Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular and functional diversity of the autonomic nervous system

Abstract

The autonomic nervous system (ANS) plays a pivotal role in regulating organ functions through descending brain-to-body signalling. The pathways involved are broadly categorized into two major branches: the sympathetic nervous system, which mediates ‘fight or flight’ responses, and the parasympathetic nervous system, which governs ‘rest and digest’ functions. Historically, the ANS was considered to mediate simple motor functions with limited neurochemical diversity. However, recent advances in neurotechnology have shown that brain-to-body communication is more complex and dynamic than previously appreciated. This review synthesizes current knowledge about the molecular, anatomical and functional diversity of autonomic motor neurons. Here we present a comparative analysis of the cellular architecture of the ANS and the suggested roles of distinct neuron populations. Additionally, we explore the emerging view that the ANS interacts with diverse systems involving metabolism, immunology and ageing, which extends its role beyond simple brain–organ modulation. Finally, we emphasize the need for cell-type-specific and longitudinal studies of the ANS to uncover novel mechanisms underlying body–brain interactions and to identify new translational opportunities for therapeutic interventions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Brain-to-body autonomic pathways.
Fig. 2: Genetically defined autonomic innervation.
Fig. 3: Multidimensional autonomic regulation of organ functions.

Similar content being viewed by others

Data availability

We developed an online portal (available at https://ans-cell-atlas.com/) for an integrated view of published single-cell transcriptomics at the GEO database. All source code is available via GitHub at https://github.com/YTwTJ/Molecular-and-Functional-Diversity-of-the-Autonomic-Nervous-System. In Fig. 3, dot plots are generated from GEO datasets: SCG (GSE175421), stellate ganglion (GSE231924), CG-SMG (GSE278457), DMV (GSE172411) and nucleus ambiguus (GSE198709, GSE202760 and GSE211538). In Fig. 3, heat maps plot transcriptomic data available via the Human Protein Atlas at https://www.proteinatlas.org/humanproteome/tissue/data#hpa_tissues_rna.

References

  1. Sammons, M. et al. Brain–body physiology: local, reflex, and central communication. Cell 187, 5877–5890 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Sternson, S. M. & Eiselt, A.-K. Three pillars for the neural control of appetite. Annu. Rev. Physiol. 79, 401–423 (2017).

    Article  PubMed  CAS  Google Scholar 

  3. Lin, E. E., Scott-Solomon, E. & Kuruvilla, R. Peripheral innervation in the regulation of glucose homeostasis. Trends Neurosci. 44, 189–202 (2021).

    Article  PubMed  CAS  Google Scholar 

  4. Wachsmuth, H. R., Weninger, S. N. & Duca, F. A. Role of the gut–brain axis in energy and glucose metabolism. Exp. Mol. Med. 54, 377–392 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Langhans, W., Watts, A. G. & Spector, A. C. The elusive cephalic phase insulin response: triggers, mechanisms, and functions. Physiol. Rev. 103, 1423–1485 (2023).

    Article  PubMed  CAS  Google Scholar 

  6. Ml, A. & Bb, L. Toward a wiring diagram understanding of appetite control. Neuron 95, 757–778 (2017).

    Article  Google Scholar 

  7. Augustine, V., Lee, S. & Oka, Y. Neural control and modulation of thirst, sodium appetite, and hunger. Cell 180, 25–32 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Abraira, V. E. & Ginty, D. D. The sensory neurons of touch. Neuron 79, 618–639 (2013).

    Article  PubMed  CAS  Google Scholar 

  9. Travagli, R. A. & Anselmi, L. Vagal neurocircuitry and its influence on gastric motility. Nat. Rev. Gastroenterol. Hepatol. 13, 389–401 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Yu, C. D., Xu, Q. J. & Chang, R. B. Vagal sensory neurons and gut–brain signaling. Curr. Opin. Neurobiol. 62, 133–140 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Kim, M., Heo, G. & Kim, S.-Y. Neural signalling of gut mechanosensation in ingestive and digestive processes. Nat. Rev. Neurosci. 23, 135–156 (2022).

    Article  PubMed  CAS  Google Scholar 

  12. Prescott, S. L. & Liberles, S. D. Internal senses of the vagus nerve. Neuron 110, 579–599 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Barman, S. M. & Yates, B. J. Deciphering the neural control of sympathetic nerve activity: status report and directions for future research. Front. Neurosci. 11, 730 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Langley, J. N. On the regeneration of pre-ganglionic and of post-ganglionic visceral nerve fibres. J. Physiol. 22, 215–230 (1897).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Langley, J. N. The Autonomic Nervous System Part 1 (Heffer, 1921).

  16. Gibbons, C. H. Basics of autonomic nervous system function. Handb. Clin. Neurol. 160, 407–418 (2019).

    Article  PubMed  Google Scholar 

  17. Guyenet, P. G. The sympathetic control of blood pressure. Nat. Rev. Neurosci. 7, 335–346 (2006).

    Article  PubMed  CAS  Google Scholar 

  18. Goldstein, D. S. Differential responses of components of the autonomic nervous system. Handb. Clin. Neurol. 117, 13–22 (2013).

    Article  PubMed  Google Scholar 

  19. Nakamura, K., Nakamura, Y. & Kataoka, N. A hypothalamomedullary network for physiological responses to environmental stresses. Nat. Rev. Neurosci. 23, 35–52 (2022).

    Article  PubMed  CAS  Google Scholar 

  20. Gibbins, I. Functional organization of autonomic neural pathways. Organogenesis 9, 169–175 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Jänig, W. & McLachlan, E. M. Characteristics of function-specific pathways in the sympathetic nervous system. Trends Neurosci. 15, 475–481 (1992).

    Article  PubMed  Google Scholar 

  22. Coverdell, T. C., Abbott, S. B. G. & Campbell, J. N. Molecular cell types as functional units of the efferent vagus nerve. Semin. Cell Dev. Biol. 156, 210–218 (2024).

    Article  PubMed  Google Scholar 

  23. Tao, J. et al. Highly selective brain-to-gut communication via genetically defined vagus neurons. Neuron 109, 2106–2115.e4 (2021). This study describes two genetically defined parasympathetic preganglionic neuron populations that form anatomical wiring with distinct enteric circuits.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Veerakumar, A., Yung, A. R., Liu, Y. & Krasnow, M. A. Molecularly defined circuits for cardiovascular and cardiopulmonary control. Nature 606, 739–746 (2022). This paper defines two distinct parasympathetic preganglionic neuron types that independently regulate cardiac or coordinated cardiopulmonary function through parallel efferent circuits.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Mapps, A. A. et al. Diversity of satellite glia in sympathetic and sensory ganglia. Cell Rep. 38, 110328 (2022). In this study, the authors reveal the molecular heterogeneity of satellite glia in sympathetic and sensory ganglia.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Sharma, S. et al. Tiered sympathetic control of cardiac function revealed by viral tracing and single cell transcriptome profiling. eLife 12, e86295 (2023). This study characterizes the morphological, electrophysiological and physiological properties of cardiac-innervating sympathetic postganglionic neurons.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Ziegler, K. A. et al. Immune-mediated denervation of the pineal gland underlies sleep disturbance in cardiac disease. Science 381, 285–290 (2023). In this study, the authors report that cardiac disease induces inflammation in the superior cervical ganglion, leading to sympathetic denervation of the pineal gland.

    Article  PubMed  CAS  Google Scholar 

  28. Wang, T., Teng, B., Yao, D. R., Gao, W. & Oka, Y. Organ-specific sympathetic innervation defines visceral functions. Nature 637, 895–902 (2025). This study identifies molecularly distinct sympathetic postganglionic neurons with organ-specific projections that independently control digestion and gastrointestinal transit.

    Article  PubMed  CAS  Google Scholar 

  29. Berthoud, H.-R. & Neuhuber, W. L. Vagal mechanisms as neuromodulatory targets for the treatment of metabolic disease. Ann. N. Y. Acad. Sci. 1454, 42–55 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Martinez-Sanchez, N. et al. The sympathetic nervous system in the 21st century: neuroimmune interactions in metabolic homeostasis and obesity. Neuron 110, 3597–3626 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Pongratz, G. & Straub, R. H. The sympathetic nervous response in inflammation. Arthritis Res. Ther. 16, 504 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Udit, S., Blake, K. & Chiu, I. M. Somatosensory and autonomic neuronal regulation of the immune response. Nat. Rev. Neurosci. 23, 157–171 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Chan, K. L., Poller, W. C., Swirski, F. K. & Russo, S. J. Central regulation of stress-evoked peripheral immune responses. Nat. Rev. Neurosci. 24, 591–604 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Martin, C. R., Osadchiy, V., Kalani, A. & Mayer, E. A. The brain–gut–microbiome axis. Cell. Mol. Gastroenterol. Hepatol. 6, 133–148 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hodes, G. E., Kana, V., Menard, C., Merad, M. & Russo, S. J. Neuroimmune mechanisms of depression. Nat. Neurosci. 18, 1386–1393 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Hanoun, M., Maryanovich, M., Arnal-Estapé, A. & Frenette, P. S. Neural regulation of hematopoiesis, inflammation, and cancer. Neuron 86, 360–373 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Payne, S. C., Furness, J. B. & Stebbing, M. J. Bioelectric neuromodulation for gastrointestinal disorders: effectiveness and mechanisms. Nat. Rev. Gastroenterol. Hepatol. 16, 89–105 (2019).

    Article  PubMed  Google Scholar 

  38. Scott-Solomon, E., Boehm, E. & Kuruvilla, R. The sympathetic nervous system in development and disease. Nat. Rev. Neurosci. 22, 685–702 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Mather, M. Autonomic dysfunction in neurodegenerative disease. Nat. Rev. Neurosci. 26, 276–292 (2025).

    Article  PubMed  CAS  Google Scholar 

  40. LeBouef, T., Yaker, Z. & Whited, L. Physiology, autonomic nervous system. StatPearls https://www.ncbi.nlm.nih.gov/books/NBK538516/ (StatPearls Publishing, 2025).

  41. Deuchars, S. A. & Lall, V. K. Sympathetic preganglionic neurons: properties and inputs. Compr. Physiol. 5, 829–869 (2015).

    Article  PubMed  Google Scholar 

  42. Llewellyn-Smith, I. J. in Central Regulation of Autonomic Functions (eds Llewellyn-Smith, I. J. & Verberne, A. J. M.) 98–119 (Oxford Univ. Press, 2011).

  43. Jordan, D. in Central Regulation of Autonomic Functions (eds Llewellyn-Smith, I. J. & Verberne, A. J. M.) 120–139 (Oxford Univ. Press, 2011).

  44. Langley, J. N. Sketch of the progress of discovery in the eighteenth century as regards the autonomic nervous system. J. Physiol. 50, 225–258 (1916).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Reuss, S. & Moore, R. Y. Neuropeptide Y-containing neurons in the rat superior cervical ganglion: projections to the pineal gland. J. Pineal Res. 6, 307–316 (1989).

    Article  PubMed  CAS  Google Scholar 

  46. Wojtkiewicz, J. et al. Immunohistochemical characterization of superior cervical ganglion neurons supplying porcine parotid salivary gland. Neurosci. Lett. 500, 57–62 (2011).

    Article  PubMed  CAS  Google Scholar 

  47. Zhu, Y. et al. Sympathetic neuropeptide Y protects from obesity by sustaining thermogenic fat. Nature 634, 243–250 (2024). This paper shows that sympathetic neuron-derived NPY sustains adipose thermogenesis and protects against obesity independently of food intake.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Uno, H. Sympathetic innervation of the sweat glands and piloarrector muscles of macaques and human beings. J. Invest. Dermatol. 69, 112–120 (1977).

    Article  PubMed  CAS  Google Scholar 

  49. van der Velden, V. H. & Hulsmann, A. R. Autonomic innervation of human airways: structure, function, and pathophysiology in asthma. Neuroimmunomodulation 6, 145–159 (1999).

    Article  PubMed  Google Scholar 

  50. Zeisel, A. et al. Molecular architecture of the mouse nervous system. Cell 174, 999–1014.e22 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Ernsberger, U., Reissmann, E., Mason, I. & Rohrer, H. The expression of dopamine beta-hydroxylase, tyrosine hydroxylase, and Phox2 transcription factors in sympathetic neurons: evidence for common regulation during noradrenergic induction and diverging regulation later in development. Mech. Dev. 92, 169–177 (2000).

    Article  PubMed  CAS  Google Scholar 

  52. Huesing, C. et al. Organization of sympathetic innervation of interscapular brown adipose tissue in the mouse. J. Comp. Neurol. 530, 1363–1378 (2022).

    Article  PubMed  CAS  Google Scholar 

  53. Goldstein, M., Fuxe, K. & Hökfelt, T. Characterization and tissue localization of catecholamine synthesizing enzymes. Pharmacol. Rev. 24, 293–309 (1972).

    Article  PubMed  CAS  Google Scholar 

  54. Bohn, M. C., Goldstein, M. & Black, I. B. Expression of phenylethanolamine N-methyltransferase in rat sympathetic ganglia and extra-adrenal chromaffin tissue. Dev. Biol. 89, 299–308 (1982).

    Article  PubMed  CAS  Google Scholar 

  55. Cahill, A. L., Eertmoed, A. L., Mangoura, D. & Perlman, R. L. Differential regulation of phenylethanolamine N-methyltransferase expression in two distinct subpopulations of bovine chromaffin cells. J. Neurochem. 67, 1217–1224 (1996).

    Article  PubMed  CAS  Google Scholar 

  56. Peter, D. et al. Differential expression of two vesicular monoamine transporters. J. Neurosci. 15, 6179–6188 (1995).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Schäfer, M. K., Schütz, B., Weihe, E. & Eiden, L. E. Target-independent cholinergic differentiation in the rat sympathetic nervous system. Proc. Natl Acad. Sci. USA 94, 4149–4154 (1997).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Sieber-Blum, M. & Ren, Z. Norepinephrine transporter expression and function in noradrenergic cell differentiation. Mol. Cell Biochem. 212, 61–70 (2000).

    Article  PubMed  CAS  Google Scholar 

  59. Li, Z., Caron, M. G., Blakely, R. D., Margolis, K. G. & Gershon, M. D. Dependence of serotonergic and other nonadrenergic enteric neurons on norepinephrine transporter expression. J. Neurosci. 30, 16730–16740 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Pfeil, U. et al. Expression of the high-affinity choline transporter, CHT1, in the rat trachea. Am. J. Respir. Cell Mol. Biol. 28, 473–477 (2003).

    Article  PubMed  CAS  Google Scholar 

  61. Hoover, D. B., Ganote, C. E., Ferguson, S. M., Blakely, R. D. & Parsons, R. L. Localization of cholinergic innervation in guinea pig heart by immunohistochemistry for high-affinity choline transporters. Cardiovasc. Res. 62, 112–121 (2004).

    Article  PubMed  CAS  Google Scholar 

  62. Okuda, T. & Haga, T. High-affinity choline transporter. Neurochem. Res. 28, 483–488 (2003).

    Article  PubMed  CAS  Google Scholar 

  63. Chien, H.-J. et al. Human pancreatic afferent and efferent nerves: mapping and 3-D illustration of exocrine, endocrine, and adipose innervation. Am. J. Physiol. Gastrointest. Liver Physiol. 317, G694–G706 (2019).

    Article  PubMed  CAS  Google Scholar 

  64. Keast, J. R. Visualization and immunohistochemical characterization of sympathetic and parasympathetic neurons in the male rat major pelvic ganglion. Neuroscience 66, 655–662 (1995).

    Article  PubMed  CAS  Google Scholar 

  65. Espinosa-Medina, I. et al. The sacral autonomic outflow is sympathetic. Science 354, 893–897 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Horn, J. P. The sacral autonomic outflow is parasympathetic: Langley got it right. Clin. Auton. Res. 28, 181–185 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Brumovsky, P. R. Dorsal root ganglion neurons and tyrosine hydroxylase — an intriguing association with implications for sensation and pain. Pain 157, 314–320 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Wang, Y. et al. The role of somatosensory innervation of adipose tissues. Nature 609, 569–574 (2022). This study demonstrates TH+ somatosensory innervation of the adipose tissue.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Lin, Y. S., Nosaka, S., Amakata, Y. & Maeda, T. Comparative study of the mammalian liver innervation: an immunohistochemical study of protein gene product 9.5, dopamine beta-hydroxylase and tyrosine hydroxylase. Comp. Biochem. Physiol. A Physiol. 110, 289–298 (1995).

    Article  PubMed  CAS  Google Scholar 

  70. Parker, T. L., Kesse, W. K., Mohamed, A. A. & Afework, M. The innervation of the mammalian adrenal gland. J. Anat. 183, 265–276 (1993).

    PubMed  PubMed Central  Google Scholar 

  71. McDougal, D. H. & Gamlin, P. D. Autonomic control of the eye. Compr. Physiol. 5, 439–473 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Li, Y. & Dahlström, A. Peripheral projections of NESP55 containing neurons in the rat sympathetic ganglia. Auton. Neurosci. 141, 1–9 (2008).

    Article  PubMed  CAS  Google Scholar 

  73. Jin, K. et al. Identification of lacrimal gland postganglionic innervation and its regulation of tear secretion. Am. J. Pathol. 190, 1068–1079 (2020).

    Article  PubMed  Google Scholar 

  74. Kummer, W., Fischer, A., Kurkowski, R. & Heym, C. The sensory and sympathetic innervation of guinea-pig lung and trachea as studied by retrograde neuronal tracing and double-labelling immunohistochemistry. Neuroscience 49, 715–737 (1992).

    Article  PubMed  CAS  Google Scholar 

  75. Rajendran, P. S. et al. Identification of peripheral neural circuits that regulate heart rate using optogenetic and viral vector strategies. Nat. Commun. 10, 1944 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Barrett, M. S., Hegarty, D. M., Habecker, B. A. & Aicher, S. A. Distinct morphology of cardiac- and brown adipose tissue-projecting neurons in the stellate ganglia of mice. Physiol. Rep. 10, e15334 (2022). This study shows that cardiac- and brown adipose tissue-projecting sympathetic postganglionic neurons are anatomically distinct and morphologically specialized.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Kuntz, A. & Jacobs, M. W. Components of periarterial extensions of celiac and mesenteric plexuses. Anat. Rec. 123, 509–520 (1955).

    Article  PubMed  CAS  Google Scholar 

  78. Quinson, N., Robbins, H. L., Clark, M. J. & Furness, J. B. Locations and innervation of cell bodies of sympathetic neurons projecting to the gastrointestinal tract in the rat. Arch. Histol. Cytol. 64, 281–294 (2001).

    Article  PubMed  CAS  Google Scholar 

  79. Liu, K. et al. Metabolic stress drives sympathetic neuropathy within the liver. Cell Metab. 33, 666–675.e4 (2021).

    Article  PubMed  CAS  Google Scholar 

  80. Ding, X. et al. Panicle-shaped sympathetic architecture in the spleen parenchyma modulates antibacterial innate immunity. Cell Rep. 27, 3799–3807.e3 (2019).

    Article  PubMed  CAS  Google Scholar 

  81. Smith-Edwards, K. M. et al. Sympathetic input to multiple cell types in mouse and human colon produces region-specific responses. Gastroenterology 160, 1208–1223.e4 (2021).

    Article  PubMed  Google Scholar 

  82. Mazur, U., Lepiarczyk, E., Janikiewicz, P. & Bossowska, A. Somatostatin immunoreactivity within the urinary bladder nerve fibers and paracervical ganglion urinary bladder projecting neurons in the female pig. J. Chem. Neuroanat. 117, 102007 (2021).

    Article  PubMed  CAS  Google Scholar 

  83. Osborn, J. W., Tyshynsky, R. & Vulchanova, L. Function of renal nerves in kidney physiology and pathophysiology. Annu. Rev. Physiol. 83, 429–450 (2021).

    Article  PubMed  CAS  Google Scholar 

  84. Torres, H. et al. Sympathetic innervation of the mouse kidney and liver arising from prevertebral ganglia. Am. J. Physiol. Regul. Integr. Comp. Physiol. 321, R328–R337 (2021). This work maps the spatial locations of kidney- and liver-innervating sympathetic postganglionic neurons.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. François, M. et al. Sympathetic innervation of the interscapular brown adipose tissue in mouse. Ann. N. Y. Acad. Sci. 1454, 3–13 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Huesing, C. et al. Sympathetic innervation of inguinal white adipose tissue in the mouse. J. Comp. Neurol. 529, 1465–1485 (2021).

    Article  PubMed  Google Scholar 

  87. Vera, P. L., Haase, E. B. & Schramm, L. P. Origins of the sympathetic innervation of the cervical end of the uterus in the rat. Brain Res. 747, 140–143 (1997).

    Article  PubMed  CAS  Google Scholar 

  88. Houdeau, E., Rousseau, A., Meusnier, C., Prud’Homme, M. J. & Rousseau, J. P. Sympathetic innervation of the upper and lower regions of the uterus and cervix in the rat have different origins and routes. J. Comp. Neurol. 399, 403–412 (1998).

    Article  PubMed  CAS  Google Scholar 

  89. Tamamaki, N. & Nojyo, Y. Intracranial trajectories of sympathetic nerve fibers originating in the superior cervical ganglion in the rat: WGA-HRP anterograde labeling study. Brain Res. 437, 387–392 (1987).

    Article  PubMed  CAS  Google Scholar 

  90. Hirakawa, N., Morimoto, M. & Totoki, T. Sympathetic innervation of the young canine heart using antero- and retrograde axonal tracer methods. Brain Res. Bull. 31, 673–680 (1993).

    Article  PubMed  CAS  Google Scholar 

  91. Demer, J. L., Poukens, V., Miller, J. M. & Micevych, P. Innervation of extraocular pulley smooth muscle in monkeys and humans. Invest. Ophthalmol. Vis. Sci. 38, 1774–1785 (1997).

    PubMed  CAS  Google Scholar 

  92. Beckers, H. J., Klooster, J., Vrensen, G. F. & Lamers, W. P. Facial parasympathetic innervation of the rat choroid, lacrimal glands and ciliary ganglion. An ultrastructural pterygopalatine tracing and immunohistochemical study. Ophthalmic Res. 25, 319–330 (1993).

    Article  PubMed  CAS  Google Scholar 

  93. van der Werf, F., Baljet, B., Prins, M. & Otto, J. A. Innervation of the lacrimal gland in the cynomolgous monkey: a retrograde tracing study. J. Anat. 188, 591–601 (1996).

    PubMed  PubMed Central  Google Scholar 

  94. Dartt, D. A. Neural regulation of lacrimal gland secretory processes: relevance in dry eye diseases. Prog. Retin. Eye Res. 28, 155–177 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Sheu, S.-H., Tapia, J. C., Tsuriel, S. & Lichtman, J. W. Similar synapse elimination motifs at successive relays in the same efferent pathway during development in mice. eLife 6, e23193 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Zubair, A. & Khan, Y. S. Neuroanatomy, otic ganglion. StatPearls https://www.ncbi.nlm.nih.gov/books/NBK554413/ (StatPearls Publishing, 2025).

  97. Kalia, M. & Sullivan, J. M. Brainstem projections of sensory and motor components of the vagus nerve in the rat. J. Comp. Neurol. 211, 248–265 (1982).

    Article  PubMed  CAS  Google Scholar 

  98. Fox, E. A. & Powley, T. L. Longitudinal columnar organization within the dorsal motor nucleus represents separate branches of the abdominal vagus. Brain Res. 341, 269–282 (1985).

    Article  PubMed  CAS  Google Scholar 

  99. Bieger, D. & Hopkins, D. A. Viscerotopic representation of the upper alimentary tract in the medulla oblongata in the rat: the nucleus ambiguus. J. Comp. Neurol. 262, 546–562 (1987).

    Article  PubMed  CAS  Google Scholar 

  100. Dergacheva, O., Griffioen, K. J., Neff, R. A. & Mendelowitz, D. Respiratory modulation of premotor cardiac vagal neurons in the brainstem. Respir. Physiol. Neurobiol. 174, 102–110 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Browning, K. N., Coleman, F. H. & Travagli, R. A. Characterization of pancreas-projecting rat dorsal motor nucleus of vagus neurons. Am. J. Physiol. Gastrointest. Liver Physiol. 288, G950–G955 (2005).

    Article  PubMed  CAS  Google Scholar 

  102. Wang, L. & Taché, Y. The parasympathetic and sensory innervation of the proximal and distal colon in male mice. Front. Neuroanat. 18, 1422403 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Gourine, A. V. & Ackland, G. L. Cardiac vagus and exercise. Physiology 34, 71–80 (2019).

    Article  PubMed  CAS  Google Scholar 

  104. Moreira, T. S., Antunes, V. R., Falquetto, B. & Marina, N. Long-term stimulation of cardiac vagal preganglionic neurons reduces blood pressure in the spontaneously hypertensive rat. J. Hypertens. 36, 2444–2452 (2018).

    Article  PubMed  CAS  Google Scholar 

  105. Fonseca, R. C. et al. Vagus nerve regulates the phagocytic and secretory activity of resident macrophages in the liver. Brain Behav. Immun. 81, 444–454 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Machhada, A. et al. Optogenetic stimulation of vagal efferent activity preserves left ventricular function in experimental heart failure. JACC Basic Transl. Sci. 5, 799–810 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Dyavanapalli, J. Novel approaches to restore parasympathetic activity to the heart in cardiorespiratory diseases. Am. J. Physiol. Heart Circ. Physiol. 319, H1153–H1161 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Zasadny, F. M., Dyavanapalli, J., Dowling, N. M., Mendelowitz, D. & Kay, M. W. Cholinergic stimulation improves electrophysiological rate adaptation during pressure overload-induced heart failure in rats. Am. J. Physiol. Heart Circ. Physiol. 319, H1358–H1368 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Strain, M. M. et al. Dorsal motor vagal neurons can elicit bradycardia and reduce anxiety-like behavior. iScience 27, 109137 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Burnstock, G. Innervation of bladder and bowel. Ciba Found. Symp. 151, 18–26 (1990).

    Google Scholar 

  111. de Groat, W. C., Griffiths, D. & Yoshimura, N. Neural control of the lower urinary tract. Compr. Physiol. 5, 327–396 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Sharabi, A. F. & Carey, F. J. Anatomy, abdomen and pelvis, splanchnic nerves. StatPearls http://www.ncbi.nlm.nih.gov/books/NBK560504/ (StatPearls Publishing, 2025).

  113. Kobori, N., Moore, A. N., Redell, J. B. & Dash, P. K. Caudal DMN neurons innervate the spleen and release CART peptide to regulate neuroimmune function. J. Neuroinflamm. 20, 158 (2023).

    Article  CAS  Google Scholar 

  114. Anderson, C., McKinley, M., Martelli, D. & McAllen, R. Letter to the editor: parasympathetic innervation of the rodent spleen? Am. J. Physiol. Heart Circ. Physiol. 309, H2158 (2015).

    Article  PubMed  CAS  Google Scholar 

  115. Gautron, L. The parasympathetic innervation of the spleen: are we chasing a ghost? J. Anat. 240, 772–774 (2022).

    Article  PubMed  Google Scholar 

  116. Norvell, J. E. & Anderson, J. M. Assessment of possible parasympathetic innervation of the kidney. J. Auton. Nerv. Syst. 8, 291–294 (1983).

    Article  PubMed  CAS  Google Scholar 

  117. Cheng, X. et al. Anatomical evidence for parasympathetic innervation of the renal vasculature and pelvis. J. Am. Soc. Nephrol. 33, 2194–2210 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. N’Guetta, P.-E. Y. et al. Comprehensive mapping of sensory and sympathetic innervation of the developing kidney. Cell Rep. 43, 114860 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Gibbins, I. L. Vasoconstrictor, vasodilator and pilomotor pathways in sympathetic ganglia of guinea pigs. Neuroscience 47, 657–672 (1992).

    Article  PubMed  CAS  Google Scholar 

  120. Gordan, R., Gwathmey, J. K. & Xie, L.-H. Autonomic and endocrine control of cardiovascular function. World J. Cardiol. 7, 204–214 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Gibbins, I. L. Vasomotor, pilomotor and secretomotor neurons distinguished by size and neuropeptide content in superior cervical ganglia of mice. J. Auton. Nerv. Syst. 34, 171–183 (1991).

    Article  PubMed  CAS  Google Scholar 

  122. Li, C. & Horn, J. P. Physiological classification of sympathetic neurons in the rat superior cervical ganglion. J. Neurophysiol. 95, 187–195 (2006).

    Article  PubMed  Google Scholar 

  123. Proctor, G. B. & Carpenter, G. H. Regulation of salivary gland function by autonomic nerves. Auton. Neurosci. 133, 3–18 (2007).

    Article  PubMed  CAS  Google Scholar 

  124. Izumi, H. Reflex parasympathetic vasodilatation in facial skin. Gen. Pharmacol. 26, 237–244 (1995).

    Article  PubMed  CAS  Google Scholar 

  125. Canning, B. J. Reflex regulation of airway smooth muscle tone. J. Appl. Physiol. 101, 971–985 (2006).

    Article  PubMed  CAS  Google Scholar 

  126. Olshansky, B., Sabbah, H. N., Hauptman, P. J. & Colucci, W. S. Parasympathetic nervous system and heart failure: pathophysiology and potential implications for therapy. Circulation 118, 863–871 (2008).

    Article  PubMed  Google Scholar 

  127. Ren, W., Hua, M., Cao, F. & Zeng, W. The sympathetic-immune milieu in metabolic health and diseases: insights from pancreas, liver, intestine, and adipose tissues. Adv. Sci. 11, e2306128 (2024).

    Article  Google Scholar 

  128. Klein Wolterink, R. G. J., Wu, G. S., Chiu, I. M. & Veiga-Fernandes, H. Neuroimmune interactions in peripheral organs. Annu. Rev. Neurosci. 45, 339–360 (2022).

    Article  PubMed  CAS  Google Scholar 

  129. Shwartz, Y. et al. Cell types promoting goosebumps form a niche to regulate hair follicle stem cells. Cell 182, 578–593.e19 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Zhang, B. & Chen, T. Local and systemic mechanisms that control the hair follicle stem cell niche. Nat. Rev. Mol. Cell Biol. 25, 87–100 (2024).

    Article  PubMed  CAS  Google Scholar 

  131. Niu, X. et al. Mapping of extrinsic innervation of the gastrointestinal tract in the mouse embryo. J. Neurosci. 40, 6691–6708 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Guillot, J. et al. Sympathetic axonal sprouting induces changes in macrophage populations and protects against pancreatic cancer. Nat. Commun. 13, 1985 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Salamon, R. J. et al. Parasympathetic and sympathetic axons are bundled in the cardiac ventricles and undergo physiological reinnervation during heart regeneration. iScience 26, 107709 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Liu, S. et al. Somatotopic organization and intensity dependence in driving distinct NPY-expressing sympathetic pathways by electroacupuncture. Neuron 108, 436–450.e7 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Kumari, R. et al. Sympathetic NPY controls glucose homeostasis, cold tolerance, and cardiovascular functions in mice. Cell Rep. 43, 113674 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Lein, E. S. et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168–176 (2007).

    Article  PubMed  CAS  Google Scholar 

  137. Sternson, S. M., Atasoy, D., Betley, J. N., Henry, F. E. & Xu, S. An emerging technology framework for the neurobiology of appetite. Cell Metab. 23, 234–253 (2016).

    Article  PubMed  CAS  Google Scholar 

  138. Luo, L., Callaway, E. M. & Svoboda, K. Genetic dissection of neural circuits: a decade of progress. Neuron 98, 256–281 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Zeng, H. What is a cell type and how to define it? Cell 185, 2739–2755 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Miolan, J. P. & Niel, J. P. The mammalian sympathetic prevertebral ganglia: integrative properties and role in the nervous control of digestive tract motility. J. Auton. Nerv. Syst. 58, 125–138 (1996).

    Article  PubMed  CAS  Google Scholar 

  141. Kaestner, C. L., Smith, E. H., Peirce, S. G. & Hoover, D. B. Immunohistochemical analysis of the mouse celiac ganglion: an integrative relay station of the peripheral nervous system. J. Comp. Neurol. 527, 2742–2760 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Ernsberger, U., Deller, T. & Rohrer, H. The diversity of neuronal phenotypes in rodent and human autonomic ganglia. Cell Tissue Res. 382, 201–231 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Jobling, P. & Gibbins, I. L. Electrophysiological and morphological diversity of mouse sympathetic neurons. J. Neurophysiol. 82, 2747–2764 (1999).

    Article  PubMed  CAS  Google Scholar 

  144. Aubert, M. et al. Gene editing and elimination of latent herpes simplex virus in vivo. Nat. Commun. 11, 4148 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. van Weperen, V. Y. H. et al. Single-cell transcriptomic profiling of satellite glial cells in stellate ganglia reveals developmental and functional axial dynamics. Glia 69, 1281–1291 (2021).

    Article  PubMed  Google Scholar 

  146. Davis, H., Paterson, D. J. & Herring, N. Post-ganglionic sympathetic neurons can directly sense raised extracellular Na+ via SCN7a/Nax. Front. Physiol. 13, 931094 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Sivori, M. et al. The pelvic organs receive no parasympathetic innervation. eLife 12, RP91576 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Kanda, H., Yamanaka, H., Dai, Y. & Noguchi, K. The neuronal and glial cell diversity in the celiac ganglion revealed by single-nucleus RNA sequencing. Sci. Rep. 15, 5510 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Li, E. et al. Control of lipolysis by a population of oxytocinergic sympathetic neurons. Nature 625, 175–180 (2024). This study identifies oxytocin-positive axons in the adipose tissue, serving as an endogenous regulator of adipose lipolysis and systemic metabolism.

    Article  PubMed  CAS  Google Scholar 

  150. Beaudet, M. M., Braas, K. M. & May, V. Pituitary adenylate cyclase activating polypeptide (PACAP) expression in sympathetic preganglionic projection neurons to the superior cervical ganglion. J. Neurobiol. 36, 325–336 (1998).

    Article  PubMed  CAS  Google Scholar 

  151. Harima, Y. et al. Parallel labeled-line organization of sympathetic outflow for selective organ regulation in mice. Nat. Commun. 15, 10478 (2024). This paper identifies molecularly distinct subtypes of spinal preganglionic neuron that form parallel anatomical wiring to either sympathetic prevertebral ganglia or the adrenal gland, selectively regulating gastrointestinal motility or glucose metabolism.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Berthoud, H. R., Carlson, N. R. & Powley, T. L. Topography of efferent vagal innervation of the rat gastrointestinal tract. Am. J. Physiol. 260, R200–R207 (1991).

    PubMed  CAS  Google Scholar 

  153. Zsombok, A., Bhaskaran, M. D., Gao, H., Derbenev, A. V. & Smith, B. N. Functional plasticity of central TRPV1 receptors in brainstem dorsal vagal complex circuits of streptozotocin-treated hyperglycemic mice. J. Neurosci. 31, 14024–14031 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Derbenev, A. V., Stuart, T. C. & Smith, B. N. Cannabinoids suppress synaptic input to neurones of the rat dorsal motor nucleus of the vagus nerve. J. Physiol. 559, 923–938 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Hornung, E. et al. Neuromodulatory co-expression in cardiac vagal motor neurons of the dorsal motor nucleus of the vagus. iScience 27, 110549 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Coverdell, T. C., Abraham-Fan, R.-J., Wu, C., Abbott, S. B. G. & Campbell, J. N. Genetic encoding of an esophageal motor circuit. Cell Rep. 39, 110962 (2022). The authors show a molecularly distinct parasympathetic preganglionic neuron subtype that specifically innervates and controls oesophageal contraction.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Su, Y. et al. Brainstem Dbh+ neurons control allergen-induced airway hyperreactivity. Nature 631, 601–609 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Hibberd, T. J., Zagorodnyuk, V. P., Spencer, N. J. & Brookes, S. J. H. Identification and mechanosensitivity of viscerofugal neurons. Neuroscience 225, 118–129 (2012).

    Article  PubMed  CAS  Google Scholar 

  159. DePuy, S. D. et al. Glutamatergic neurotransmission between the C1 neurons and the parasympathetic preganglionic neurons of the dorsal motor nucleus of the vagus. J. Neurosci. 33, 1486–1497 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Kressel, A. M. et al. Identification of a brainstem locus that inhibits tumor necrosis factor. Proc. Natl Acad. Sci. USA 117, 29803–29810 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Muller, P. A. et al. Microbiota-modulated CART+ enteric neurons autonomously regulate blood glucose. Science 370, 314–321 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Zhang, T., Perkins, M. H., Chang, H., Han, W. & de Araujo, I. E. An inter-organ neural circuit for appetite suppression. Cell 185, 2478–2494.e28 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Bullmore, E. & Sporns, O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198 (2009).

    Article  PubMed  CAS  Google Scholar 

  164. Turrigiano, G. Homeostatic synaptic plasticity: local and global mechanisms for stabilizing neuronal function. Cold Spring Harb. Perspect. Biol. 4, a005736 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Bargmann, C. I. & Marder, E. From the connectome to brain function. Nat. Methods 10, 483–490 (2013).

    Article  PubMed  CAS  Google Scholar 

  166. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

    Article  PubMed  CAS  Google Scholar 

  167. Luo, L. Architectures of neuronal circuits. Science 373, eabg7285 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Zsombok, A., Desmoulins, L. D. & Derbenev, A. V. Sympathetic circuits regulating hepatic glucose metabolism: where we stand. Physiol. Rev. 104, 85–101 (2024).

    Article  PubMed  CAS  Google Scholar 

  169. Tomney, P. A., Hopkins, D. A. & Armour, J. A. Axonal branching of canine sympathetic postganglionic cardiopulmonary neurons. A retrograde fluorescent labeling study. Brain Res. Bull. 14, 443–452 (1985).

    Article  PubMed  CAS  Google Scholar 

  170. Seals, D. R. & Victor, R. G. Regulation of muscle sympathetic nerve activity during exercise in humans. Exerc. Sport. Sci. Rev. 19, 313–349 (1991).

    Article  PubMed  CAS  Google Scholar 

  171. DiBona, G. F. Neural control of the kidney: functionally specific renal sympathetic nerve fibers. Am. J. Physiol. Regul. Integr. Comp. Physiol. 279, R1517–R1524 (2000).

    Article  PubMed  CAS  Google Scholar 

  172. Morrison, S. F. Differential control of sympathetic outflow. Am. J. Physiol. Regul. Integr. Comp. Physiol. 281, R683–R698 (2001).

    Article  PubMed  CAS  Google Scholar 

  173. Muller, P. A. et al. Microbiota modulate sympathetic neurons via a gut-brain circuit. Nature 583, 441–446 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Asmus, S. E., Parsons, S. & Landis, S. C. Developmental changes in the transmitter properties of sympathetic neurons that innervate the periosteum. J. Neurosci. 20, 1495–1504 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Carmeliet, P. & Tessier-Lavigne, M. Common mechanisms of nerve and blood vessel wiring. Nature 436, 193–200 (2005).

    Article  PubMed  CAS  Google Scholar 

  176. Gallarda, B. W. et al. Segregation of axial motor and sensory pathways via heterotypic trans-axonal signaling. Science 320, 233–236 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Enomoto, H., Heuckeroth, R. O., Golden, J. P., Johnson, E. M. & Milbrandt, J. Development of cranial parasympathetic ganglia requires sequential actions of GDNF and neurturin. Development 127, 4877–4889 (2000).

    Article  PubMed  CAS  Google Scholar 

  178. Ekman, P., Levenson, R. W. & Friesen, W. V. Autonomic nervous system activity distinguishes among emotions. Science 221, 1208–1210 (1983).

    Article  PubMed  CAS  Google Scholar 

  179. Ju, S. H., Yun, H., Oh, Y., Choi, Y. & Sohn, J.-W. Melanocortin-4 receptors activate sympathetic preganglionic neurons and elevate blood pressure via TRPV1. Cell Rep. 41, 111579 (2022).

    Article  PubMed  CAS  Google Scholar 

  180. Steffens, A. B., Van der Gugten, J., Godeke, J., Luiten, P. G. & Strubbe, J. H. Meal-induced increases in parasympathetic and sympathetic activity elicit simultaneous rises in plasma insulin and free fatty acids. Physiol. Behav. 37, 119–122 (1986).

    Article  PubMed  CAS  Google Scholar 

  181. Panneton, W. M., Anch, A. M., Panneton, W. M. & Gan, Q. Parasympathetic preganglionic cardiac motoneurons labeled after voluntary diving. Front. Physiol. 5, 8 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Chen, H. et al. Postprandial parasympathetic signals promote lung type 2 immunity. Neuron https://doi.org/10.1016/j.neuron.2024.12.020 (2025).

  183. Gonsalvez, D. G., Kerman, I. A., McAllen, R. M. & Anderson, C. R. Chemical coding for cardiovascular sympathetic preganglionic neurons in rats. J. Neurosci. 30, 11781–11791 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Wang, M., Wang, Q. & Whim, M. D. Fasting induces a form of autonomic synaptic plasticity that prevents hypoglycemia. Proc. Natl Acad. Sci. USA 113, E3029–E3038 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  185. Jiang, H., Ding, X., Cao, Y., Wang, H. & Zeng, W. Dense intra-adipose sympathetic arborizations are essential for cold-induced beiging of mouse white adipose tissue. Cell Metab. 26, 686–692.e3 (2017).

    Article  PubMed  CAS  Google Scholar 

  186. Murano, I., Barbatelli, G., Giordano, A. & Cinti, S. Noradrenergic parenchymal nerve fiber branching after cold acclimatisation correlates with brown adipocyte density in mouse adipose organ. J. Anat. 214, 171–178 (2009).

    Article  PubMed  CAS  Google Scholar 

  187. Landry, M., Holmberg, K., Zhang, X. & Hökfelt, T. Effect of axotomy on expression of NPY, galanin, and NPY Y1 and Y2 receptors in dorsal root ganglia and the superior cervical ganglion studied with double-labeling in situ hybridization and immunohistochemistry. Exp. Neurol. 162, 361–384 (2000).

    Article  PubMed  CAS  Google Scholar 

  188. Tyrrell, S. & Landis, S. C. The appearance of NPY and VIP in sympathetic neuroblasts and subsequent alterations in their expression. J. Neurosci. 14, 4529–4547 (1994).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Hökfelt, T. et al. Coexistence of peptides with classical neurotransmitters. Experientia 43, 768–780 (1987).

    Article  PubMed  Google Scholar 

  190. Sann, H. & Pierau, F. K. Efferent functions of C-fiber nociceptors. Z. Rheumatol. 57, 8–13 (1998).

    Article  PubMed  CAS  Google Scholar 

  191. Andersson, K.-E. & Arner, A. Urinary bladder contraction and relaxation: physiology and pathophysiology. Physiol. Rev. 84, 935–986 (2004).

    Article  PubMed  CAS  Google Scholar 

  192. Ernsberger, U., Deller, T. & Rohrer, H. The sympathies of the body: functional organization and neuronal differentiation in the peripheral sympathetic nervous system. Cell Tissue Res. 386, 455–475 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Strosberg, A. D. Structure, function, and regulation of adrenergic receptors. Protein Sci. 2, 1198–1209 (1993).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  194. Carlson, A. B. & Kraus, G. P. Physiology, cholinergic receptors. StatPearls http://www.ncbi.nlm.nih.gov/books/NBK526134/ (StatPearls Publishing, 2025).

  195. Uhlén, M. et al. Proteomics. Tissue-based map of the human proteome. Science 347, 1260419 (2015).

    Article  PubMed  Google Scholar 

  196. Karlsson, M. et al. A single-cell type transcriptomics map of human tissues. Sci. Adv. 7, eabh2169 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Barrett, M. S. et al. Ischemia–reperfusion myocardial infarction induces remodeling of left cardiac-projecting stellate ganglia neurons. Am. J. Physiol. Heart Circ. Physiol. 326, H166–H179 (2024).

    Article  PubMed  Google Scholar 

  198. McEwen, B. S. Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol. Rev. 87, 873–904 (2007).

    Article  PubMed  Google Scholar 

  199. de La Cruz, L., Bui, D., Moreno, C. M. & Vivas, O. Sympathetic motor neuron dysfunction is a missing link in age-associated sympathetic overactivity. eLife 12, RP91663 (2024).

    Article  PubMed  Google Scholar 

  200. Martelli, D., Yao, S. T., McKinley, M. J. & McAllen, R. M. Reflex control of inflammation by sympathetic nerves, not the vagus. J. Physiol. 592, 1677–1686 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  201. Katayama, Y. et al. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 124, 407–421 (2006).

    Article  PubMed  CAS  Google Scholar 

  202. Morrison, S. J. & Scadden, D. T. The bone marrow niche for haematopoietic stem cells. Nature 505, 327–334 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  203. Globig, A.-M. et al. The β1-adrenergic receptor links sympathetic nerves to T cell exhaustion. Nature 622, 383–392 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  204. Yaniv, D., Mattson, B., Talbot, S., Gleber-Netto, F. O. & Amit, M. Targeting the peripheral neural-tumour microenvironment for cancer therapy. Nat. Rev. Drug Discov. 23, 780–796 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  205. Jin, H., Li, M., Jeong, E., Castro-Martinez, F. & Zuker, C. S. A body–brain circuit that regulates body inflammatory responses. Nature 630, 695–703 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  206. Pirzgalska, R. M. et al. Sympathetic neuron-associated macrophages contribute to obesity by importing and metabolizing norepinephrine. Nat. Med. 23, 1309–1318 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  207. Wolf, Y. et al. Brown-adipose-tissue macrophages control tissue innervation and homeostatic energy expenditure. Nat. Immunol. 18, 665–674 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  208. Cardoso, F. et al. Neuro-mesenchymal units control ILC2 and obesity via a brain–adipose circuit. Nature 597, 410–414 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  209. Zhang, B. et al. Hyperactivation of sympathetic nerves drives depletion of melanocyte stem cells. Nature 577, 676–681 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  210. Zhou, Y. et al. A brain-to-liver signal mediates the inhibition of liver regeneration under chronic stress in mice. Nat. Commun. 15, 10361 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  211. Shivkumar, K. et al. Clinical neurocardiology defining the value of neuroscience-based cardiovascular therapeutics. J. Physiol. 594, 3911–3954 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  212. Ajijola, O. A. et al. Bilateral cardiac sympathetic denervation for the management of electrical storm. J. Am. Coll. Cardiol. 59, 91–92 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Al-Khatib, S. M. et al. 2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: executive summary: a report of the American college of cardiology/American heart association task force on clinical practice guidelines and the heart rhythm society. Heart Rhythm. 15, e190–e252 (2018).

    Article  PubMed  Google Scholar 

  214. Ben-Menachem, E. Vagus-nerve stimulation for the treatment of epilepsy. Lancet Neurol. 1, 477–482 (2002).

    Article  PubMed  Google Scholar 

  215. Mauskop, A. Vagus nerve stimulation relieves chronic refractory migraine and cluster headaches. Cephalalgia 25, 82–86 (2005).

    Article  PubMed  CAS  Google Scholar 

  216. Turk, D. C. et al. Core outcome domains for chronic pain clinical trials: IMMPACT recommendations. Pain 106, 337–345 (2003).

    Article  PubMed  Google Scholar 

  217. Premchand, R. K. et al. Autonomic regulation therapy via left or right cervical vagus nerve stimulation in patients with chronic heart failure: results of the ANTHEM-HF trial. J. Card. Fail. 20, 808–816 (2014).

    Article  PubMed  Google Scholar 

  218. Hadaya, J. et al. Vagal nerve stimulation reduces ventricular arrhythmias and mitigates adverse neural cardiac remodeling post-myocardial infarction. JACC Basic Transl. Sci. 8, 1100–1118 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Berthoud, H.-R. The vagus nerve, food intake and obesity. Regul. Pept. 149, 15–25 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  220. Matsubayashi, T. et al. Significant differences in sympathetic nerve fiber density among the facial skin nerves: a histologic study using human cadaveric specimens. Anat. Rec. 299, 1054–1059 (2016).

    Article  CAS  Google Scholar 

  221. Donadio, V. et al. The autonomic innervation of hairy skin in humans: an in vivo confocal study. Sci. Rep. 9, 16982 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Kozłowska, A., Mikołajczyk, A. & Majewski, M. Detailed characterization of sympathetic chain ganglia (SChG) neurons supplying the skin of the porcine hindlimb. Int. J. Mol. Sci. 18, 1463 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Roberts, W. J. & Levitt, G. R. Histochemical evidence for sympathetic innervation of hair receptor afferents in cat skin. J. Comp. Neurol. 210, 204–209 (1982).

    Article  PubMed  CAS  Google Scholar 

  224. Chen, H. I. & Ta, C. The sympathetic efferent innervation of the cutaneous and muscle veins in cats. A comparative study using retrograde localization with horseradish peroxidase. J. Auton. Nerv. Syst. 46, 189–197 (1994).

    Article  PubMed  CAS  Google Scholar 

  225. Marfurt, C. F. & Ellis, L. C. Immunohistochemical localization of tyrosine hydroxylase in corneal nerves. J. Comp. Neurol. 336, 517–531 (1993).

    Article  PubMed  CAS  Google Scholar 

  226. Bergua, A., Kapsreiter, M., Neuhuber, W. L., Reitsamer, H. A. & Schrödl, F. Innervation pattern of the preocular human central retinal artery. Exp. Eye Res. 110, 142–147 (2013).

    Article  PubMed  CAS  Google Scholar 

  227. Marfurt, C. F., Kingsley, R. E. & Echtenkamp, S. E. Sensory and sympathetic innervation of the mammalian cornea. A retrograde tracing study. Invest. Ophthalmol. Vis. Sci. 30, 461–472 (1989).

    PubMed  CAS  Google Scholar 

  228. Ehinger, B. Distribution of adrenergic nerves in the eye and some related structures in the cat. Acta Physiol. Scand. 66, 123–128 (1966).

    Article  PubMed  CAS  Google Scholar 

  229. Morgan, C., DeGroat, W. C. & Jannetta, P. J. Sympathetic innervation of the cornea from the superior cervical ganglion. An HRP study in the cat. J. Auton. Nerv. Syst. 20, 179–183 (1987).

    Article  PubMed  CAS  Google Scholar 

  230. Gibbins, I. L. & Morris, J. L. Co-existence of neuropeptides in sympathetic, cranial autonomic and sensory neurons innervating the iris of the guinea-pig. J. Auton. Nerv. Syst. 21, 67–82 (1987).

    Article  PubMed  CAS  Google Scholar 

  231. ten Tusscher, M. P., Klooster, J. & Vrensen, G. F. The innervation of the rabbit’s anterior eye segment: a retrograde tracing study. Exp. Eye Res. 46, 717–730 (1988).

    Article  PubMed  Google Scholar 

  232. Xue, Y. et al. The mouse autonomic nervous system modulates inflammation and epithelial renewal after corneal abrasion through the activation of distinct local macrophages. Mucosal Immunol. 11, 1496–1511 (2018).

    Article  PubMed  CAS  Google Scholar 

  233. Kuwayama, Y., Grimes, P. A., Ponte, B. & Stone, R. A. Autonomic neurons supplying the rat eye and the intraorbital distribution of vasoactive intestinal polypeptide (VIP)-like immunoreactivity. Exp. Eye Res. 44, 907–922 (1987).

    Article  PubMed  CAS  Google Scholar 

  234. Adeghate, E. A., Singh, J., Howarth, F. C. & Burrows, S. Control of porcine lacrimal gland secretion by non-cholinergic, non-adrenergic nerves: effects of electrical field stimulation, VIP and NPY. Brain Res. 758, 127–135 (1997).

    Article  PubMed  CAS  Google Scholar 

  235. Ding, C., Walcott, B. & Keyser, K. T. Sympathetic neural control of the mouse lacrimal gland. Invest. Ophthalmol. Vis. Sci. 44, 1513–1520 (2003).

    Article  PubMed  Google Scholar 

  236. Toshida, H. & Suto, C. Preganglionic parasympathetic denervation rabbit model for innervation studies. Cornea 37, S106–S112 (2018).

    Article  PubMed  Google Scholar 

  237. Freitag, P. & Engel, M. B. Autonomic innervation in rabbit salivary glands. Anat. Rec. 167, 87–105 (1970).

    Article  PubMed  CAS  Google Scholar 

  238. Teshima, T. H. N., Tucker, A. S. & Lourenço, S. V. Dual sympathetic input into developing salivary glands. J. Dent. Res. 98, 1122–1130 (2019).

    Article  PubMed  CAS  Google Scholar 

  239. Lahtivirta, S., Koistinaho, J. & Hervonen, A. A subpopulation of large neurons of the sympathetic superior cervical ganglion innervates the NGF-rich submandibular salivary gland in young adult and aged mice. J. Auton. Nerv. Syst. 50, 283–289 (1995).

    Article  PubMed  CAS  Google Scholar 

  240. Garrett, J. R. The autonomic innervation of rabbit salivary glands studied electron microscopically after 5-hydroxydopamine administration. Cell Tissue Res. 178, 551–562 (1977).

    Article  PubMed  CAS  Google Scholar 

  241. Melander, A. et al. Sympathetic innervation of the normal human thyroid. J. Clin. Endocrinol. Metab. 39, 713–718 (1974).

    Article  PubMed  CAS  Google Scholar 

  242. Melander, A., Sundler, F. & Westgren, U. Sympathetic innervation of the thyroid: variation with species and with age. Endocrinology 96, 102–106 (1975).

    Article  PubMed  CAS  Google Scholar 

  243. Amenta, F., Caporuscio, D., Ferrante, F., Porcelli, F. & Zomparelli, M. Cholinergic nerves in the thyroid gland. Cell Tissue Res. 195, 367–370 (1978).

    Article  PubMed  CAS  Google Scholar 

  244. Van Sande, J., Dumont, J. E., Melander, A. & Sundler, F. Presence and influence of cholinergic nerves in the human thyroid. J. Clin. Endocrinol. Metab. 51, 500–502 (1980).

    Article  PubMed  Google Scholar 

  245. Kalsbeek, A., Fliers, E., Franke, A. N., Wortel, J. & Buijs, R. M. Functional connections between the suprachiasmatic nucleus and the thyroid gland as revealed by lesioning and viral tracing techniques in the rat. Endocrinology 141, 3832–3841 (2000).

    Article  PubMed  CAS  Google Scholar 

  246. Bulc, M., Lewczuk, B., Prusik, M. & Całka, J. The foetal pig pineal gland is richly innervated by nerve fibres containing catecholamine-synthesizing enzymes, neuropeptide Y (NPY) and C-terminal flanking peptide of NPY, but it does not secrete melatonin. Histol. Histopathol. 28, 633–646 (2013).

    PubMed  CAS  Google Scholar 

  247. Møller, M., Phansuwan-Pujito, P., Pramaulkijja, S., Kotchabhakdi, N. & Govitrapong, P. Innervation of the cat pineal gland by neuropeptide Y-immunoreactive nerve fibers: an experimental immunohistochemical study. Cell Tissue Res. 276, 545–550 (1994).

    Article  PubMed  Google Scholar 

  248. Romijn, H. J. Structure and innervation of the pineal gland of the rabbit, Oryctolagus cuniculus (L.). III. An electron microscopic investigation of the innervation. Cell Tissue Res. 157, 25–51 (1975).

    Article  PubMed  CAS  Google Scholar 

  249. Bowers, C. W., Dahm, L. M. & Zigmond, R. E. The number and distribution of sympathetic neurons that innervate the rat pineal gland. Neuroscience 13, 87–96 (1984).

    Article  PubMed  CAS  Google Scholar 

  250. Phansuwan-Pujito, P., Møller, M. & Govitrapong, P. Cholinergic innervation and function in the mammalian pineal gland. Microsc. Res. Tech. 46, 281–295 (1999).

    Article  PubMed  CAS  Google Scholar 

  251. Wang, W. et al. Age-related dopaminergic innervation augments T helper 2-type allergic inflammation in the postnatal lung. Immunity 51, 1102–1118.e7 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  252. McGovern, A. E. & Mazzone, S. B. Characterization of the vagal motor neurons projecting to the guinea pig airways and esophagus. Front. Neurol. 1, 153 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  253. Fontán, J. J., Diec, C. T. & Velloff, C. R. Bilateral distribution of vagal motor and sensory nerve fibers in the rat’s lungs and airways. Am. J. Physiol. Regul. Integr. Comp. Physiol. 279, R713–R728 (2000).

    Article  PubMed  Google Scholar 

  254. Pincus, A. B. et al. Multicolor labeling of airway neurons and analysis of parasympathetic heterogeneity. Sci. Rep. 12, 5006 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  255. Oki, H., Inoue, S., Makishima, N., Takeyama, Y. & Shiokawa, A. Cardiac sympathetic innervation in patients with dilated cardiomyopathy-immunohistochemical study using anti-tyrosine hydroxylase antibody. Jpn. Circ. J. 58, 389–394 (1994).

    Article  PubMed  CAS  Google Scholar 

  256. Chuang, K.-S., Liu, W.-C., Liou, N.-H. & Liu, J.-C. Horseradish peroxidase localization of sympathetic postganglionic and parasympathetic preganglionic neurons innervating the monkey heart. Chin. J. Physiol. 47, 95–99 (2004).

    PubMed  CAS  Google Scholar 

  257. Crick, S. J., Sheppard, M. N., Anderson, R. H., Polak, J. M. & Wharton, J. A quantitative study of nerve distribution in the conduction system of the guinea pig heart. J. Anat. 188, 403–416 (1996).

    PubMed  PubMed Central  Google Scholar 

  258. Crick, S. J., Anderson, R. H., Ho, S. Y. & Sheppard, M. N. Localisation and quantitation of autonomic innervation in the porcine heart II: endocardium, myocardium and epicardium. J. Anat. 195, 359–373 (1999).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  259. Hopkins, D. A. & Armour, J. A. Localization of sympathetic postganglionic and parasympathetic preganglionic neurons which innervate different regions of the dog heart. J. Comp. Neurol. 229, 186–198 (1984).

    Article  PubMed  CAS  Google Scholar 

  260. Chang, C. M. et al. Nerve sprouting and sympathetic hyperinnervation in a canine model of atrial fibrillation produced by prolonged right atrial pacing. Circulation 103, 22–25 (2001).

    Article  PubMed  CAS  Google Scholar 

  261. Dickson, D. W. et al. Regional distribution of tyrosine hydroxylase and dopamine beta-hydroxylase activities in guinea pig heart. J. Auton. Nerv. Syst. 4, 319–326 (1981).

    Article  PubMed  CAS  Google Scholar 

  262. Kanazawa, H. et al. Heart failure causes cholinergic transdifferentiation of cardiac sympathetic nerves via gp130-signaling cytokines in rodents. J. Clin. Invest. 120, 408–421 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  263. Pardini, B. J., Lund, D. D. & Schmid, P. G. Organization of the sympathetic postganglionic innervation of the rat heart. J. Auton. Nerv. Syst. 28, 193–201 (1989).

    Article  PubMed  CAS  Google Scholar 

  264. Jungen, C. et al. Disruption of cardiac cholinergic neurons enhances susceptibility to ventricular arrhythmias. Nat. Commun. 8, 14155 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  265. Lizot, G. et al. Molecular and functional characterization of the mouse intrinsic cardiac nervous system. Heart Rhythm. 19, 1352–1362 (2022).

    Article  PubMed  Google Scholar 

  266. Batulevicius, D., Skripka, V., Pauziene, N. & Pauza, D. H. Topography of the porcine epicardiac nerve plexus as revealed by histochemistry for acetylcholinesterase. Auton. Neurosci. 138, 64–75 (2008).

    Article  PubMed  CAS  Google Scholar 

  267. Saburkina, I. et al. Morphological pattern of intrinsic nerve plexus distributed on the rabbit heart and interatrial septum. J. Anat. 224, 583–593 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  268. Standish, A., Enquist, L. W., Escardo, J. A. & Schwaber, J. S. Central neuronal circuit innervating the rat heart defined by transneuronal transport of pseudorabies virus. J. Neurosci. 15, 1998–2012 (1995).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  269. Mabe, A. M., Hoard, J. L., Duffourc, M. M. & Hoover, D. B. Localization of cholinergic innervation and neurturin receptors in adult mouse heart and expression of the neurturin gene. Cell Tissue Res. 326, 57–67 (2006).

    Article  PubMed  CAS  Google Scholar 

  270. De Matteis, R., Ricquier, D. & Cinti, S. TH-, NPY-, SP-, and CGRP-immunoreactive nerves in interscapular brown adipose tissue of adult rats acclimated at different temperatures: an immunohistochemical study. J. Neurocytol. 27, 877–886 (1998).

    Article  PubMed  Google Scholar 

  271. Burt, A. D. et al. Localization of adrenergic and neuropeptide tyrosine-containing nerves in the mammalian liver. Hepatology 9, 839–845 (1989).

    Article  PubMed  CAS  Google Scholar 

  272. Adori, C. et al. Disorganization and degeneration of liver sympathetic innervations in nonalcoholic fatty liver disease revealed by 3D imaging. Sci. Adv. 7, eabg5733 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  273. Kwon, E. et al. Optogenetic stimulation of the liver-projecting melanocortinergic pathway promotes hepatic glucose production. Nat. Commun. 11, 6295 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  274. Hwang, J. et al. The development of hepatic steatosis depends on the presence of liver-innervating parasympathetic cholinergic neurons in mice fed a high-fat diet. PLoS Biol. 22, e3002865 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  275. Rodriguez-Diaz, R. et al. Innervation patterns of autonomic axons in the human endocrine pancreas. Cell Metab. 14, 45–54 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  276. Krivova, Y. S., Proshchina, A. E., Otlyga, D. A., Leonova, O. G. & Saveliev, S. V. Prenatal development of sympathetic innervation of the human pancreas. Ann. Anat. 240, 151880 (2022).

    Article  PubMed  Google Scholar 

  277. Chiu, Y.-C., Hua, T.-E., Fu, Y.-Y., Pasricha, P. J. & Tang, S.-C. 3-D imaging and illustration of the perfusive mouse islet sympathetic innervation and its remodelling in injury. Diabetologia 55, 3252–3261 (2012).

    Article  PubMed  Google Scholar 

  278. Rinaman, L. & Miselis, R. R. The organization of vagal innervation of rat pancreas using cholera toxin-horseradish peroxidase conjugate. J. Auton. Nerv. Syst. 21, 109–125 (1987).

    Article  PubMed  CAS  Google Scholar 

  279. Cano, G., Sved, A. F., Rinaman, L., Rabin, B. S. & Card, J. P. Characterization of the central nervous system innervation of the rat spleen using viral transneuronal tracing. J. Comp. Neurol. 439, 1–18 (2001).

    Article  PubMed  CAS  Google Scholar 

  280. Felten, D. L., Ackerman, K. D., Wiegand, S. J. & Felten, S. Y. Noradrenergic sympathetic innervation of the spleen: I. Nerve fibers associate with lymphocytes and macrophages in specific compartments of the splenic white pulp. J. Neurosci. Res. 18, 28–36, 118–121 (1987).

    Article  PubMed  CAS  Google Scholar 

  281. Bellinger, D. et al. Age-related changes in noradrenergic sympathetic innervation of the rat spleen is strain dependent. Brain Behav. Immun. 16, 247–261 (2002).

    Article  PubMed  CAS  Google Scholar 

  282. Murray, K. et al. Neuroanatomy of the spleen: mapping the relationship between sympathetic neurons and lymphocytes. PLoS ONE 12, e0182416 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  283. Walter, G. C., Phillips, R. J., McAdams, J. L. & Powley, T. L. Individual sympathetic postganglionic neurons coinnervate myenteric ganglia and smooth muscle layers in the gastrointestinal tract of the rat. J. Comp. Neurol. 524, 2577–2603 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  284. Shapiro, R. E. & Miselis, R. R. The central organization of the vagus nerve innervating the stomach of the rat. J. Comp. Neurol. 238, 473–488 (1985).

    Article  PubMed  CAS  Google Scholar 

  285. Hayakawa, T., Kuwahara, S., Maeda, S., Tanaka, K. & Seki, M. Direct synaptic contacts on the myenteric ganglia of the rat stomach from the dorsal motor nucleus of the vagus. J. Comp. Neurol. 498, 352–362 (2006).

    Article  PubMed  Google Scholar 

  286. Gao, H. et al. Morphological and electrophysiological features of motor neurons and putative interneurons in the dorsal vagal complex of rats and mice. Brain Res. 1291, 40–52 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  287. Parker, D. R. et al. Sympathetic pathways target cholinergic neurons in the human colonic myenteric plexus. Front. Neurosci. 16, 863662 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  288. Holets, V. & Elde, R. Sympathoadrenal preganglionic neurons: their distribution and relationship to chemically-coded fibers in the kitten intermediolateral cell column. J. Auton. Nerv. Syst. 7, 149–163 (1983).

    Article  PubMed  CAS  Google Scholar 

  289. Vera, P. L., Hurwitz, B. E. & Schneiderman, N. Sympathoadrenal preganglionic neurons in the adult rabbit send their dendrites into the contralateral hemicord. J. Auton. Nerv. Syst. 30, 193–198 (1990).

    Article  PubMed  CAS  Google Scholar 

  290. Lever, J. D. Nerve fibres in the adrenal cortex of the rat. Nature 171, 882–883 (1953).

    Article  PubMed  CAS  Google Scholar 

  291. Sakakura, K. et al. Anatomic assessment of sympathetic peri-arterial renal nerves in man. J. Am. Coll. Cardiol. 64, 635–643 (2014).

    Article  PubMed  Google Scholar 

  292. Barbe, M. F. et al. Clarification of the innervation of the bladder, external urethral sphincter and clitoris: a neuronal tracing study in female mongrel hound dogs. Anat. Rec. 301, 1426–1441 (2018).

    Article  Google Scholar 

  293. McConnell, J., Benson, G. S. & Wood, J. G. Autonomic innervation of the urogenital system: adrenergic and cholinergic elements. Brain Res. Bull. 9, 679–694 (1982).

    Article  PubMed  CAS  Google Scholar 

  294. Pinsard, M. et al. Anatomic and functional mapping of human uterine innervation. Fertil. Steril. 117, 1279–1288 (2022).

    Article  PubMed  Google Scholar 

  295. Dail, W. G. & Evan, A. P. Ultrastructure of adrenergic terminals and SIF cells in the superior cervical ganglion of the rabbit. Brain Res. 148, 469–477 (1978).

    Article  PubMed  CAS  Google Scholar 

  296. Luebke, J. I. & Wright, L. L. Characterization of superior cervical ganglion neurons that project to the submandibular glands, the eyes, and the pineal gland in rats. Brain Res. 589, 1–14 (1992).

    Article  PubMed  CAS  Google Scholar 

  297. Fioretto, E. T. et al. Macro- and microstructure of the superior cervical ganglion in dogs, cats and horses during maturation. Cell Tissues Organs 186, 129–140 (2007).

    Article  Google Scholar 

  298. Toscano, C. P., de Melo, M. P., Matera, J. M., Loesch, A. & Ribeiro, A. A. C. M. The developing and restructuring superior cervical ganglion of guinea pigs (Cavia porcellus var. albina). Int. J. Dev. Neurosci. 27, 329–336 (2009).

    Article  PubMed  Google Scholar 

  299. Mitsuoka, K., Kikutani, T. & Sato, I. Morphological relationship between the superior cervical ganglion and cervical nerves in Japanese cadaver donors. Brain Behav. 7, e00619 (2017).

    Article  PubMed  Google Scholar 

  300. Boljanović, J. et al. Arterial supply and morphological characteristics of sympathetic neurons in the human superior cervical ganglion. Front. Neuroanat. 18, 1372180 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  301. Erulkar, S. D. & Woodward, J. K. Intracellular recording from mammalian superior cervical ganglion in situ. J. Physiol. 199, 189–203 (1968).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  302. Purves, D. & Wigston, D. J. Neural units in the superior cervical ganglion of the guinea pig. J. Physiol. 334, 169–178 (1983).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  303. Ivanov, A. & Purves, D. Ongoing electrical activity of superior cervical ganglion cells in mammals of different size. J. Comp. Neurol. 284, 398–404 (1989).

    Article  PubMed  CAS  Google Scholar 

  304. Ivanov, A. Y. A. & Skok, V. I. Neuronal mechanisms responsible for ongoing activity of rabbit superior cervical ganglion neurons. J. Auton. Nerv. Syst. 41, 61–66 (1992).

    Article  Google Scholar 

  305. Cowen, T., Haven, A. J., Milner, P., Lincoln, J. & Burnstock, G. Increase in neuropeptide Y, but not noradrenaline, in the superior cervical ganglion of rabbits chronically exposed to cold. J. Auton. Nerv. Syst. 24, 175–178 (1988).

    Article  PubMed  CAS  Google Scholar 

  306. Baffi, J. et al. Neuropeptides in the human superior cervical ganglion. Brain Res. 570, 272–278 (1992).

    Article  PubMed  CAS  Google Scholar 

  307. Klimaschewski, L., Kummer, W. & Heym, C. Localization, regulation and functions of neurotransmitters and neuromodulators in cervical sympathetic ganglia. Microsc. Res. Tech. 35, 44–68 (1996).

    Article  PubMed  CAS  Google Scholar 

  308. Masliukov, P. M., Konovalov, V. V., Emanuilov, A. I. & Nozdrachev, A. D. Development of neuropeptide Y-containing neurons in sympathetic ganglia of rats. Neuropeptides 46, 345–352 (2012).

    Article  PubMed  CAS  Google Scholar 

  309. Kokubun, S., Sato, T., Yajima, T. & Ichikawa, H. Distribution of postganglionic neurons which contain dopamine β-hydroxylase, tyrosine hydroxylase, neuropeptide Y and vasoactive intestinal polypeptide in the human middle cervical ganglion. Tissue Cell 58, 42–50 (2019).

    Article  PubMed  CAS  Google Scholar 

  310. Sapio, M. R. et al. Comparative analysis of dorsal root, nodose and sympathetic ganglia for the development of new analgesics. Front. Neurosci. 14, 615362 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  311. Bosnjak, Z. J. & Kampine, J. P. Electrophysiological and morphological characterization of neurons in stellate ganglion of cats. Am. J. Physiol. 248, R288–R292 (1985).

    PubMed  CAS  Google Scholar 

  312. Mo, N., Wallis, D. I. & Watson, A. Properties of putative cardiac and non-cardiac neurones in the rat stellate ganglion. J. Auton. Nerv. Syst. 47, 7–22 (1994).

    Article  PubMed  CAS  Google Scholar 

  313. Kwon, O. J. et al. Morphological spectra of adult human stellate ganglia: implications for thoracic sympathetic denervation. Anat. Rec. 301, 1244–1250 (2018).

    Article  CAS  Google Scholar 

  314. McKinnon, M. L. et al. Dramatically amplified thoracic sympathetic postganglionic excitability and integrative capacity revealed with whole-cell patch-clamp recordings. eNeuro 6, ENEURO.0433–18.2019 (2019).

    Article  PubMed  Google Scholar 

  315. Blackman, J. G. & Purves, R. D. Intracellular recordings from ganglia of the thoracic sympathetic chain of the guinea-pig. J. Physiol. 203, 173–198 (1969).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  316. Gilbert, R., Ryan, J. S., Horackova, M., Smith, F. M. & Kelly, M. E. Actions of substance P on membrane potential and ionic currents in guinea pig stellate ganglion neurons. Am. J. Physiol. 274, C892–C903 (1998).

    Article  PubMed  CAS  Google Scholar 

  317. Nozdrachev, A. D., Fateev, M. M., Jiménez, B. & Morales, M. A. Circuits and projections of cat stellate ganglion. Arch. Med. Res. 34, 106–115 (2003).

    Article  PubMed  Google Scholar 

  318. Lindh, B., Staines, W., Hökfelt, T., Terenius, L. & Salvaterra, P. M. Immunohistochemical demonstration of choline acetyltransferase-immunoreactive preganglionic nerve fibers in guinea pig autonomic ganglia. Proc. Natl Acad. Sci. USA 83, 5316–5320 (1986).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  319. Darvesh, S., Nance, D. M., Hopkins, D. A. & Armour, J. A. Distribution of neuropeptide-like immunoreactivity in intact and chronically decentralized middle cervical and stellate ganglia of dogs. J. Auton. Nerv. Syst. 21, 167–180 (1987).

    Article  PubMed  CAS  Google Scholar 

  320. Hill, E. L. & Elde, R. Vasoactive intestinal peptide distribution and colocalization with dopamine-beta-hydroxylase in sympathetic chain ganglia of pig. J. Auton. Nerv. Syst. 27, 229–239 (1989).

    Article  PubMed  CAS  Google Scholar 

  321. Häppölä, O., Lakomy, M., Majewski, M., Wasowicz, K. & Yanaihara, N. Distribution of neuropeptides in the porcine stellate ganglion. Cell Tissue Res. 274, 181–187 (1993).

    Article  PubMed  Google Scholar 

  322. Ernsberger, U. & Rohrer, H. Development of the cholinergic neurotransmitter phenotype in postganglionic sympathetic neurons. Cell Tissue Res. 297, 339–361 (1999).

    Article  PubMed  CAS  Google Scholar 

  323. Gola, M. & Niel, J. P. Electrical and integrative properties of rabbit sympathetic neurones re-evaluated by patch clamping non-dissociated cells. J. Physiol. 460, 327–349 (1993).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  324. Lundberg, J. M. et al. Organizational principles in the peripheral sympathetic nervous system: subdivision by coexisting peptides (somatostatin-, avian pancreatic polypeptide-, and vasoactive intestinal polypeptide-like immunoreactive materials). Proc. Natl Acad. Sci. USA 79, 1303–1307 (1982).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  325. Macrae, I. M., Furness, J. B. & Costa, M. Distribution of subgroups of noradrenaline neurons in the coeliac ganglion of the guinea-pig. Cell Tissue Res. 244, 173–180 (1986).

    Article  PubMed  CAS  Google Scholar 

  326. Lindh, B. et al. Topography of NPY-, somatostatin-, and VIP-immunoreactive, neuronal subpopulations in the guinea pig celiac-superior mesenteric ganglion and their projection to the pylorus. J. Neurosci. 6, 2371–2383 (1986).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  327. Lakomy, M., Häppölä, O., Majewski, M. & Wasowicz, K. Neuropeptides in the porcine coeliac-superior mesenteric ganglion. Folia Histochem. Cytobiol. 31, 181–191 (1993).

    PubMed  CAS  Google Scholar 

  328. Fox, E. A. & Powley, T. L. Morphology of identified preganglionic neurons in the dorsal motor nucleus of the vagus. J. Comp. Neurol. 322, 79–98 (1992).

    Article  PubMed  CAS  Google Scholar 

  329. Huang, X. F., Törk, I. & Paxinos, G. Dorsal motor nucleus of the vagus nerve: a cyto- and chemoarchitectonic study in the human. J. Comp. Neurol. 330, 158–182 (1993).

    Article  PubMed  CAS  Google Scholar 

  330. Fogel, R., Zhang, X. & Renehan, W. E. Relationships between the morphology and function of gastric and intestinal distention-sensitive neurons in the dorsal motor nucleus of the vagus. J. Comp. Neurol. 364, 78–91 (1996).

    Article  PubMed  CAS  Google Scholar 

  331. Jarvinen, M. K. & Powley, T. L. Dorsal motor nucleus of the vagus neurons: a multivariate taxonomy. J. Comp. Neurol. 403, 359–377 (1999).

    Article  PubMed  CAS  Google Scholar 

  332. Ford, T. W., Bennett, J. A., Kidd, C. & McWilliam, P. N. Neurones in the dorsal motor vagal nucleus of the cat with non-myelinated axons projecting to the heart and lungs. Exp. Physiol. 75, 459–473 (1990).

    Article  PubMed  CAS  Google Scholar 

  333. Rogers, R. C., Hermann, G. E. & Travagli, R. A. Brainstem pathways responsible for oesophageal control of gastric motility and tone in the rat. J. Physiol. 514, 369–383 (1999).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  334. Mussa, B. M., Sartor, D. M. & Verberne, A. J. M. Dorsal vagal preganglionic neurons: differential responses to CCK1 and 5-HT3 receptor stimulation. Auton. Neurosci. 156, 36–43 (2010).

    Article  PubMed  CAS  Google Scholar 

  335. de Souza, J. G. V. et al. Electrophysiological properties and morphology of cardiac and pulmonary motoneurons within the dorsal motor nucleus of the vagus of rats. Neuroscience 551, 153–165 (2024).

    Article  PubMed  Google Scholar 

  336. Armstrong, D. M., Ross, C. A., Pickel, V. M., Joh, T. H. & Reis, D. J. Distribution of dopamine-, noradrenaline-, and adrenaline-containing cell bodies in the rat medulla oblongata: demonstrated by the immunocytochemical localization of catecholamine biosynthetic enzymes. J. Comp. Neurol. 212, 173–187 (1982).

    Article  PubMed  CAS  Google Scholar 

  337. Raggenbass, M., Dubois-Dauphin, M., Charpak, S. & Dreifuss, J. J. Neurons in the dorsal motor nucleus of the vagus nerve are excited by oxytocin in the rat but not in the guinea pig. Proc. Natl Acad. Sci. USA 84, 3926–3930 (1987).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  338. Armstrong, D. M., Manley, L., Haycock, J. W. & Hersh, L. B. Co-localization of choline acetyltransferase and tyrosine hydroxylase within neurons of the dorsal motor nucleus of the vagus. J. Chem. Neuroanat. 3, 133–140 (1990).

    PubMed  CAS  Google Scholar 

  339. Kitahama, K. et al. Dopaminergic neurons in the cat dorsal motor nucleus of the vagus, demonstrated by dopamine, AADC and TH immunohistochemistry. Neurosci. Lett. 146, 5–9 (1992).

    Article  PubMed  CAS  Google Scholar 

  340. Zheng, Z. L., Rogers, R. C. & Travagli, R. A. Selective gastric projections of nitric oxide synthase-containing vagal brainstem neurons. Neuroscience 90, 685–694 (1999).

    Article  PubMed  CAS  Google Scholar 

  341. Gańko, M., Rychlik, A. & Całka, J. Immunohistochemical characterization of neurons and neuronal processes in the dorsal vagal nucleus of the pig. Pol. J. Vet. Sci. 16, 9–16 (2013).

    Article  PubMed  Google Scholar 

  342. Tsumori, T., Oka, T., Yokota, S., Niu, J.-G. & Yasui, Y. Intrapancreatic ganglia neurons receive projection fibers from melanocortin-4 receptor-expressing neurons in the dorsal motor nucleus of the vagus nerve of the mouse. Brain Res. 1537, 132–142 (2013).

    Article  PubMed  CAS  Google Scholar 

  343. Fogarty, M. J. Dendritic morphology of motor neurons and interneurons within the compact, semicompact, and loose formations of the rat nucleus ambiguus. Front. Cell Neurosci. 18, 1409974 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  344. McAllen, R. M. & Spyer, K. M. Two types of vagal preganglionic motoneurones projecting to the heart and lungs. J. Physiol. 282, 353–364 (1978).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  345. Delgado-García, J. M., López-Barneo, J., Serra, R. & González-Barón, S. Electrophysiological and functional identification of different neuronal types within the nucleus ambiguus in the cat. Brain Res. 277, 231–240 (1983).

    Article  PubMed  Google Scholar 

  346. Mendelowitz, D. Firing properties of identified parasympathetic cardiac neurons in nucleus ambiguus. Am. J. Physiol. 271, H2609–H2614 (1996).

    PubMed  CAS  Google Scholar 

  347. Chen, Y. et al. Inspiratory-activated and inspiratory-inhibited airway vagal preganglionic neurons in the ventrolateral medulla of neonatal rat are different in intrinsic electrophysiological properties. Respir. Physiol. Neurobiol. 180, 323–330 (2012).

    Article  PubMed  Google Scholar 

  348. Abe, C. et al. C1 neurons mediate a stress-induced anti-inflammatory reflex in mice. Nat. Neurosci. 20, 700–707 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  349. Souza, G. M. P. R., Stornetta, R. L., Stornetta, D. S., Guyenet, P. G. & Abbott, S. B. G. Adrenergic C1 neurons monitor arterial blood pressure and determine the sympathetic response to hemorrhage. Cell Rep. 38, 110480 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  350. Gu, X. et al. Neurons in the caudal ventrolateral medulla mediate descending pain control. Nat. Neurosci. 26, 594–605 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  351. Murray, K., Barboza, M., Rude, K. M., Brust-Mascher, I. & Reardon, C. Functional circuitry of neuro-immune communication in the mesenteric lymph node and spleen. Brain Behav. Immun. 82, 214–223 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  352. Wengrowski, A. M. et al. Optogenetic release of norepinephrine from cardiac sympathetic neurons alters mechanical and electrical function. Cardiovasc. Res. 105, 143–150 (2015).

    Article  PubMed  CAS  Google Scholar 

  353. Lyons, C. E. et al. Optogenetic-induced sympathetic neuromodulation of brown adipose tissue thermogenesis. FASEB J. 34, 2765–2773 (2020).

    Article  PubMed  CAS  Google Scholar 

  354. Schiller, M. et al. Optogenetic activation of local colonic sympathetic innervations attenuates colitis by limiting immune cell extravasation. Immunity 54, 1022–1036.e8 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  355. Pereira, M. M. A. et al. A brain-sparing diphtheria toxin for chemical genetic ablation of peripheral cell lineages. Nat. Commun. 8, 14967 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank the members of the Oka lab for helpful discussion and comments. Y.O. is supported by Startup funds from the President and Provost of California Institute of Technology, the Biology and Biological Engineering Division of California Institute of Technology, the New York Stem Cell Foundation, the Alfred P. Sloan Foundation, the Edward Mallinckrodt Foundation, and Heritage Medical Research Institute.

Author information

Authors and Affiliations

Authors

Contributions

T.W. researched data for the article. T.W. and A.T. developed transcriptomic data visualization portal. O.A.A. wrote the translational implications section. T.W. and Y.O. conceived and wrote the article.

Corresponding authors

Correspondence to Tongtong Wang or Yuki Oka.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neuroscience thanks B. Davis and the other, anonymous, reviewers for their contribution to the peer review of this manuscript.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Tufenkjian, A., Ajijola, O.A. et al. Molecular and functional diversity of the autonomic nervous system. Nat. Rev. Neurosci. 26, 607–622 (2025). https://doi.org/10.1038/s41583-025-00941-2

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41583-025-00941-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing