Abstract
The study of behaviour is dominated by two approaches. On the one hand, ethologists aim to understand how behaviour promotes adaptation to natural contexts. On the other, neuroscientists aim to understand the molecular, cellular, circuit and psychological origins of behaviour. These two complementary approaches must be combined to arrive at a full understanding of behaviour in its natural setting. However, methodological limitations have restricted most neuroscientific research to the study of how discrete sensory stimuli elicit simple behavioural responses under controlled laboratory conditions that are only distantly related to those encountered in real life. Fortunately, the recent advent of neural monitoring and manipulation tools adapted for use in freely behaving animals has enabled neuroscientists to incorporate naturalistic behaviours into their studies and to begin to consider ethological questions. Here, we examine the promises and pitfalls of this trend by describing how investigations of rodent fear, aggression and dominance behaviours are changing to take advantage of an ethological appreciation of behaviour. We lay out current impediments to this approach and propose a framework for the evolution of the field that will allow us to take maximal advantage of an ethological approach to neuroscience and to increase its relevance for understanding human behaviour.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others
Data availability
Data extracted from PubMed to create Fig. 1 is available upon request at gross@embl.it.
References
Tinbergen, N. The Study of Instinct (Oxford Univ. Press, 1951).
Klüver, H. & Bucy, P. C. Preliminary analysis of functions of the temporal lobes in monkeys. Arch. Neurol. Psychiatry 42, 979–1000 (1939).
Hess, W. R. & Brügger, M. Das subkortikale zentrum der affectiven abwehrreactionem [German]. Helv. Physiol. Acta 1, 33–52 (1943).
Canteras, N. S. The medial hypothalamic defensive system: hodological organization and functional implications. Pharmacol. Biochem. Behav. 71, 481–491 (2002).
Gross, C. T. & Canteras, N. S. The many paths to fear. Nat. Rev. Neurosci. 13, 651–658 (2012).
Silva, B. A., Gross, C. T. & Gräff, J. The neural circuits of innate fear: detection, integration, action, and memorization. Learn. Mem. 23, 544–555 (2016).
Shaikh, M. B., Brutus, M., Siegel, H. E. & Siegel, A. Topographically organized midbrain modulation of predatory and defensive aggression in the cat. Brain Res. 336, 308–312 (1985).
Gregg, T. R. & Siegel, A. Brain structures and neurotansmitters regulating aggression in cats: implications for human aggression. Prog. Neuropsychopharmacol. Biol. Psychiatry 25, 91–140 (2001).
Swanson, L. W. Anatomy of the soul as reflected in the cerebral hemispheres: neural circuits underlying voluntary control of basic motivated behaviors. J. Comp. Neurol. 493, 122–131 (2005).
Siegel, A., Roeling, T. A. P., Gregg, T. R. & Kruk, M. R. Neuropharmacology of brain-stimulation-evoked aggression. Neurosci. Biobehav. Rev. 23, 359–389 (1999).
Gräfe, S. & Stuhrmann, C. Histories of ethology: methods, sites, and dynamics of an unbound discipline. Ber. Zur. Wiss. 45, 10–29 (2022).
Thompson, R. F. Behaviorism and neuroscience. Psychol. Rev. 101, 259–265 (1994).
Blanchard, R. J., Yang, M., Li, C.-I., Gervacio, A. & Blanchard, D. C. Cue and context conditioning of defensive behaviors to cat odor stimuli. Neurosci. Biobehav. Rev. 25, 587–595 (2001).
Ribeiro-Barbosa, E. R., Canteras, N. S., Cezário, A. F., Blanchard, R. J. & Blanchard, D. C. An alternative experimental procedure for studying predator-related defensive responses. Neurosci. Biobehav. Rev. 29, 1255–1263 (2005).
Martinez, R. C., Carvalho-Netto, E. F., Ribeiro-Barbosa, É. R., Baldo, M. V. C. & Canteras, N. S. Amygdalar roles during exposure to a live predator and to a predator-associated context. Neuroscience 172, 314–328 (2011).
Silva, B. A. et al. The ventromedial hypothalamus mediates predator fear memory. Eur. J. Neurosci. 43, 1431–1439 (2016).
Cavalli, J., Bertoglio, L. J. & Carobrez, A. P. Pentylenetetrazole as an unconditioned stimulus for olfactory and contextual fear conditioning in rats. Neurobiol. Learn. Mem. 92, 512–518 (2009).
Kamikawa, K., McIlwain, J. T. & Adey, W. R. Response patterns of thalamic neurons during classical conditioning. Electroencephalogr. Clin. Neurophysiol. 17, 485–496 (1964).
Carew, T. J., Walters, E. T. & Kandel, E. R. Associative learning in Aplysia: cellular correlates supporting a conditioned fear hypothesis. Science 211, 501–504 (1981).
Applegate, C. D., Frysinger, R. C., Kapp, B. S. & Gallagher, M. Multiple unit activity recorded from amygdala central nucleus during Pavlovian heart rate conditioning in rabbit. Brain Res. 238, 457–462 (1982).
Wurtz, R. H. & Sommer, M. in Methods in Mind (eds Senior, C., Russell, T. & Gazzaniga, M. S.) 123–139 (MIT Press, 2006).
Changeux, J.-P. Discovery of the first neurotransmitter receptor: the acetylcholine nicotinic receptor. Biomolecules 10, 547 (2020).
Halliwell, R. F. A short history of the rise of the molecular pharmacology of ionotropic drug receptors. Trends Pharmacol. Sci. 28, 214–219 (2007).
Himanshu, Dharmila, Sarkar, D. & Nutan A review of behavioral tests to evaluate different types of anxiety and anti-anxiety effects. Clin. Psychopharmacol. Neurosci. 18, 341–351 (2020).
Lederhendler, I. & Schulkin, J. Behavioral neuroscience: challenges for the era of molecular biology. Trends Neurosci. 23, 451–454 (2000).
Prut, L. & Belzung, C. The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur. J. Pharmacol. 463, 3–33 (2003).
Bourin, M. Animal models for screening anxiolytic-like drugs: a perspective. Dialogues Clin. Neurosci. 17, 295–303 (2015).
Umezu, T. Effects of psychoactive drugs in the Vogel conflict test in mice. Jpn. J. Pharmacol. 80, 111–118 (1999).
Adhikari, A., Topiwala, M. A. & Gordon, J. A. Single units in the medial prefrontal cortex with anxiety-related firing patterns are preferentially influenced by ventral hippocampal activity. Neuron 71, 898–910 (2011).
Felix-Ortiz, A. C. et al. BLA to vHPC inputs modulate anxiety-related behaviors. Neuron 79, 658–664 (2013).
Tye, K. M. et al. Dopamine neurons modulate neural encoding and expression of depression-related behaviour. Nature 493, 537–541 (2013).
Olivier, B., Mos, J. & Rasmussen, D. Behavioural pharmacology of the serenic, eltoprazine. Drug. Metabol. Drug. Interact. 8, 31–83 (1990).
Takahashi, A. & Miczek, K. A. Neurogenetics of aggressive behavior — studies in rodents. Curr. Top. Behav. Neurosci. 17, 3–44 (2014).
Tulogdi, A. et al. Brain mechanisms involved in predatory aggression are activated in a laboratory model of violent intra-specific aggression. Eur. J. Neurosci. 32, 1744–1753 (2010).
Tulogdi, A. et al. Neural mechanisms of predatory aggression in rats — implications for abnormal intraspecific aggression. Behav. Brain Res. 283, 108–115 (2015).
Salomon, A. L., Lazorcheck, M. J. & Schein, M. W. Effect of social dominance on individual crowing rates of cockerels. J. Comp. Physiol. Psychol. 61, 144–146 (1966).
Kuse, A. R. & de Fries, J. C. Social dominance and Darwinian fitness in laboratory mice: an alternative test. Behav. Biol. 16, 113–116 (1976).
Chalmers, N. R. & Rowell, T. E. Behaviour and female reproductive cycles in a captive group of mangabeys. Folia Primatol. 14, 1–14 (1971).
Bernstein, I. S. Dominance: the baby and the bathwater. Behav. Brain Sci. 4, 419–457 (1981).
Francis, R. C. On the relationship between aggression and social dominance. Ethology 78, 223–237 (1988).
Wilson, E. O. Sociobiology: The New Synthesis (Harvard Univ. Press, 1975).
Leander, N. P. & Chartrand, T. L. On thwarted goals and displaced aggression: a compensatory competence model. J. Exp. Soc. Psychol. 72, 88–100 (2017).
Hand, J. L. Resolution of social conflicts: dominance, egalitarianism, spheres of dominance, and game theory. Q. Rev. Biol. 61, 201–220 (1986).
Sapolsky, R. M. The influence of social hierarchy on primate health. Science 308, 648–652 (2005).
Trainor, B. C., Sisk, C. L. & Nelson, R. J. in Hormones, Brain and Behavior Vol. 1 (eds Pfaff, D. W., Arnold, A. P., Etgen, A. M., Fahrbach, S. E. & Rubin, R. T.) 167–203 (Elsevier Academic, 2009).
Lindzey, G., Winston, H. & Manosevitz, M. Social dominance in inbred mouse strains. Nature 191, 474–476 (1961).
Wang, F. et al. Bidirectional control of social hierarchy by synaptic efficacy in medial prefrontal cortex. Science 334, 693–697 (2011).
Fan, Z. et al. Using the tube test to measure social hierarchy in mice. Nat. Protoc. 14, 819–831 (2019).
Battivelli, D. et al. Dopamine neuron activity and stress signaling as links between social hierarchy and psychopathology vulnerability. Biol. Psychiatry 95, 774–784 (2024).
Hou, X. H. et al. Central control circuit for context-dependent micturition. Cell 167, 73–86.e12 (2016).
Battivelli, D. et al. Induction of territorial behavior and dominance hierarchies in laboratory mice. Preprint at bioRxiv https://doi.org/10.1101/2024.06.19.599689 (2024).
Zhou, Y. et al. Mice with shank3 mutations associated with ASD and schizophrenia display both shared and distinct defects. Neuron 89, 147–162 (2016).
Strozik, E. & Festing, M. F. Whisker trimming in mice. Lab. Anim. 15, 309–312 (1981).
Zhou, T. et al. History of winning remodels thalamo-PFC circuit to reinforce social dominance. Science 357, 162–168 (2017).
LeClair, K. B. et al. Individual history of winning and hierarchy landscape influence stress susceptibility in mice. eLife 10, e71401 (2021).
Padilla-Coreano, N. et al. Cortical ensembles orchestrate social competition through hypothalamic outputs. Nature 603, 667–671 (2022).
Li, S. W. et al. Frontal neurons driving competitive behaviour and ecology of social groups. Nature 603, 661–666 (2022).
Zhang, F. et al. Multimodal fast optical interrogation of neural circuitry. Nature 446, 633–639 (2007).
Armbruster, B. N., Li, X., Pausch, M. H., Herlitze, S. & Roth, B. L. Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc. Natl Acad. Sci. USA 104, 5163–5168 (2007).
Slimko, E. M., McKinney, S., Anderson, D. J., Davidson, N. & Lester, H. A. Selective electrical silencing of mammalian neurons in vitro by the use of invertebrate ligand-gated chloride channels. J. Neurosci. 22, 7373–7379 (2002).
Tsetsenis, T., Ma, X.-H., Lo Iacono, L., Beck, S. G. & Gross, C. Suppression of conditioning to ambiguous cues by pharmacogenetic inhibition of the dentate gyrus. Nat. Neurosci. 10, 896–902 (2007).
Jun, J. J. et al. Fully integrated silicon probes for high-density recording of neural activity. Nature 551, 232–236 (2017).
Ghosh, K. K. et al. Miniaturized integration of a fluorescence microscope. Nat. Methods 8, 871–878 (2011).
Keane, T. M. et al. Mouse genomic variation and its effect on phenotypes and gene regulation. Nature 477, 289–294 (2011).
Grubb, S. C., Bult, C. J. & Bogue, M. A. Mouse phenome database. Nucleic Acids Res. 42, D825–D834 (2014).
Doran, A. G. et al. Deep genome sequencing and variation analysis of 13 inbred mouse strains defines candidate phenotypic alleles, private variation and homozygous truncating mutations. Genome Biol. 17, 167 (2016).
Hattori, T. et al. Self-exposure to the male pheromone ESP1 enhances male aggressiveness in mice. Curr. Biol. 26, 1229–1234 (2016).
Beck, J. A. et al. Genealogies of mouse inbred strains. Nat. Genet. 24, 23–25 (2000).
Miczek, K. A., Faccidomo, S. P., Fish, E. W. & DeBold, J. F. in Handbook of Neurochemistry and Molecular Neurobiology (eds Lajtha, A. & Blaustein, J. D.) 285–336 (Springer US, 2007).
Bisazza, A. Social organization and territorial behaviour in three strains of mice. Bolletino Zool. 48, 157–167 (1981).
Beans, C. What happens when lab animals go wild. Proc. Natl Acad. Sci. USA 115, 3196–3199 (2018).
Canteras, N. S., Chiavegatto, S., Ribeiro do Valle, L. E. & Swanson, L. W. Severe reduction of rat defensive behavior to a predator by discrete hypothalamic chemical lesions. Brain Res. Bull. 44, 297–305 (1997).
Silva, B. A. et al. Independent hypothalamic circuits for social and predator fear. Nat. Neurosci. 16, 1731–1733 (2013).
Motta, S. C. et al. Dissecting the brain’s fear system reveals the hypothalamus is critical for responding in subordinate conspecific intruders. Proc. Natl Acad. Sci. USA 106, 4870–4875 (2009).
Mongeau, R., Miller, G. A., Chiang, E. & Anderson, D. J. Neural correlates of competing fear behaviors evoked by an innately aversive stimulus. J. Neurosci. 23, 3855–3868 (2003).
Rosen, J. B., Asok, A. & Chakraborty, T. The smell of fear: innate threat of 2,5-dihydro-2,4,5-trimethylthiazoline, a single molecule component of a predator odor. Front. Neurosci. 9, 292 (2015).
Fendt, M. & Endres, T. 2,3,5-Trimethyl-3-thiazoline (TMT), a component of fox odor — just repugnant or really fear-inducing? Neurosci. Biobehav. Rev. 32, 1259–1266 (2008).
Blanchard, R. J. & Blanchard, D. C. Attack and defense in rodents as ethoexperimental models for the study of emotion. Prog. Neuropsychopharmacol. Biol. Psychiatry 13, S3–S14 (1989).
Han, W. et al. Integrated control of predatory hunting by the central nucleus of the amygdala. Cell 168, 311–324.e18 (2017).
Carvalho, V. M. et al. Representation of olfactory information in organized active neural ensembles in the hypothalamus. Cell Rep. 32, 108061 (2020).
Yang, T. et al. Social control of hypothalamus-mediated male aggression. Neuron 95, 955–970.e4 (2017).
Olszyński, K. H., Polowy, R., Małż, M., Boguszewski, P. M. & Filipkowski, R. K. Playback of alarm and appetitive calls differentially impacts vocal, heart-rate, and motor response in rats. iScience 23, 101577 (2020).
Blanchard, R. J. et al. Defensive behaviors in wild and laboratory (Swiss) mice: the mouse defense test battery. Physiol. Behav. 65, 201–209 (1998).
Yilmaz, M. & Meister, M. Rapid innate defensive responses of mice to looming visual stimuli. Curr. Biol. 23, 2011–2015 (2013).
Vale, R., Evans, D. A. & Branco, T. Rapid spatial learning controls instinctive defensive behavior in mice. Curr. Biol. 27, 1342–1349 (2017).
Zambetti, P. R. et al. Ecological analysis of Pavlovian fear conditioning in rats. Commun. Biol. 5, 830 (2022).
Fadok, J. P. et al. A competitive inhibitory circuit for selection of active and passive fear responses. Nature 542, 96–100 (2017).
Thonhauser, K. E., Raveh, S., Hettyey, A., Beissmann, H. & Penn, D. J. Why do female mice mate with multiple males? Behav. Ecol. Sociobiol. 67, 1961–1970 (2013).
Rillich, J., Schildberger, K. & Stevenson, P. A. Octopamine and occupancy: an aminergic mechanism for intruder–resident aggression in crickets. Proc. R. Soc. B Biol. Sci. 278, 1873–1880 (2011).
Crowcroft, P. Mice All Over (Foulis, 1966).
Anderson, P. K. & Hill, J. L. Mus musculus: experimental induction of territory formation. Science 148, 1753–1755 (1965).
Mackintosh, J. H. Territory formation by laboratory mice. Anim. Behav. 18, 177–183 (1970).
Reimer, J. D. & Petras, M. L. Breeding structure of the house mouse, Mus musculus, in a population cage. J. Mammal. 48, 88–99 (1967).
Liu, M., Kim, D.-W., Zeng, H. & Anderson, D. J. Make war not love: the neural substrate underlying a state-dependent switch in female social behavior. Neuron 110, 841–856.e6 (2022).
Tovote, P. et al. Midbrain circuits for defensive behaviour. Nature 534, 206–212 (2016).
Wright, K. M. & McDannald, M. A. Ventrolateral periaqueductal gray neurons prioritize threat probability over fear output. eLife 8, e45013 (2019).
Lin, D. et al. Functional identification of an aggression locus in the mouse hypothalamus. Nature 470, 221–226 (2011).
Carola, V., Scalera, E., Brunamonti, E., Gross, C. & Damato, F. Mating-related interactions share common features with anxiety in the mouse. Behav. Brain Res. 186, 185–190 (2008).
Hsu, Y. & Wolf, L. L. The winner and loser effect: integrating multiple experiences. Anim. Behav. 57, 903–910 (1999).
Zhou, T., Sandi, C. & Hu, H. Advances in understanding neural mechanisms of social dominance. Curr. Opin. Neurobiol. 49, 99–107 (2018).
Leyhausen, P. Verhaltensstudien an Katzen [German] (Parey, 1973).
Lindzey, G., Manosevitz, M. & Winston, H. Social dominance in the mouse. Psychon. Sci. 5, 451–452 (1966).
Ahn, S. et al. A role of anterior cingulate cortex in the emergence of worker–parasite relationship. Proc. Natl Acad. Sci. USA 118, e2111145118 (2021).
Calhoun, J. B. Population density and social pathology. Sci. Am. 206, 139 (1962).
Evans, L. T. Field study of the Social Behavior of the Black Lizard, Ctenosaura pectinata (American Museum of Natural History Library, 1951).
Wang, F., Kessels, H. W. & Hu, H. The mouse that roared: neural mechanisms of social hierarchy. Trends Neurosci. 37, 674–682 (2014).
Anpilov, S. et al. Wireless optogenetic stimulation of oxytocin neurons in a semi-natural setup dynamically elevates both pro-social and agonistic behaviors. Neuron 107, 644–655.e7 (2020).
So, N., Franks, B., Lim, S. & Curley, J. P. A social network approach reveals associations between mouse social dominance and brain gene expression. PLoS ONE 10, e0134509 (2015).
Sofer, Y. et al. Sexually dimorphic oxytocin circuits drive intragroup social conflict and aggression in wild house mice. Nat. Neurosci. 27, 1565–1573 (2024).
Atasoy, D., Betley, J. N., Su, H. H. & Sternson, S. M. Deconstruction of a neural circuit for hunger. Nature 488, 172–177 (2012).
Stagkourakis, S., Spigolon, G., Liu, G. & Anderson, D. J. Experience-dependent plasticity in an innate social behavior is mediated by hypothalamic LTP. Proc. Natl Acad. Sci. USA 117, 25789–25799 (2020).
LeDoux, J. E. Anxious: The Modern Mind in the Age of Anxiety (Oneworld Publications, 2015).
Davis, M., Walker, D. L., Miles, L. & Grillon, C. Phasic vs sustained fear in rats and humans: role of the extended amygdala in fear vs anxiety. Neuropsychopharmacology 35, 105–135 (2010).
Panksepp, J., Fuchs, T. & Iacobucci, P. The basic neuroscience of emotional experiences in mammals: the case of subcortical FEAR circuitry and implications for clinical anxiety. Appl. Anim. Behav. Sci. 129, 1–17 (2011).
Anderson, D. J. & Adolphs, R. A framework for studying emotions across species. Cell 157, 187–200 (2014).
Falkner, A. L. & Lin, D. Recent advances in understanding the role of the hypothalamic circuit during aggression. Front. Syst. Neurosci. 8, 168 (2014).
Fatt, P. & Katz, B. Spontaneous subthreshold activity at motor nerve endings. J. Physiol. 117, 109–128 (1952).
Del Castillo, J. & Katz, B. Quantal components of the end‐plate potential. J. Physiol. 124, 560–573 (1954).
Tomko, G. J. & Crapper, D. R. Neuronal variability: non-stationary responses to identical visual stimuli. Brain Res. 79, 405–418 (1974).
Wallace, D. J. et al. Rats maintain an overhead binocular field at the expense of constant fusion. Nature 498, 65–69 (2013).
Steinmetz, N. A. et al. Neuropixels 2.0: a miniaturized high-density probe for stable, long-term brain recordings. Science 372, eabf4588 (2021).
Cai, D. J. et al. A shared neural ensemble links distinct contextual memories encoded close in time. Nature 534, 115–118 (2016).
Zong, W. et al. Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice. Nat. Methods 14, 713–719 (2017).
Zong, W. et al. Large-scale two-photon calcium imaging in freely moving mice. Cell 185, 1240–1256.e30 (2022).
Zong, W. et al. Miniature two-photon microscopy for enlarged field-of-view, multi-plane and long-term brain imaging. Nat. Methods 18, 46–49 (2021).
Klioutchnikov, A. et al. A three-photon head-mounted microscope for imaging all layers of visual cortex in freely moving mice. Nat. Methods 20, 610–616 (2023).
Krakauer, J. W., Ghazanfar, A. A., Gomez-Marin, A., MacIver, M. A. & Poeppel, D. Neuroscience needs behavior: correcting a reductionist bias. Neuron 93, 480–490 (2017).
Kondrakiewicz, K., Kostecki, M., Szadzińska, W. & Knapska, E. Ecological validity of social interaction tests in rats and mice. Genes. Brain Behav. 18, e12525 (2019).
Datta, S. R., Anderson, D. J., Branson, K., Perona, P. & Leifer, A. Computational neuroethology: a call to action. Neuron 104, 11–24 (2019).
Jacobs, B. L. & Fornal, C. A. Activity of serotonergic neurons in behaving animals. Neuropsychopharmacology 21, 9–15 (1999).
Li, Y. et al. Serotonin neurons in the dorsal raphe nucleus encode reward signals. Nat. Commun. 7, 10503 (2016).
Luo, M., Li, Y. & Zhong, W. Do dorsal raphe 5-HT neurons encode ‘beneficialness’? Neurobiol. Learn. Mem. 135, 40–49 (2016).
Evans, D. A. et al. A synaptic threshold mechanism for computing escape decisions. Nature 558, 590–594 (2018).
Mathis, A. et al. DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nat. Neurosci. 21, 1281–1289 (2018).
Pereira, T. D. et al. Fast animal pose estimation using deep neural networks. Nat. Methods 16, 117–125 (2019).
Graving, J. M. et al. DeepPoseKit, a software toolkit for fast and robust animal pose estimation using deep learning. eLife 8, e47994 (2019).
Huang, K. et al. A hierarchical 3D-motion learning framework for animal spontaneous behavior mapping. Nat. Commun. 12, 2784 (2021).
Sangiamo, D. T., Warren, M. R. & Neunuebel, J. P. Ultrasonic signals associated with different types of social behavior of mice. Nat. Neurosci. 23, 411–422 (2020).
Lauer, J. et al. Multi-animal pose estimation, identification and tracking with DeepLabCut. Nat. Methods 19, 496–504 (2022).
Pereira, T. D. et al. SLEAP: a deep learning system for multi-animal pose tracking. Nat. Methods 19, 486–495 (2022).
Solié, C., Girard, B., Righetti, B., Tapparel, M. & Bellone, C. VTA dopamine neuron activity encodes social interaction and promotes reinforcement learning through social prediction error. Nat. Neurosci. 25, 86–97 (2022).
Mazuski, C. & O’Keefe, J. Representation of ethological events by basolateral amygdala neurons. Cell Rep. 39, 110921 (2022).
Abbott, L. F. et al. An international laboratory for systems and computational neuroscience. Neuron 96, 1213–1218 (2017).
Ayadi, A. et al. Mouse large-scale phenotyping initiatives: overview of the European Mouse Disease Clinic (EUMODIC) and of the Wellcome Trust Sanger Institute Mouse Genetics Project. Mamm. Genome 23, 600–610 (2012).
Mallon, A.-M., Blake, A. & Hancock, J. M. EuroPhenome and EMPReSS: online mouse phenotyping resource. Nucleic Acids Res. 36, D715–D718 (2008).
Radvansky, B. A. & Dombeck, D. A. An olfactory virtual reality system for mice. Nat. Commun. 9, 839 (2018).
Anderson, D. J. & Perona, P. Toward a science of computational ethology. Neuron 84, 18–31 (2014).
van Daal, R. J. J. et al. Implantation of Neuropixels probes for chronic recording of neuronal activity in freely behaving mice and rats. Nat. Protoc. 16, 3322–3347 (2021).
Vogt, N. A bright future for voltage imaging. Nat. Methods 16, 1076–1076 (2019).
Barbera, G., Liang, B., Zhang, L., Li, Y. & Lin, D.-T. A wireless miniScope for deep brain imaging in freely moving mice. J. Neurosci. Methods 323, 56–60 (2019).
Shuman, T. et al. Breakdown of spatial coding and interneuron synchronization in epileptic mice. Nat. Neurosci. 23, 229–238 (2020).
Wang, Y. et al. Cable-free brain imaging for multiple free-moving animals with miniature wireless microscopes. J. Biomed. Opt. 28, 026503 (2023).
Vyssotski, A. L. et al. Long-term monitoring of hippocampus-dependent behavior in naturalistic settings: mutant mice lacking neurotrophin receptor TrkB in the forebrain show spatial learning but impaired behavioral flexibility. Hippocampus 12, 27–38 (2002).
Torquet, N. et al. Social interactions impact on the dopaminergic system and drive individuality. Nat. Commun. 9, 3081 (2018).
Williamson, C. M., Lee, W., Romeo, R. D. & Curley, J. P. Social context-dependent relationships between mouse dominance rank and plasma hormone levels. Physiol. Behav. 171, 110–119 (2017).
Zipple, M. N., Vogt, C. C. & Sheehan, M. J. Re-wilding model organisms: opportunities to test causal mechanisms in social determinants of health and aging. Neurosci. Biobehav. Rev. 152, 105238 (2023).
Kimchi, T., Xu, J. & Dulac, C. A functional circuit underlying male sexual behaviour in the female mouse brain. Nature 448, 1009–1014 (2007).
Puścian, A. et al. Eco-HAB as a fully automated and ecologically relevant assessment of social impairments in mouse models of autism. eLife 5, e19532 (2016).
Shemesh, Y. et al. High-order social interactions in groups of mice. eLife 2, e00759 (2013).
Lopez, J. P. et al. Ketamine exerts its sustained antidepressant effects via cell-type-specific regulation of Kcnq2. Neuron 110, 2283–2298.e9 (2022).
Shemesh, Y. et al. Ucn3 and CRF-R2 in the medial amygdala regulate complex social dynamics. Nat. Neurosci. 19, 1489–1496 (2016).
Zilkha, N. et al. Sex-dependent control of pheromones on social organization within groups of wild house mice. Curr. Biol. 33, 1407–1420.e4 (2023).
Weissbrod, A. et al. Automated long-term tracking and social behavioural phenotyping of animal colonies within a semi-natural environment. Nat. Commun. 4, 2018 (2013).
Levenstein, D. et al. On the role of theory and modeling in neuroscience. J. Neurosci. 43, 1074–1088 (2023).
Flavell, S. W., Gogolla, N., Lovett-Barron, M. & Zelikowsky, M. The emergence and influence of internal states. Neuron 110, 2545–2570 (2022).
Viskaitis, P. et al. Modulation of SF1 neuron activity coordinately regulates both feeding behavior and associated emotional states. Cell Rep. 21, 3559–3572 (2017).
Waschke, L., Kloosterman, N. A., Obleser, J. & Garrett, D. D. Behavior needs neural variability. Neuron 109, 751–766 (2021).
Levy, D. J., Thavikulwat, A. C. & Glimcher, P. W. State dependent valuation: the effect of deprivation on risk preferences. PLoS ONE 8, e53978 (2013).
Burnett, C. J. et al. Hunger-driven motivational state competition. Neuron 92, 187–201 (2016).
Whittaker, A. L., Lymn, K. A. & Howarth, G. S. Effects of metabolic cage housing on rat behavior and performance in the social interaction test. J. Appl. Anim. Welf. Sci. 19, 363–374 (2016).
Sofroniew, N. J., Cohen, J. D., Lee, A. K. & Svoboda, K. Natural whisker-guided behavior by head-fixed mice in tactile virtual reality. J. Neurosci. 34, 9537–9550 (2014).
Stowers, J. R. et al. Virtual reality for freely moving animals. Nat. Methods 14, 995–1002 (2017).
Pinke, D., Issa, J. B., Dara, G. A., Dobos, G. & Dombeck, D. A. Full field-of-view virtual reality goggles for mice. Neuron 111, 3941–3952.e6 (2023).
Thurley, K. Naturalistic neuroscience and virtual reality. Front. Syst. Neurosci. 16, 896251 (2022).
Parvizi, J. et al. Complex negative emotions induced by electrical stimulation of the human hypothalamus. Brain Stimul. 15, 615–623 (2022).
Wilent, W. B. et al. Induction of panic attack by stimulation of the ventromedial hypothalamus: case report. J. Neurosurg. 112, 1295–1298 (2010).
Bugarski-Kirola, D. et al. Efficacy and safety of adjunctive bitopertin versus placebo in patients with suboptimally controlled symptoms of schizophrenia treated with antipsychotics: results from three phase 3, randomised, double-blind, parallel-group, placebo-controlled, multicentre studies in the SearchLyte clinical trial programme. Lancet Psychiatry 3, 1115–1128 (2016).
Craven, R. The risky business of drug development in neurology. Lancet Neurol. 10, 116–117 (2011).
Steckler, T. & Dautzenberg, F. M. Corticotropin-releasing factor receptor antagonists in affective disorders and drug dependence — an update. CNS Neurol. Disord. Drug. Targets 5, 147–165 (2006).
Alexandrov, V., Brunner, D., Hanania, T. & Leahy, E. High-throughput analysis of behavior for drug discovery. Eur. J. Pharmacol. 750, 82–89 (2015).
Vesuna, S. et al. Deep posteromedial cortical rhythm in dissociation. Nature 586, 87–94 (2020).
Niepoth, N. & Bendesky, A. How natural genetic variation shapes behavior. Annu. Rev. Genomics Hum. Genet. 21, 437–463 (2020).
Jourjine, N. & Hoekstra, H. E. Expanding evolutionary neuroscience: insights from comparing variation in behavior. Neuron 109, 1084–1099 (2021).
Smith, G. D. & Ebrahim, S. ‘Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease? Int. J. Epidemiol. 32, 1–22 (2003).
Gasperini, M. et al. A genome-wide framework for mapping gene regulation via cellular genetic screens. Cell 176, 377–390.e19 (2019).
Sueur, C., Forin-Wiart, M.-A. & Pelé, M. Are they really trying to save their buddy? The anthropomorphism of animal epimeletic behaviours. Animals 10, 2323 (2020).
LeDoux, J. Rethinking the emotional brain. Neuron 73, 653–676 (2012).
Panksepp, J. Affective consciousness: core emotional feelings in animals and humans. Conscious. Cogn. 14, 30–80 (2005).
Wrangham, R. W. Two types of aggression in human evolution. Proc. Natl Acad. Sci. USA 115, 245–253 (2018).
Wynne, C. D. L. The perils of anthropomorphism. Nature 428, 606–606 (2004).
Wynne, C. D. L. What are animals? Why anthropomorphism is still not a scientific approach to behavior. Comp. Cogn. Behav. Rev. 2, 125–135 (2006).
Burghardt, G. M. Ground rules for dealing with anthropomorphism. Nature 430, 15–15 (2004).
Burghardt, G. M. Critical anthropomorphism, uncritical anthropocentrism, and naïve nominalism. Comp. Cogn. Behav. Rev. 2, 136–138 (2006).
Gomez-Marin, A. A clash of Umwelts: anthropomorphism in behavioral neuroscience. Behav. Brain Sci. 42, e229 (2019).
Author information
Authors and Affiliations
Contributions
D.B. and C.T.G. contributed to conceptualization and writing. Z.F. and H.H. contributed to the sections related to dominance and hierarchy.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Neuroscience thanks David Anderson, who co-reviewed with Kathy Cheung, Jeansok Kim and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Related links
International Society for Neuroethology: https://www.neuroethology.org/
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Battivelli, D., Fan, Z., Hu, H. et al. How can ethology inform the neuroscience of fear, aggression and dominance?. Nat. Rev. Neurosci. 25, 809–819 (2024). https://doi.org/10.1038/s41583-024-00858-2
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s41583-024-00858-2