Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Implantable bioelectronics and wearable sensors for kidney health and disease

Abstract

Established clinical practices for monitoring kidney health and disease — including biopsy and serum biomarker analysis — suffer from practical limitations in monitoring frequency and lack adequate sensitivity for early disease detection. Engineering advances in biosensors have led to the development of wearable and implantable systems for monitoring of kidney health. Non-invasive microfluidic systems have demonstrated utility in the detection of kidney-relevant biomarkers, such as creatinine, urea and electrolytes in peripheral body fluids such as sweat, interstitial fluid, tears and saliva. Implantable systems may aid the identification of early transplant rejection through analysis of organ temperature and perfusion, and enable real-time assessment of inflammation through the use of thermal sensors. These technologies enable continuous, real-time monitoring of kidney health, offering complementary information to standard clinical procedures to alert physicians of changes in kidney health for early intervention. In this Review, we explore devices for monitoring renal biomarkers in peripheral biofluids and discuss developments in implantable sensors for the direct measurement of the local, biophysical properties of kidney tissue. We also describe potential clinical applications, including monitoring of chronic kidney disease, acute kidney injury and allograft health.

Key points

  • Advances in biosensors have led to the development of wearable and implantable systems for detecting indices of kidney health.

  • Wearable biosensors are non-invasive alternatives to tests for biomarkers in blood, and include non-invasive microfluidic and microneedle-based systems with optical or electrochemical mechanisms to measure concentrations of kidney-relevant biomarkers in biofluids such as sweat, interstitial fluid, tears and saliva.

  • Implantable devices enable direct measurements of the physical properties of the kidney, including tissue oxygenation, perfusion and temperature.

  • Compared with blood tests and radiological procedures, these electronic devices enable the real-time capture of physiological data and may enable continuous monitoring over periods of time.

  • Successful commercial translations of wearable biosensing devices are expected to benefit patients by reducing costs and providing invaluable real-time biochemical information for clinical decision making.

  • Translational studies using large animal models with sufficiently large populations are needed to assess the predictive value of implantable biophysical sensors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Bioelectronic devices for monitoring kidney health.
Fig. 2: Wearable biochemical monitoring of kidney health.
Fig. 3: Implantable sensors for monitoring tissue perfusion.
Fig. 4: Implantable temperature sensors for monitoring kidney transplant health.

Similar content being viewed by others

References

  1. Francis, A. et al. Chronic kidney disease and the global public health agenda: an international consensus. Nat. Rev. Nephrol. 20, 473–485 (2024).

    Article  PubMed  Google Scholar 

  2. Webster, A. C., Nagler, E. V., Morton, R. L. & Masson, P. Chronic kidney disease. Lancet 389, 1238–1252 (2017).

    Article  PubMed  Google Scholar 

  3. Kellum, J. A. et al. Acute kidney injury. Nat. Rev. Dis. Primers 7, 52 (2021).

    Article  PubMed  Google Scholar 

  4. Tucker, E. L. et al. Life and expectations post-kidney transplant: a qualitative analysis of patient responses. BMC Nephrol. 20, 175 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Giwa, S. et al. The promise of organ and tissue preservation to transform medicine. Nat. Biotechnol. 35, 530–542 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hariharan, S., Israni, A. K. & Danovitch, G. Long-term survival after kidney transplantation. N. Engl. J. Med. 385, 729–743 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Delanaye, P., Cavalier, E. & Pottel, H. Serum creatinine: not so simple! Nephron 136, 302–308 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Ostermann, M. et al. Biomarkers in acute kidney injury. Ann. Intensive Care 14, 145 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Seki, M. et al. Blood urea nitrogen is independently associated with renal outcomes in Japanese patients with stage 3–5 chronic kidney disease: a prospective observational study. BMC Nephrol. 20, 1–10 (2019).

    Article  Google Scholar 

  10. Sharma, S. & Smyth, B. From proteinuria to fibrosis: an update on pathophysiology and treatment options. Kidney Blood Press. Res. 46, 411–420 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. Carrero, J. J. et al. Albuminuria changes are associated with subsequent risk of end-stage renal disease and mortality. Kidney Int. 91, 244–251 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. Menon, M. C., Murphy, B. & Heeger, P. S. Moving biomarkers toward clinical implementation in kidney transplantation. J. Am. Soc. Nephrol. 28, 735–747 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bloom, R. D. & Augustine, J. J. Beyond the biopsy: monitoring immune status in kidney recipients. Clin. J. Am. Soc. Nephrol. 16, 1413–1422 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. El-Bandar, N. et al. Kidney perfusion in contrast-enhanced ultrasound (CEUS) correlates with renal function in living kidney donors. J. Clin. Med. 11, 791 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Singla, R. K., Kadatz, M., Rohling, R. & Nguan, C. Kidney ultrasound for nephrologists: a review. Kidney Med. 4, 100464 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Thurman, J. & Gueler, F. Recent advances in renal imaging. F1000Res 7, F1000 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Francis, S. T., Selby, N. M. & Taal, M. W. Magnetic resonance imaging to evaluate kidney structure, function, and pathology: moving toward clinical application. Am. J. Kidney Dis. 82, 491–504 (2023).

    Article  CAS  PubMed  Google Scholar 

  18. Hull, K. L., Adenwalla, S. F., Topham, P. & Graham-Brown, M. P. Indications and considerations for kidney biopsy: an overview of clinical considerations for the non-specialist. Clin. Med. 22, 34–40 (2022).

    Article  Google Scholar 

  19. Schnuelle, P. Renal biopsy for diagnosis in kidney disease: indication, technique, and safety. J. Clin. Med. 12, 6424 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Poggio, E. D. et al. Systematic review and meta-analysis of native kidney biopsy complications. Clin. J. Am. Soc. Nephrol. 15, 1595–1602 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bufkin, K. B., Karim, Z. A. & Silva, J. Review of the limitations of current biomarkers in acute kidney injury clinical practices. SAGE Open. Med. 12, 20503121241228446 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chung, H. U. et al. Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care. Science 363, eaau0780 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gao, W. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529, 509–514 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mickle, A. D. et al. A wireless closed-loop system for optogenetic peripheral neuromodulation. Nature 565, 361–365 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhao, C., Park, J., Root, S. E. & Bao, Z. Skin-inspired soft bioelectronic materials, devices and systems. Nat. Rev. Bioeng. 2, 671–690 (2024).

    Article  CAS  Google Scholar 

  26. Xu, S., Kim, J., Walter, J. R., Ghaffari, R. & Rogers, J. A. Translational gaps and opportunities for medical wearables in digital health. Sci. Transl. Med. 14, eabn6036 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kukkar, D., Zhang, D., Jeon, B. H. & Kim, K.-H. Recent advances in wearable biosensors for non-invasive monitoring of specific metabolites and electrolytes associated with chronic kidney disease: performance evaluation and future challenges. TrAC. Trends Anal. Chem. 150, 116570 (2022).

    Article  CAS  Google Scholar 

  28. Tricoli, A. & Neri, G. Miniaturized bio-and chemical-sensors for point-of-care monitoring of chronic kidney diseases. Sensors 18, 942 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Strauss, C., Booke, H., Forni, L. & Zarbock, A. Biomarkers of acute kidney injury: from discovery to the future of clinical practice. J. Clin. Anesth. 95, 111458 (2024).

    Article  CAS  PubMed  Google Scholar 

  30. Dhondup, T. & Qian, Q. Acid-base and electrolyte disorders in patients with and without chronic kidney disease: an update. Kidney Dis. 3, 136–148 (2017).

    Article  Google Scholar 

  31. Tesch, G. H. Review: serum and urine biomarkers of kidney disease: a pathophysiological perspective. Nephrology 15, 609–616 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Gowda, S. et al. Markers of renal function tests. N. Am. J. Med. Sci. 2, 170–173 (2010).

    PubMed  PubMed Central  Google Scholar 

  33. Kim, J., Campbell, A. S., de Avila, B. E. & Wang, J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 37, 389–406 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Baker, L. B. Physiology of sweat gland function: the roles of sweating and sweat composition in human health. Temperature 6, 211–259 (2019).

    Article  Google Scholar 

  35. Zhang, Y. et al. Passive sweat collection and colorimetric analysis of biomarkers relevant to kidney disorders using a soft microfluidic system. Lab. Chip 19, 1545–1555 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Choi, J., Ghaffari, R., Baker, L. B. & Rogers, J. A. Skin-interfaced systems for sweat collection and analytics. Sci. Adv. 4, eaar3921 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kim, S. B. et al. Soft, skin-interfaced microfluidic systems with wireless, battery-free electronics for digital, real-time tracking of sweat loss and electrolyte composition. Small 14, e1802876 (2018).

    Article  PubMed  Google Scholar 

  38. Koh, A. et al. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Sci. Transl. Med. 8, 366ra165 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Choi, J., Kang, D., Han, S., Kim, S. B. & Rogers, J. A. Thin, soft, skin-mounted microfluidic networks with capillary bursting valves for chrono-sampling of sweat. Adv. Healthc. Mater. 6, 1601355 (2017).

    Article  Google Scholar 

  40. Sempionatto, J. R. et al. An epidermal patch for the simultaneous monitoring of haemodynamic and metabolic biomarkers. Nat. Biomed. Eng. 5, 737–748 (2021).

    Article  CAS  PubMed  Google Scholar 

  41. al-Tamer, Y. Y., Hadi, E. A. & al-Baldrani, I. I.Sweat urea, uric acid and creatinine concentrations in uraemic patients. Urol. Res. 25, 337–340 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Yang, Y. R. et al. A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat. Nat. Biotechnol. 38, 217 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. Adelaars, S. et al. The correlation of urea and creatinine concentrations in sweat and saliva with plasma during hemodialysis: an observational cohort study. Clin. Chem. Lab. Med. 62, 1118–1125 (2024).

    Article  CAS  PubMed  Google Scholar 

  44. Altamer, Y. Y. & Hadi, E. A. Age-dependent reference intervals of glucose, urea, protein, lactate and electrolytes in thermally-induced sweat. Eur. J. Clin. Chem. Clin 32, 71–77 (1994).

    CAS  Google Scholar 

  45. Kwon, K. et al. An on-skin platform for wireless monitoring of flow rate, cumulative loss and temperature of sweat in real time. Nat. Electron. 4, 302–312 (2021).

    Article  Google Scholar 

  46. Kim, H. S. et al. Hand-held Raman spectrometer-based dual detection of creatinine and cortisol in human sweat using silver nanoflakes. Anal. Chem. 93, 14996–15004 (2021).

    Article  CAS  PubMed  Google Scholar 

  47. Kalasin, S., Sangnuang, P. & Surareungchai, W. Satellite-based sensor for environmental heat-stress sweat creatinine monitoring: the remote artificial intelligence-assisted epidermal wearable sensing for health evaluation. ACS Biomater. Sci. Eng. 7, 322–334 (2021).

    Article  CAS  PubMed  Google Scholar 

  48. Kalasin, S. & Sangnuang, P. Multiplex wearable electrochemical sensors fabricated from sodiated polymers and mxene nanosheet to measure sodium and creatinine levels in sweat. ACS Appl. Nano Mater. 6, 18209–18221 (2023).

    Article  CAS  Google Scholar 

  49. Rakesh Kumar, R. K., Shaikh, M. O. & Chuang, C. H. A review of recent advances in non-enzymatic electrochemical creatinine biosensing. Anal. Chim. Acta 1183, 338748 (2021).

    Article  CAS  PubMed  Google Scholar 

  50. Hussain, S. & Park, S. Y. Sweat-based noninvasive skin-patchable urea biosensors with photonic interpenetrating polymer network films integrated into PDMS chips. Acs Sens. 5, 3988–3998 (2020).

    Article  CAS  PubMed  Google Scholar 

  51. Promphet, N. et al. Cotton thread-based wearable sensor for non-invasive simultaneous diagnosis of diabetes and kidney failure. Sens. Actuators B: Chem. 321, 128549 (2020).

    Article  CAS  Google Scholar 

  52. Singh, S., Sharma, M. & Singh, G. Recent advancements in urea biosensors for biomedical applications. IET Nanobiotechnol. 15, 358–379 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Ibáñez-Redín, G. et al. Wearable potentiometric biosensor for analysis of urea in sweat. Biosens. Bioelectron. 223, 114994 (2023).

    Article  PubMed  Google Scholar 

  54. Liu, Y. L. et al. Flexible electrochemical urea sensor based on surface molecularly imprinted nanotubes for detection of human sweat. Anal. Chem. 90, 13081–13087 (2018).

    Article  CAS  PubMed  Google Scholar 

  55. Xu, Z. Y. et al. A conducting polymer PEDOT:PSS hydrogel based wearable sensor for accurate uric acid detection in human sweat. Sens. Actuators B: Chem. 348, 130674 (2021).

    Article  CAS  Google Scholar 

  56. Huang, C. T., Chen, M. L., Huang, L. L. & Mao, I. F. Uric acid and urea in human sweat. Chin. J. Physiol. 45, 109–115 (2002).

    CAS  PubMed  Google Scholar 

  57. Pirovano, P. et al. A wearable sensor for the detection of sodium and potassium in human sweat during exercise. Talanta 219, 121145 (2020).

    Article  CAS  PubMed  Google Scholar 

  58. Yuan, Z. et al. A multi-modal sweat sensing patch for cross-verification of sweat rate, total ionic charge, and Na+ concentration. Lab. Chip 19, 3179–3189 (2019).

    Article  CAS  PubMed  Google Scholar 

  59. Nyein, H. Y. Y. et al. A wearable microfluidic sensing patch for dynamic sweat secretion analysis. ACS Sens. 3, 944–952 (2018).

    Article  CAS  PubMed  Google Scholar 

  60. Alizadeh, A. et al. A wearable patch for continuous monitoring of sweat electrolytes during exertion. Lab. Chip 18, 2632–2641 (2018).

    Article  CAS  PubMed  Google Scholar 

  61. Parrilla, M. et al. Wearable potentiometric ion patch for on-body electrolyte monitoring in sweat: toward a validation strategy to ensure physiological relevance. Anal. Chem. 91, 8644–8651 (2019).

    Article  CAS  PubMed  Google Scholar 

  62. Friedel, M. et al. Opportunities and challenges in the diagnostic utility of dermal interstitial fluid. Nat. Biomed. Eng. 7, 1541–1555 (2023).

    Article  PubMed  Google Scholar 

  63. Xu, N. et al. Microneedle-based technology: toward minimally invasive disease diagnostics. Adv. Mater. Technol-Us 7, 2101595 (2022).

    Article  Google Scholar 

  64. Zheng, H. et al. Reverse iontophoresis with the development of flexible electronics: a review. Biosens. Bioelectron. 223, 115036 (2023).

    Article  CAS  PubMed  Google Scholar 

  65. Metry, G. S., Attman, P. O., Lonnroth, P., Beshara, S. N. & Aurell, M. Urea kinetics during hemodialysis measured by microdialysis-a novel technique. Kidney Int. 44, 622–629 (1993).

    Article  CAS  PubMed  Google Scholar 

  66. Wascotte, V. et al. Non-invasive diagnosis and monitoring of chronic kidney disease by reverse iontophoresis of urea in vivo. Eur. J. Pharm. Biopharm. 69, 1077–1082 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Ebah, L. M. et al. Reverse iontophoresis of urea in health and chronic kidney disease: a potential diagnostic and monitoring tool? Eur. J. Clin. Invest. 42, 840–847 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Varadharaj, E. K. & Jampana, N. Non-invasive potentiometric sensor for measurement of blood urea in human subjects using reverse iontophoresis. J. Electrochem. Soc. 163, B340 (2016).

    Article  CAS  Google Scholar 

  69. Zheng, L., Zhu, D., Xiao, Y., Zheng, X. & Chen, P. Microneedle coupled epidermal sensor for multiplexed electrochemical detection of kidney disease biomarkers. Biosens. Bioelectron. 237, 115506 (2023).

    Article  CAS  PubMed  Google Scholar 

  70. Dervisevic, M., Jara Fornerod, M. J., Harberts, J., Zangabad, P. S. & Voelcker, N. H. Wearable microneedle patch for transdermal electrochemical monitoring of urea in interstitial fluid. ACS Sens. 9, 932–941 (2024).

    Article  CAS  PubMed  Google Scholar 

  71. Miller, P. R. et al. Microneedle-based transdermal sensor for on-chip potentiometric determination of K(+). Adv. Healthc. Mater. 3, 876–881 (2014).

    Article  CAS  PubMed  Google Scholar 

  72. Parrilla, M. et al. Wearable all-solid-state potentiometric microneedle patch for intradermal potassium detection. Anal. Chem. 91, 1578–1586 (2019).

    Article  CAS  PubMed  Google Scholar 

  73. Shukla, S., Machekposhti, S. A., Joshi, N., Joshi, P. & Narayan, R. J. Microneedle-integrated device for transdermal sampling and analyses of targeted biomarkers. Small Sci. 3, 2200087 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Huang, X. S. et al. 3D-assembled microneedle ion sensor-based wearable system for the transdermal monitoring of physiological ion fluctuations. Microsyst. Nanoeng. 9, 25 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Molinero-Fernández, A., Casanova, A., Wang, Q. Y., Cuartero, M. & Crespo, G. A. In vivo transdermal multi-ion monitoring with a potentiometric microneedle-based sensor patch. ACS Sensors 8, 158–166 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Li, H. et al. Microneedle-based potentiometric sensing system for continuous monitoring of multiple electrolytes in skin interstitial fluids. ACS Sens. 6, 2181–2190 (2021).

    Article  CAS  PubMed  Google Scholar 

  77. Zhu, D. D. et al. Microneedle-coupled epidermal sensors for in-situ-multiplexed ion detection in interstitial fluids. ACS Appl. Mater. Interfaces https://doi.org/10.1021/acsami.3c00573 (2023).

  78. Zheng, Y. B. et al. A wearable microneedle-based extended gate transistor for real-time detection of sodium in interstitial fluids. Adv. Mater. 34, e2108607 (2022).

    Article  PubMed  Google Scholar 

  79. Li, M. S. et al. Current and future perspectives on microfluidic tear analytic devices. ACS Sens. 7, 1300–1314 (2022).

    Article  CAS  PubMed  Google Scholar 

  80. Giardini, A. & Roberts, J. R. Concentration of glucose and total chloride in tears. Br. J. Ophthalmol. 34, 737–743 (1950).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kang, J., Fulop, G. & Friedman, A. H. Tear urea nitrogen and creatinine levels in renal patients. Acta Ophthalmol. 66, 407–412 (1988).

    Article  CAS  Google Scholar 

  82. Thomas, N., Lähdesmäki, I. & Parviz, B. A. A contact lens with an integrated lactate sensor. Sens. Actuators B: Chem. 162, 128–134 (2012).

    Article  CAS  Google Scholar 

  83. Liu, H., Yan, X., Gu, Z., Xiu, G. & Xiao, X. Electrochemical sensing in contact lenses. Electroanalysis 34, 227–236 (2021).

    Article  Google Scholar 

  84. Yang, X. et al. Flexible, wearable microfluidic contact lens with capillary networks for tear diagnostics. J. Mater. Sci. 55, 9551–9561 (2020).

    Article  CAS  Google Scholar 

  85. Badugu, R., Szmacinski, H., Reece, E. A., Jeng, B. H. & Lakowicz, J. R. Fluorescent contact lens for continuous non-invasive measurements of sodium and chloride ion concentrations in tears. Anal. Biochem. 608, 113902 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Moreddu, R. et al. Integration of paper microfluidic sensors into contact lenses for tear fluid analysis. Lab. Chip 20, 3970–3979 (2020).

    Article  CAS  PubMed  Google Scholar 

  87. Moreddu, R. et al. Lab-on-a-contact lens platforms fabricated by multi-axis femtosecond laser ablation. Small 17, e2102008 (2021).

    Article  PubMed  Google Scholar 

  88. Mukundan, G. & Badhulika, S. Nickel-cobalt metal-organic frameworks based flexible hydrogel as a wearable contact lens for electrochemical sensing of urea in tear samples. Mikrochim. Acta 191, 252 (2024).

    Article  CAS  PubMed  Google Scholar 

  89. Lakowicz, J. R., Badugu, R., Sivashanmugan, K. & Reece, A. Remote measurements of tear electrolyte concentrations on both sides of an inserted contact lens. Chemosensors 11, 463 (2023).

    Article  CAS  PubMed  Google Scholar 

  90. Ku, M. et al. Smart, soft contact lens for wireless immunosensing of cortisol. Sci. Adv. 6, eabb2891 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Badugu, R., Szmacinski, H., Reece, E. A., Jeng, B. H. & Lakowicz, J. R. Sodium-sensitive contact lens for diagnostics of ocular pathologies. Sens. Actuators B Chem. 331, 129434 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Park, J. et al. Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays. Sci. Adv. 4, eaap9841 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Keum, D. H. et al. Wireless smart contact lens for diabetic diagnosis and therapy. Sci. Adv. 6, eaba3252 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sempionatto, J. R. et al. Eyeglasses-based tear biosensing system: non-invasive detection of alcohol, vitamins and glucose. Biosens. Bioelectron. 137, 161–170 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kalasin, S., Sangnuang, P. & Surareungchai, W. Lab-on-eyeglasses to monitor kidneys and strengthen vulnerable populations in pandemics: machine learning in predicting serum creatinine using tear creatinine. Anal. Chem. 93, 10661–10671 (2021).

    Article  CAS  PubMed  Google Scholar 

  96. Xu, J., Tao, X., Liu, X. & Yang, L. Wearable eye patch biosensor for noninvasive and simultaneous detection of multiple biomarkers in human tears. Anal. Chem. 94, 8659–8667 (2022).

    Article  CAS  PubMed  Google Scholar 

  97. Tiffany, T. O., Jansen, J. M., Burtis, C. A., Overton, J. B. & Scott, C. D. Enzymatic kinetic rate and end-point analyses of substrate, by use of a GeMSAEC fast analyzer. Clin. Chem. 18, 829–840 (1972).

    Article  CAS  PubMed  Google Scholar 

  98. Jaffé, M. Ueber den Niederschlag, welchen Pikrinsäure in normalem Harn erzeugt und über eine neue Reaction des Kreatinins. Biol. Chem. 10, 391–400 (1886).

    Article  Google Scholar 

  99. Jung, D., Biggs, H., Erikson, J. & Ledyard, P. U. New colorimetric reaction for end-point, continuous-flow, and kinetic measurement of urea. Clin. Chem. 21, 1136–1140 (1975).

    Article  CAS  PubMed  Google Scholar 

  100. Yetisen, A. K. et al. Scleral lens sensor for ocular electrolyte analysis. Adv. Mater. 32, e1906762 (2020).

    Article  PubMed  Google Scholar 

  101. Moonla, C. et al. Lab-in-a-mouth and advanced point-of-care sensing systems: detecting bioinformation from the oral cavity and saliva. ECS Sens. Plus 1, 021603 (2022).

    Article  CAS  Google Scholar 

  102. Swetha, P., Balijapalli, U. & Feng, S.-P. Wireless accessing of salivary biomarkers based wearable electrochemical sensors: a mini-review. Electrochem. Commun. 140, 107314 (2022).

    Article  CAS  Google Scholar 

  103. Haji Mohammadi, M. et al. Saliva lab-on-a-chip biosensors: recent novel ideas and applications in disease detection. Microchem. J. 168, 106506 (2021).

    Article  CAS  Google Scholar 

  104. Lee, Y. et al. Wireless, intraoral hybrid electronics for real-time quantification of sodium intake toward hypertension management. Proc. Natl Acad. Sci. USA 115, 5377–5382 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kim, J. et al. Non-invasive mouthguard biosensor for continuous salivary monitoring of metabolites. Analyst 139, 1632–1636 (2014).

    Article  CAS  PubMed  Google Scholar 

  106. Kim, J. et al. Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics. Biosens. Bioelectron. 74, 1061–1068 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Lim, H. R. et al. Smart bioelectronic pacifier for real-time continuous monitoring of salivary electrolytes. Biosens. Bioelectron. 210, 114329 (2022).

    Article  CAS  PubMed  Google Scholar 

  108. Temilola, D. O. et al. Salivary creatinine as a diagnostic tool for evaluating patients with chronic kidney disease. BMC Nephrol. 20, 387 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Bilancio, G. et al. Saliva for assessing creatinine, uric acid, and potassium in nephropathic patients. BMC Nephrol. 20, 242 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Soni, A., Surana, R. K. & Jha, S. K. Smartphone based optical biosensor for the detection of urea in saliva. Sens. Actuators B: Chem. 269, 346–353 (2018).

    Article  CAS  Google Scholar 

  111. Labat, C. et al. Differential associations for salivary sodium, potassium, calcium, and phosphate levels with carotid intima media thickness, heart rate, and arterial stiffness. Dis. Markers 2018, 3152146 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Kallapur, B. et al. Quantitative estimation of sodium, potassium and total protein in saliva of diabetic smokers and nonsmokers: a novel study. J. Nat. Sci. Biol. Med. 4, 341–345 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Holden, B. A., Sweeney, D. F., Vannas, A., Nilsson, K. T. & Efron, N. Effects of long-term extended contact lens wear on the human cornea. Invest. Ophthalmol. Vis. Sci. 26, 1489–1501 (1985).

    CAS  PubMed  Google Scholar 

  114. Ghaffari, R., Rogers, J. A. & Ray, T. R. Recent progress, challenges, and opportunities for wearable biochemical sensors for sweat analysis. Sens. Actuators B Chem. 332, 129447 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Cho, S. et al. A skin-interfaced microfluidic platform supports dynamic sweat biochemical analysis during human exercise. Sci. Transl. Med. 16, eado5366 (2024).

    Article  CAS  PubMed  Google Scholar 

  116. Zargartalebi, H. et al. Active-reset protein sensors enable continuous in vivo monitoring of inflammation. Science 386, 1146–1153 (2024).

    Article  CAS  PubMed  Google Scholar 

  117. Thompson, I. A. P. et al. An antibody-based molecular switch for continuous small-molecule biosensing. Sci. Adv. 9, eadh4978 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Hariri, A. A. et al. Modular aptamer switches for the continuous optical detection of small-molecule analytes in complex media. Adv. Mater. 36, e2304410 (2024).

    Article  PubMed  Google Scholar 

  119. Poudineh, M. et al. A fluorescence sandwich immunoassay for the real-time continuous detection of glucose and insulin in live animals. Nat. Biomed. Eng. 5, 53–63 (2021).

    Article  CAS  PubMed  Google Scholar 

  120. Pinto, M. & Dobson, S. BK and JC virus: a review. J. Infect. 68, S2–S8 (2014).

    Article  PubMed  Google Scholar 

  121. Reploeg, M. D., Storch, G. A. & Clifford, D. B. Bk virus: a clinical review. Clin. Infect. Dis. 33, 191–202 (2001).

    Article  CAS  PubMed  Google Scholar 

  122. Lo, D. J., Kaplan, B. & Kirk, A. D. Biomarkers for kidney transplant rejection. Nat. Rev. Nephrol. 10, 215–225 (2014).

    Article  CAS  PubMed  Google Scholar 

  123. Shi, C. et al. Application of a sub-0.1-mm(3) implantable mote for in vivo real-time wireless temperature sensing. Sci. Adv. 7, eabf6312 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kang, S. K. et al. Bioresorbable silicon electronic sensors for the brain. Nature 530, 71–76 (2016).

    Article  CAS  PubMed  Google Scholar 

  125. Mariello, M., Kim, K., Wu, K., Lacour, S. P. & Leterrier, Y. Recent advances in encapsulation of flexible bioelectronic implants: materials, technologies, and characterization methods. Adv. Mater. 34, e2201129 (2022).

    Article  PubMed  Google Scholar 

  126. Sang, M., Kim, K., Shin, J. & Yu, K. J. Ultra-thin flexible encapsulating materials for soft bio-integrated electronics. Adv. Sci. 9, e2202980 (2022).

    Article  Google Scholar 

  127. Doloff, J. C. et al. The surface topography of silicone breast implants mediates the foreign body response in mice, rabbits and humans. Nat. Biomed. Eng. 5, 1115–1130 (2021).

    Article  CAS  PubMed  Google Scholar 

  128. Guo, H. et al. Wireless implantable optical probe for continuous monitoring of oxygen saturation in flaps and organ grafts. Nat. Commun. 13, 3009 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Zhang, H. et al. Wireless, battery-free optoelectronic systems as subdermal implants for local tissue oximetry. Sci. Adv. 5, eaaw0873 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Humar, A. & Matas, A. J. Surgical complications after kidney transplantation. Semin. Dial. 18, 505–510 (2005).

    Article  PubMed  Google Scholar 

  131. Salvadori, M., Rosso, G. & Bertoni, E. Update on ischemia-reperfusion injury in kidney transplantation: pathogenesis and treatment. World J. Transpl. 5, 52–67 (2015).

    Article  Google Scholar 

  132. Park, J., Seok, H. S., Kim, S. S. & Shin, H. Photoplethysmogram analysis and applications: an integrative review. Front. Physiol. 12, 808451 (2021).

    Article  PubMed  Google Scholar 

  133. Traverso, G. et al. First-in-human trial of an ingestible vitals-monitoring pill. Device 1, 100125 (2023).

    Article  Google Scholar 

  134. Srinivasan, S. S. et al. A vibrating ingestible bioelectronic stimulator modulates gastric stretch receptors for illusory satiety. Sci. Adv. 9, eadj3003 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Ouyang, W. et al. An implantable device for wireless monitoring of diverse physio-behavioral characteristics in freely behaving small animals and interacting groups. Neuron 112, 1764–1777.e1765 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Lee, K. et al. Mechano-acoustic sensing of physiological processes and body motions via a soft wireless device placed at the suprasternal notch. Nat. Biomed. Eng. 4, 148–158 (2020).

    Article  PubMed  Google Scholar 

  137. Boutry, C. M. et al. A stretchable and biodegradable strain and pressure sensor for orthopaedic application. Nat. Electron. 1, 314–321 (2018).

    Article  Google Scholar 

  138. Kim, J. et al. A wireless, implantable bioelectronic system for monitoring urinary bladder function following surgical recovery. Proc. Natl Acad. Sci. USA 121, e2400868121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Kang, S. K., Koo, J., Lee, Y. K. & Rogers, J. A. Advanced materials and devices for bioresorbable electronics. Acc. Chem. Res. 51, 988–998 (2018).

    Article  CAS  PubMed  Google Scholar 

  140. Zhang, Y. et al. Advances in bioresorbable materials and electronics. Chem. Rev. 123, 11722–11773 (2023).

    Article  CAS  PubMed  Google Scholar 

  141. Lu, D. et al. Implantable, wireless, self-fixing thermal sensors for continuous measurements of microvascular blood flow in flaps and organ grafts. Biosens. Bioelectron. 206, 114145 (2022).

    Article  CAS  PubMed  Google Scholar 

  142. Madhvapathy, S. R. et al. Implantable bioelectronic systems for early detection of kidney transplant rejection. Science 381, 1105–1112 (2023).

    Article  CAS  PubMed  Google Scholar 

  143. Madhvapathy, S. R. et al. Advanced thermal sensing techniques for characterizing the physical properties of skin. Appl. Phys. Rev. 9, 041307 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Crawford, K. E. et al. Advanced approaches for quantitative characterization of thermal transport properties in soft materials using thin, conformable resistive sensors. Extreme Mech. Lett. 22, 27–35 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Madhvapathy, S. R. et al. Miniaturized implantable temperature sensors for the long-term monitoring of chronic intestinal inflammation. Nat. Biomed. Eng. 8, 1040–1052 (2024).

    Article  CAS  PubMed  Google Scholar 

  146. Pizarro, T. T. et al. SAMP1/YitFc mouse strain: a spontaneous model of Crohn’s disease-like ileitis. Inflamm. Bowel Dis. 17, 2566–2584 (2011).

    Article  PubMed  Google Scholar 

  147. Clayton, P. A., McDonald, S. P., Russ, G. R. & Chadban, S. J. Long-term outcomes after acute rejection in kidney transplant recipients: an ANZDATA analysis. J. Am. Soc. Nephrol. 30, 1697–1707 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Singh, N., Pirsch, J. & Samaniego, M. Antibody-mediated rejection: treatment alternatives and outcomes. Transpl. Rev. 23, 34–46 (2009).

    Article  Google Scholar 

  149. Levitsky, J. et al. Acute rejection increases risk of graft failure and death in recent liver transplant recipients. Clin. Gastroenterol. Hepatol. 15, 584–593.e582 (2017).

    Article  PubMed  Google Scholar 

  150. Hopkins, P. M. et al. Prospective analysis of 1,235 transbronchial lung biopsies in lung transplant recipients. J. Heart Lung Transpl. 21, 1062–1067 (2002).

    Article  Google Scholar 

  151. Han, Z. et al. Vitrification and nanowarming enable long-term organ cryopreservation and life-sustaining kidney transplantation in a rat model. Nat. Commun. 14, 3407 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. He, X. & Bischof, J. C. Analysis of thermal stress in cryosurgery of kidneys. J. Biomech. Eng. 127, 656–661 (2005).

    Article  PubMed  Google Scholar 

  153. Natesan, H. et al. A micro-thermal sensor for focal therapy applications. Sci. Rep. 6, 21395 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Sharma, A. et al. Vitrification and nanowarming of kidneys. Adv. Sci. 8, e2101691 (2021).

    Article  Google Scholar 

  155. O’Brien, T. J. et al. The development of a thin-filmed noninvasive tissue perfusion sensor to quantify capillary pressure occlusion of explanted organs. IEEE Trans. Biomed. Eng. 64, 1631–1637 (2017).

    Article  PubMed  Google Scholar 

  156. Liapis, H. et al. Banff histopathological consensus criteria for preimplantation kidney biopsies. Am. J. Transpl. 17, 140–150 (2017).

    Article  CAS  Google Scholar 

  157. van Stralen, K. J. et al. Diagnostic methods I: sensitivity, specificity, and other measures of accuracy. Kidney Int. 75, 1257–1263 (2009).

    Article  PubMed  Google Scholar 

  158. Hall, I. E., Doshi, M. D., Poggio, E. D. & Parikh, C. R. A comparison of alternative serum biomarkers with creatinine for predicting allograft function after kidney transplantation. Transplantation 91, 48–56 (2011).

    Article  CAS  PubMed  Google Scholar 

  159. Barone, D. G. et al. Prevention of the foreign body response to implantable medical devices by inflammasome inhibition. Proc. Natl Acad. Sci. USA 119, e2115857119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Veiseh, O. et al. Size- and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates. Nat. Mater. 14, 643–651 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Kaasch, A. J. et al. Effect of clinically uninfected orthopedic implants and pacemakers/AICDs in low-risk staphylococcus aureus bloodstream infection on crude mortality rate: a post hoc analysis of a large cohort study. Open. Forum Infect. Dis. 6, ofz170 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Jensen, M. J. et al. Cochlear implant material effects on inflammatory cell function and foreign body response. Hear. Res. 426, 108597 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Carnicer-Lombarte, A., Chen, S. T., Malliaras, G. G. & Barone, D. G. Foreign body reaction to implanted biomaterials and its impact in nerve neuroprosthetics. Front. Bioeng. Biotechnol. 9, 622524 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Li, C. et al. Design of biodegradable, implantable devices towards clinical translation. Nat. Rev. Mater. 5, 61–81 (2020).

    Article  Google Scholar 

  165. Ciatti, J. L. et al. An autonomous implantable device for the prevention of death from opioid overdose. Sci. Adv. 10, eadr3567 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Won, S. M., Cai, L., Gutruf, P. & Rogers, J. A. Wireless and battery-free technologies for neuroengineering. Nat. Biomed. Eng. 7, 405–423 (2023).

    Article  PubMed  Google Scholar 

  167. Liu, H. C. et al. Wearable bioadhesive ultrasound shear wave elastography. Sci. Adv. 10, eadk8426 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Mac, Q. D. et al. Non-invasive early detection of acute transplant rejection via nanosensors of granzyme B activity. Nat. Biomed. Eng. 3, 281–291 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Mason, P. Blood tests used to investigate liver, thyroid or kidney function and disease. Pharm. J. 272, 446–448 (2004).

    Google Scholar 

  170. Kayashima, S. et al. Suction effusion fluid from skin and constituent analysis: new candidate for interstitial fluid. Am. J. Physiol. 263, H1623–H1627 (1992).

    CAS  PubMed  Google Scholar 

  171. Pandya, D., Nagrajappa, A. K. & Ravi, K. S. Assessment and correlation of urea and creatinine levels in saliva and serum of patients with chronic kidney disease, diabetes and hypertension- a research study. J. Clin. Diagn. Res. 10, ZC58–ZC62 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Ebah, L., Brenchley, P., Coupes, B. & Mitra, S. A modified in vivo flow variation technique of microdialysis for sampling uremic toxins in the subcutaneous interstitial compartment. Blood Purif. 32, 96–103 (2011).

    Article  CAS  PubMed  Google Scholar 

  173. Mendelsohn, M., Abramson, D., Senft, S., Servodidio, C. & Gamache, P. Uric acid in the aqueous humor and tears of retinoblastoma patients. J. AAPOS 2, 369–371 (1998).

    Article  CAS  PubMed  Google Scholar 

  174. Asadi, M., Nadhum Bahjat, M. & Hosseini, M. A review on wearable sensors for sodium detection in human sweat. Anal. Bioanal. Electrochem. 15, 794–814 (2023).

    CAS  Google Scholar 

  175. Madden, J., O’Mahony, C., Thompson, M., O’Riordan, A. & Galvin, P. Biosensing in dermal interstitial fluid using microneedle based electrochemical devices. Sens. Biosens. Res. 29, 100348 (2020).

    Google Scholar 

  176. Van Haeringen, N. J. Clinical biochemistry of tears. Surv. Ophthalmol. 26, 84–96 (1981).

    Article  PubMed  Google Scholar 

  177. Ray, T. R. et al. Soft, skin-interfaced sweat stickers for cystic fibrosis diagnosis and management. Sci. Transl. Med. 13, eabd8109 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Gonçalves, A. C. et al. Chloride and sodium ion concentrations in saliva and sweat as a method to diagnose cystic fibrosis. J. Pediatr. 95, 443–450 (2019).

    Article  Google Scholar 

  179. Senel, M., Dervisevic, M. & Voelcker, N. H. Gold microneedles fabricated by casting of gold ink used for urea sensing. Mater. Lett. 243, 50–53 (2019).

    Article  CAS  Google Scholar 

  180. Chen, Y. J. et al. Microneedle patches integrated with lateral flow cassettes for blood-free chronic kidney disease point-of-care testing during a pandemic. Biosens. Bioelectron. 208, 114234 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Tatiana Gandlin for providing the initial version of Fig. 1 and Sarena Wapnick (Northwestern University, IL, USA) for useful discussions about the contents of the manuscript prior to submission.

Author information

Authors and Affiliations

Authors

Contributions

S.R.M., S. C., Y.X., L.G., E.F., E.G. and J.A.R. wrote the paper. All authors reviewed and edited the manuscript prior to submission.

Corresponding authors

Correspondence to Lorenzo Gallon or John A. Rogers.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks Jonathan Himmelfarb, Sihong Wang and Wei Gao for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Amperometric

An electroanalytical technique that measures current generated by the oxidation and reduction of an electroactive biological analyte.

Aptamer-based molecular switches

Molecular mechanisms by which aptamers bind to the target and undergo structural conformational changes.

Aptamer-based sensors

A biosensor category that uses short, single-stranded DNA or RNA to specifically bind to target analytes.

Electrochemistry

The study of the relationship between electrical and chemical processes, often applied to biosensors for detection of target analytes.

Impedance

An electroanalytical technique that measures changes in the electrical impedance of an electrode surface in the presence of the target molecule.

Interpenetrating polymer network

Polymer chains, comprising two or more networks, that are interlaced at molecular scales.

Iontophoresis

An electrical technique that passes a weak electrical current through the skin to deliver ions or drugs for extraction of sweat or interstitial fluid.

Polyaniline ink

A highly conducting polymeric ink, frequently used for biosensing applications.

Potentiometric

An electroanalytical technique that measures electrical potential as an analytical signal generated by an electrochemical reaction.

Surface-enhanced Raman scattering

A signal amplification technique that enhances Raman scattering by surface roughness for detection of target analytes.

Ultradian rhythms

Biological cycles that occur with periods shorter than 24 h.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madhvapathy, S.R., Cho, S., Gessaroli, E. et al. Implantable bioelectronics and wearable sensors for kidney health and disease. Nat Rev Nephrol 21, 443–463 (2025). https://doi.org/10.1038/s41581-025-00961-2

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41581-025-00961-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing