic data to move beyond GWAS and identify causal genes in cholesterol metabolism. Cell Metab. 31, 741–754.e5 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Sharma, A. et al. Controllability in an islet specific regulatory network identifies the transcriptional factor NFATC4, which regulates type 2 diabetes associated genes. NPJ Syst. Biol. Appl. 4, 25 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Rhodes, C. J. et al. Whole-blood RNA profiles associated with pulmonary arterial hypertension and clinical outcome. Am. J. Respir. Crit. Care Med. 202, 586–594 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Wang, T., Peng, Q., Liu, B., Liu, Y. & Wang, Y. Disease module identification based on representation learning of complex networks integrated from GWAS, eQTL summaries, and human interactome. Front. Bioeng. Biotechnol. 8, 418 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Oti, M., Snel, B., Huynen, M. A. & Brunner, H. G. Predicting disease genes using protein–protein interactions. J. Med. Genet. 43, 691–698 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ghiassian, S. D., Menche, J. & Barabási, A. L. A disease module detection (DIAMOnD) algorithm derived from a systematic analysis of connectivity patterns of disease proteins in the human interactome. PLoS Comput. Biol. 11, e1004120 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Silberberg, Y., Kupiec, M. & Sharan, R. GLADIATOR: a global approach for elucidating disease modules. Genome Med. 9, 48 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Huang, S. S. & Fraenkel, E. Integrating proteomic, transcriptional, and interactome data reveals hidden components of signaling and regulatory networks. Sci. Signal. 2, ra40 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Wang, R. S. & Loscalzo, J. Network-based disease module discovery by a novel seed connector algorithm with pathobiological implications. J. Mol. Biol. 430, 2939–2950 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kohler, S., Bauer, S., Horn, D. & Robinson, P. N. Walking the interactome for prioritization of candidate disease genes. Am. J. Hum. Genet. 82, 949–958 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Li, L., Wang, Y., An, L., Kong, X. & Huang, T. A network-based method using a random walk with restart algorithm and screening tests to identify novel genes associated with Menière’s disease. PLoS ONE 12, e0182592 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Wei, P. J. et al. Prioritizing cancer genes based on an improved random walk method. Front. Genet. 11, 377 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Liu, W. et al. Topologically inferring risk-active pathways toward precise cancer classification by directed random walk. Bioinformatics 29, 2169–2177 (2013).

    Article  CAS  PubMed  Google Scholar 

  117. Lazareva, O., Baumbach, J., List, M. & Blumenthal, D. B. On the limits of active module identification. Brief. Bioinform. https://doi.org/10.1093/bib/bbab066 (2021).

    Article  PubMed  Google Scholar 

  118. Levi, H., Elkon, R. & Shamir, R. DOMINO: a network-based active module identification algorithm with reduced rate of false calls. Mol. Syst. Biol. 17, e9593 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Page, I. H. Pathogenesis of arterial hypertension. J. Am. Med. Assoc. 140, 451–458 (1949).

    Article  CAS  PubMed  Google Scholar 

  120. Page, I. H. The mosaic theory of arterial hypertension – its interpretation. Perspect. Biol. Med. 10, 325–333 (1967).

    Article  CAS  PubMed  Google Scholar 

  121. Guyton, A. C. & Coleman, T. G. Quantitative analysis of the pathophysiology of hypertension. Circ. Res. 24, 1–19 (1969).

    CAS  PubMed  Google Scholar 

  122. Guyton, A. C. et al. Systems analysis of arterial pressure regulation and hypertension. Ann. Biomed. Eng. 1, 254–281 (1972).

    Article  CAS  PubMed  Google Scholar 

  123. Guyton, A. C., Coleman, T. G. & Granger, H. J. Circulation: overall regulation. Annu. Rev. Physiol. 34, 13–46 (1972).

    Article  CAS  PubMed  Google Scholar 

  124. Montani, J. P. & Van Vliet, B. N. Understanding the contribution of Guyton’s large circulatory model to long-term control of arterial pressure. Exp. Physiol. 94, 382–388 (2009).

    Article  PubMed  Google Scholar 

  125. He, L. et al. The glomerular transcriptome and a predicted protein–protein interaction network. J. Am. Soc. Nephrol. 19, 260–268 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Gadegbeku, C. A. et al. Design of the nephrotic syndrome study network (NEPTUNE) to evaluate primary glomerular nephropathy by a multidisciplinary approach. Kidney Int. 83, 749–756 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Hansen, J. et al. A reference tissue atlas for the human kidney. Sci. Adv. 8, eabn4965 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Bhavnani, S. K. et al. Network analysis of genes regulated in renal diseases: implications for a molecular-based classification. BMC Bioinformatics 10, S3 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Bhavnani, S. K. et al. Discovering hidden relationships between renal diseases and regulated genes through 3D network visualizations. BMC Res. Notes 3, 296 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Song, X. et al. Systems biology of autosomal dominant polycystic kidney disease (ADPKD): computational identification of gene expression pathways and integrated regulatory networks. Hum. Mol. Genet. 18, 2328–2343 (2009).

    Article  CAS  PubMed  Google Scholar 

  131. Pandey, P., Qin, S., Ho, J., Zhou, J. & Kreidberg, J. A. Systems biology approach to identify transcriptome reprogramming and candidate microRNA targets during the progression of polycystic kidney disease. BMC Syst. Biol. 5, 56 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Hajarnis, S. et al. microRNA-17 family promotes polycystic kidney disease progression through modulation of mitochondrial metabolism. Nat. Commun. 8, 14395 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Yheskel, M., Lakhia, R., Cobo-Stark, P., Flaten, A. & Patel, V. Anti-microRNA screen uncovers miR-17 family within miR-17~92 cluster as the primary driver of kidney cyst growth. Sci. Rep. 9, 1920 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Podrini, C., Cassina, L. & Boletta, A. Metabolic reprogramming and the role of mitochondria in polycystic kidney disease. Cell Signal. 67, 109495 (2020).

    Article  CAS  PubMed  Google Scholar 

  135. Ju, W. et al. Tissue transcriptome-driven identification of epidermal growth factor as a chronic kidney disease biomarker. Sci. Transl. Med. 7, 316ra193 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Segarra-Medrano, A. et al. Value of urinary levels of interleukin-6, epidermal growth factor, monocyte chemoattractant protein type1 and transforming growth factor β1 in predicting the extent of fibrosis lesions in kidney biopsies of patients with IgA nephropathy. Nefrologia 37, 531–538 (2017).

    Article  PubMed  Google Scholar 

  137. Azukaitis, K. et al. Low levels of urinary epidermal growth factor predict chronic kidney disease progression in children. Kidney Int. 96, 214–221 (2019).

    Article  CAS  PubMed  Google Scholar 

  138. Norvik, J. V. et al. Urinary excretion of epidermal growth factor and rapid loss of kidney function. Nephrol. Dial. Transpl. 36, 1882–1892 (2021).

    Article  Google Scholar 

  139. Sas, K. M. et al. Tissue-specific metabolic reprogramming drives nutrient flux in diabetic complications. JCI Insight 1, e86976 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Ahmed, M. M. et al. Identification of pathogenic genes associated with CKD: an integrated bioinformatics approach. Front. Genet. 13, 891055 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Berthier, C. C. et al. Enhanced expression of Janus kinase-signal transducer and activator of transcription pathway members in human diabetic nephropathy. Diabetes 58, 469–477 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Tao, J. et al. JAK-STAT signaling is activated in the kidney and peripheral blood cells of patients with focal segmental glomerulosclerosis. Kidney Int. 94, 795–808 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Sellmayr, M. et al. Only hyperuricemia with crystalluria, but not asymptomatic hyperuricemia, drives progression of chronic kidney disease. J. Am. Soc. Nephrol. 31, 2773–2792 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Brosius, F. C., Tuttle, K. R. & Kretzler, M. JAK inhibition in the treatment of diabetic kidney disease. Diabetologia 59, 1624–1627 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Botzer, A., Grossman, E., Moult, J. & Unger, R. A system view and analysis of essential hypertension. J. Hypertens. 36, 1094–1103 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Zhao, Y. et al. Integrative genomics analysis unravels tissue-specific pathways, networks, and key regulators of blood pressure regulation. Front. Cardiovasc. Med. 6, 21 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Huan, T. et al. Integrative network analysis reveals molecular mechanisms of blood pressure regulation. Mol. Syst. Biol. 11, 799 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Ehret, G. B. et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 478, 103–109 (2011).

    Article  CAS  PubMed  Google Scholar 

  149. Saleh, M. A. et al. Lymphocyte adaptor protein LNK deficiency exacerbates hypertension and end-organ inflammation. J. Clin. Invest. 125, 1189–1202 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Dale, B. L. & Madhur, M. S. Linking inflammation and hypertension via LNK/SH2B3. Curr. Opin. Nephrol. Hypertens. 25, 87–93 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Keefe, J. A. et al. Evidence for a causal role of the SH2B3-β2M axis in blood pressure regulation. Hypertension 73, 497–503 (2019).

    Article  CAS  PubMed  Google Scholar 

  152. Alexander, M. R. et al. A single nucleotide polymorphism in SH2B3/LNK promotes hypertension development and renal damage. Circ. Res. 131, 731–747 (2022).

    Article  CAS  PubMed  Google Scholar 

  153. Rudemiller, N. P. et al. Mutation of SH2B3 (LNK), a genome-wide association study candidate for hypertension, attenuates Dahl salt-sensitive hypertension via inflammatory modulation. Hypertension 65, 1111–1117 (2015).

    Article  CAS  PubMed  Google Scholar 

  154. Batchu, N. et al. Role of Axl in T-lymphocyte survival in salt-dependent hypertension. Arterioscler. Thromb. Vasc. Biol. 36, 1638–1646 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Van Beusecum, J. P. et al. Growth arrest specific-6 and Axl coordinate inflammation and hypertension. Circ. Res. 129, 975–991 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  156. You, S. et al. Comprehensive bioinformatics analysis identifies POLR2I as a key gene in the pathogenesis of hypertensive nephropathy. Front. Genet. 12, 698570 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Rinschen, M. M. et al. Metabolic rewiring of the hypertensive kidney. Sci. Signal. https://doi.org/10.1126/scisignal.aax9760 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Berthier, C. C. et al. Cross-species transcriptional network analysis defines shared inflammatory responses in murine and human lupus nephritis. J. Immunol. 189, 988–1001 (2012).

    Article  CAS  PubMed  Google Scholar 

  159. Arazi, A. et al. The immune cell landscape in kidneys of patients with lupus nephritis. Nat. Immunol. 20, 902–914 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Eddy, S. et al. Inflammatory and JAK-STAT pathways as shared molecular targets for ANCA-associated vasculitis and nephrotic syndrome. Preprint at bioRxiv https://doi.org/10.1101/427898 (2018).

  161. Martini, S. et al. Integrative biology identifies shared transcriptional networks in CKD. J. Am. Soc. Nephrol. 25, 2559–2572 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Hopkins, A. L. Network pharmacology: the next paradigm in drug discovery. Nat. Chem. Biol. 4, 682–690 (2008).

    Article  CAS  PubMed  Google Scholar 

  163. Keiser, M. J. et al. Predicting new molecular targets for known drugs. Nature 462, 175–181 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Iida, M., Iwata, M. & Yamanishi, Y. Network-based characterization of disease–disease relationships in terms of drugs and therapeutic targets. Bioinformatics 36, i516–i524 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Cheng, F. et al. Network-based approach to prediction and population-based validation of in silico drug repurposing. Nat. Commun. 9, 2691 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Guney, E., Menche, J., Vidal, M. & Barabási, A. L. Network-based in silico drug efficacy screening. Nat. Commun. 7, 10331 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Paci, P. et al. Comprehensive network medicine-based drug repositioning via integration of therapeutic efficacy and side effects. NPJ Syst. Biol. Appl. 8, 12 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Varghese, R. & Majumdar, A. A new prospect for the treatment of nephrotic syndrome based on network pharmacology analysis. Curr. Res. Physiol. 5, 36–47 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Hickey, S. L., McKim, A., Mancuso, C. A. & Krishnan, A. A network-based approach for isolating the chronic inflammation gene signatures underlying complex diseases towards finding new treatment opportunities. Front. Pharmacol. 13, 995459 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Lamb, J. et al. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313, 1929–1935 (2006).

    Article  CAS  PubMed  Google Scholar 

  171. Williams, V. R. et al. Connectivity mapping of a chronic kidney disease progression signature identified lysine deacetylases as novel therapeutic targets. Kidney Int. 98, 116–132 (2020).

    Article  CAS  PubMed  Google Scholar 

  172. Wilmes, A. et al. Application of integrated transcriptomic, proteomic and metabolomic profiling for the delineation of mechanisms of drug induced cell stress. J. Proteom. 79, 180–194 (2013).

    Article  CAS  Google Scholar 

  173. Azeloglu, E. U. et al. Interconnected network motifs control podocyte morphology and kidney function. Sci. Signal. 7, ra12 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Sonawane, A. R. et al. Understanding tissue-specific gene regulation. Cell Rep. 21, 1077–1088 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Glass, K., Huttenhower, C., Quackenbush, J. & Yuan, G. C. Passing messages between biological networks to refine predicted interactions. PLoS One 8, e64832 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Thul, P. J. et al. A subcellular map of the human proteome. Science https://doi.org/10.1126/science.aal3321 (2017).

    Article  PubMed  Google Scholar 

  177. Mele, M. et al. Human genomics. The human transcriptome across tissues and individuals. Science 348, 660–665 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Karlsson, M. et al. A single-cell type transcriptomics map of human tissues. Sci. Adv. https://doi.org/10.1126/sciadv.abh2169 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Sadegh, S. et al. Network medicine for disease module identification and drug repurposing with the NeDRex platform. Nat. Commun. 12, 6848 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Kuijjer, M. L., Tung, M. G., Yuan, G., Quackenbush, J. & Glass, K. Estimating sample-specific regulatory networks. iScience 14, 226–240 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Maron, B. A. et al. Individualized interactomes for network-based precision medicine in hypertrophic cardiomyopathy with implications for other clinical pathophenotypes. Nat. Commun. 12, 873 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank S. C. Tribuna for expert administrative assistance. This work was supported in part by NIH grants HL119145, HL155107, HL155096 and HG007690, and by American Heart Association grants D700382 and CV-19 to J.L.

Author information

Authors and Affiliations

Authors

Contributions

Both authors wrote the article, researched the data for the article, contributed substantially to discussion of the content and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Joseph Loscalzo.

Ethics declarations

Competing interests

J.L. is the co-founder and a member of the Scientific Advisory Board (2013 to present) of Scipher Medicine, which is a for-profit company. He is also a member of the Scientific Advisory Board of Applied BioMath and a consultant for Naring Health. A.K.P. declares no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks David Blumenthal, Marcus Rinschen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Bipartite network

A network consisting of nodes divided into two independent sets in which edges connect nodes between the two sets.

Monte Carlo simulation

A computational algorithm that relies on repeated randomly generated inputs followed by deterministic computations on those inputs.

Ordinary differential equations

Equations in which the independent variable is a derivative of a single-variable function.

Pareto’s rule

For many events, approximately 80% of all effects arise from 20% of all causes.

Random walker algorithm

An algorithm based on iterative paths to randomly selected neighbouring nodes to assign correlations between nodes and uncover information on network topology.

Stochastic partial differential equations

Generalized form of partial differential equations in which coefficients are random numbers or functions.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, A.K., Loscalzo, J. Network medicine: an approach to complex kidney disease phenotypes. Nat Rev Nephrol 19, 463–475 (2023). https://doi.org/10.1038/s41581-023-00705-0

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41581-023-00705-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing