Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cell transcriptomic atlas of the non-human primate Macaca fascicularis

Abstract

Studying tissue composition and function in non-human primates (NHPs) is crucial to understand the nature of our own species. Here we present a large-scale cell transcriptomic atlas that encompasses over 1 million cells from 45 tissues of the adult NHP Macaca fascicularis. This dataset provides a vast annotated resource to study a species phylogenetically close to humans. To demonstrate the utility of the atlas, we have reconstructed the cell–cell interaction networks that drive Wnt signalling across the body, mapped the distribution of receptors and co-receptors for viruses causing human infectious diseases, and intersected our data with human genetic disease orthologues to establish potential clinical associations. Our M. fascicularis cell atlas constitutes an essential reference for future studies in humans and NHPs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Generation of a cell atlas across 45 tissues of adult M. fascicularis monkey.
Fig. 2: Characterization of monkey skeletal myofibres and mesothelial cells.
Fig. 3: Analysis of LGR5+ cells across all monkey tissues.
Fig. 4: Global analysis of ACE2 and TMPRSS2 across monkey tissues.
Fig. 5: Association of monkey cell transcriptomic profiles with common human traits and genetic diseases.

Similar content being viewed by others

Data availability

All raw data produced in this study (including NHPCA and mouse neocortex data) have been deposited to the CNGB Nucleotide Sequence Archive (accession code CNP0001469). All NHPCA count matrix data are available from https://db.cngb.org/nhpca/download. We have also provided the NHPCA website (https://db.cngb.org/nhpca/), an open and interactive database for exploration. The public datasets used in this study can be accessed as described below: the HCL count matrix is available at https://figshare.com/articles/dataset/HCL_DGE_Data/7235471, the MCA count matrix is available at https://figshare.com/articles/dataset/MCA_DGE_Data/5435866 and the count matrix for the Tabula Muris dataset is available at https://figshare.com/projects/Tabula_Muris_Transcriptomic_characterization_of_20_organs_and_tissues_from_Mus_musculus_at_single_cell_resolution/27733. The Gene Expression Omnibus (GEO) accession numbers for the two human kidney datasets are GSE121862 and GSE151302. The GEO accession number for the mouse kidney data is GSE107585. The GEO accession number for the human neocortex data is GSE97942. The human heart data can be accessed at the European Nucleotide Archive (https://www.ebi.ac.uk/ena/) using accession number ERP123138. The mouse heart data can be found through accession number E-MTAB-7869 in the database of the European Bioinformatics Institute (https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-7869/). Summary statistics files for each human trait were downloaded from the UK Biobank database or published studies (data links in Supplementary Table 6a). Source data are provided with this paper.

Code availability

Computer code used for processing the snRNA-seq, scRNA-seq and scATAC-seq data is available at https://github.com/single-cell-BGI/NHPCA.

References

  1. Rozenblatt-Rosen, O., Stubbington, M. J. T., Regev, A. & Teichmann, S. A. The Human Cell Atlas: from vision to reality. Nature 550, 451–453 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Carbone, L. et al. Gibbon genome and the fast karyotype evolution of small apes. Nature 513, 195–201 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Taylor, K. Clinical veterinarian’s perspective of non-human primate (NHP) use in drug safety studies. J. Immunotoxicol. 7, 114–119 (2010).

    Article  PubMed  Google Scholar 

  4. Zhu, L. et al. Single-cell sequencing of peripheral mononuclear cells reveals distinct immune response landscapes of COVID-19 and influenza patients. Immunity 53, 685–696 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Delorey, T. M. et al. COVID-19 tissue atlases reveal SARS-CoV-2 pathology and cellular targets. Nature 595, 107–113 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ding, J. et al. Systematic comparison of single-cell and single-nucleus RNA-sequencing methods. Nat. Biotechnol. 38, 737–746 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Han, X. et al. Mapping the mouse cell atlas by Microwell-seq. Cell 172, 1091–1107 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Han, X. et al. Construction of a human cell landscape at single-cell level. Nature 581, 303–309 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Brazovskaja, A. et al. Cell atlas of the regenerating human liver after portal vein embolization. Preprint at bioRxiv https://doi.org/10.1101/2021.06.03.444016 (2021).

  10. Bram, Y. et al. Cell and tissue therapy for the treatment of chronic liver disease. Annu. Rev. Biomed. Eng. 23, 517–546 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Krausgruber, T. et al. Structural cells are key regulators of organ-specific immune responses. Nature 583, 296–302 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kalucka, J. et al. Single-cell transcriptome atlas of murine endothelial cells. Cell 180, 764–779 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. Geirsdottir, L. et al. Cross-species single-cell analysis reveals divergence of the primate microglia program. Cell 179, 1609–1622 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Petrany, M. J. et al. Single-nucleus RNA-seq identifies transcriptional heterogeneity in multinucleated skeletal myofibers. Nat. Commun. 11, 6374 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Stål, P., Marklund, S., Thornell, L. E., De Paul, R. & Eriksson, P. O. Fibre composition of human intrinsic tongue muscles. Cells Tissues Organs 173, 147–161 (2003).

    Article  PubMed  CAS  Google Scholar 

  16. Vijay, J. et al. Single-cell analysis of human adipose tissue identifies depot- and disease-specific cell types. Nat. Metab. 2, 97–109 (2020).

    Article  PubMed  Google Scholar 

  17. Merrick, D. et al. Identification of a mesenchymal progenitor cell hierarchy in adipose tissue. Science 364, eaav2501 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ribeiro, R. et al. Human periprostatic white adipose tissue is rich in stromal progenitor cells and a potential source of prostate tumor stroma. Exp. Biol. Med. 237, 1155–1162 (2012).

    Article  CAS  Google Scholar 

  19. Schröder, K., Wandzioch, K., Helmcke, I. & Brandes, R. P. Nox4 acts as a switch between differentiation and proliferation in preadipocytes. Arter. Thromb. Vasc. Biol. 29, 239–245 (2009).

    Article  CAS  Google Scholar 

  20. Ha, C. W. Y. et al. Translocation of viable gut microbiota to mesenteric adipose drives formation of creeping fat in humans. Cell 183, 666–683 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Adler, E., Mhawech-Fauceglia, P., Gayther, S. A. & Lawrenson, K. PAX8 expression in ovarian surface epithelial cells. Hum. Pathol. 46, 948–956 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ng, A. et al. Lgr5 marks stem/progenitor cells in ovary and tubal epithelia. Nat. Cell Biol. 16, 745–757 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Parte, S. C., Batra, S. K. & Kakar, S. S. Characterization of stem cell and cancer stem cell populations in ovary and ovarian tumors. J. Ovarian Res. 11, 69 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Nusse, R. & Clevers, H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell 169, 985–999 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. Leung, C., Tan, S. H. & Barker, N. Recent advances in Lgr5+ stem cell research. Trends Cell Biol. 28, 380–391 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Barker, N. & Clevers, H. Leucine-rich repeat-containing G-protein-coupled receptors as markers of adult stem cells. Gastroenterology 138, 1681–1696 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Lee, J.-H. et al. Anatomically and functionally distinct lung mesenchymal populations marked by Lgr5 and Lgr6. Cell 170, 1149–1163 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Huch, M. et al. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature 494, 247–250 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Barker, N. et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003–1007 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Lake, B. B. et al. A single-nucleus RNA-sequencing pipeline to decipher the molecular anatomy and pathophysiology of human kidneys. Nat. Commun. 10, 2832 (2019).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  31. Muto, Y. et al. Single cell transcriptional and chromatin accessibility profiling redefine cellular heterogeneity in the adult human kidney. Nat. Commun. 12, 2190 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tabula Muris Consortium. et al. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature 562, 367–372 (2018).

    Article  ADS  CAS  Google Scholar 

  33. Park, J. et al. Single-cell transcriptomics of the mouse kidney reveals potential cellular targets of kidney disease. Science 360, 758–763 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Barker, N. et al. Lgr5+ve stem/progenitor cells contribute to nephron formation during kidney development. Cell Rep. 2, 540–552 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Lake, B. B. et al. Integrative single-cell analysis of transcriptional and epigenetic states in the human adult brain. Nat. Biotechnol. 36, 70–80 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Nakashima, H. et al. R-spondin 2 promotes acetylcholine receptor clustering at the neuromuscular junction via Lgr5. Sci. Rep. 6, 28512 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Leung, C. et al. Lgr5 marks adult progenitor cells contributing to skeletal muscle regeneration and sarcoma formation. Cell Rep. 33, 108535 (2020).

    Article  CAS  PubMed  Google Scholar 

  38. Litvinukova, M. et al. Cells of the adult human heart. Nature 588, 466–472 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Vidal, R. et al. Transcriptional heterogeneity of fibroblasts is a hallmark of the aging heart. JCI Insight 4, e131092 (2019).

    Article  PubMed Central  Google Scholar 

  40. Vankelecom, H. Non-hormonal cell types in the pituitary candidating for stem cell. Semin. Cell Dev. Biol. 18, 559–570 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Klein, D. et al. Wnt2 acts as a cell type-specific, autocrine growth factor in rat hepatic sinusoidal endothelial cells cross-stimulating the VEGF pathway. Hepatology 47, 1018–1031 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Nusse, R. Wnt signaling and stem cell control. Cell Res. 18, 523–527 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Niehrs, C. The complex world of WNT receptor signalling. Nat. Rev. Mol. Cell Biol. 13, 767–779 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Zhang, M. et al. β-catenin safeguards the ground state of mouse pluripotency by strengthening the robustness of the transcriptional apparatus. Sci. Adv. 6, eaba1593 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Devakumar, D. et al. Infectious causes of microcephaly: epidemiology, pathogenesis, diagnosis, and management. Lancet Infect. Dis. 18, e1–e13 (2018).

    Article  PubMed  Google Scholar 

  46. Zhu, N. et al. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 382, 727–733 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hoffmann, M. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181, 271–280 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rockx, B. et al. Comparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate model. Science 368, 1012–1015 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Diao, B. et al. Human kidney is a target for novel severe acute respiratory syndrome coronavirus 2 infection. Nat. Commun. 12, 2506 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. Muus, C. et al. Single-cell meta-analysis of SARS-CoV-2 entry genes across tissues and demographics. Nat. Med. 27, 546–559 (2021).

    Article  CAS  PubMed  Google Scholar 

  51. Sungnak, W. et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat. Med. 26, 681–687 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ying, M. et al. COVID-19 with acute cholecystitis: a case report. BMC Infect. Dis. 20, 437 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tosi, M. F. Innate immune responses to infection. J. Allergy Clin. Immunol. 116, 241–249 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Bell, L. C. K. et al. Transcriptional response modules characterize IL-1β and IL-6 activity in COVID-19. iScience 24, 101896 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  55. Nie, X. et al. Multi-organ proteomic landscape of COVID-19 autopsies. Cell 184, 775–791 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gate, D. et al. Clonally expanded CD8 T cells patrol the cerebrospinal fluid in Alzheimer’s disease. Nature 577, 399–404 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhong, J., Yang, H. & Kon, V. Kidney as modulator and target of "good/bad" HDL. Pediatr. Nephrol. 34, 1683–1695 (2019).

    Article  PubMed  Google Scholar 

  58. Athanasiadou, A. et al. Early motor signs of attention-deficit hyperactivity disorder: a systematic review. Eur. Child Adolesc. Psychiatry 29, 903–916 (2020).

    Article  CAS  PubMed  Google Scholar 

  59. Amino, T. et al. Redefining the disease locus of 16q22.1-linked autosomal dominant cerebellar ataxia. J. Hum. Genet. 52, 643–649 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Tse, K. H. & Herrup, K. DNA damage in the oligodendrocyte lineage and its role in brain aging. Mech. Ageing Dev. 161, 37–50 (2017).

    Article  CAS  PubMed  Google Scholar 

  61. Wang, S. et al. Single-cell transcriptomic atlas of primate ovarian aging. Cell 180, 585–600 (2020).

    Article  CAS  PubMed  Google Scholar 

  62. Villiger, P. M. et al. Tocilizumab for induction and maintenance of remission in giant cell arteritis: a phase 2, randomised, double-blind, placebo-controlled trial. Lancet 387, 1921–1927 (2016).

    Article  CAS  PubMed  Google Scholar 

  63. Le Stang, M.-B., Desenclos, J., Flamant, M., Chousterman, B. G. & Tabibzadeh, N. The good treatment, the bad virus, and the ugly inflammation: pathophysiology of kidney involvement during COVID-19. Front. Physiol. 12, 209 (2021).

    Article  Google Scholar 

  64. Cavalcanti, A. B. et al. Hydroxychloroquine with or without azithromycin in mild-to-moderate Covid-19. N. Engl. J. Med. 383, 2041–2052 (2020).

    Article  CAS  PubMed  Google Scholar 

  65. Verghese, D., Alrifai, T., Nimmagadda, M. & Upadhyay, M. It could be in the kidneys: fibromuscular dysplasia and the association with headaches and mood disorders. BMJ Case Rep. 12, e231322 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Chavali, M. et al. Wnt-dependent oligodendroglial–endothelial interactions regulate white matter vascularization and attenuate injury. Neuron 108, 1130–1145 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Heallen, T. et al. Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science 332, 458–461 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  68. Osmundsen, A. M., Keisler, J. L., Taketo, M. M. & Davis, S. W. Canonical WNT signaling regulates the pituitary organizer and pituitary gland formation. Endocrinology 158, 3339–3353 (2017).

    Article  CAS  PubMed  Google Scholar 

  69. Bakken, T. E. et al. Single-nucleus and single-cell transcriptomes compared in matched cortical cell types. PLoS ONE 13, e0209648 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Yu, Y. et al. Single-nucleus chromatin accessibility landscape reveals diversity in regulatory regions across distinct adult rat cortex. Front. Mol. Neurosci. 14, 651355 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  CAS  PubMed  Google Scholar 

  72. Tarasov, A., Vilella, A. J., Cuppen, E., Nijman, I. J. & Prins, P. Sambamba: fast processing of NGS alignment formats. Bioinformatics 31, 2032–2034 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Del-Aguila, J. L. et al. A single-nuclei RNA sequencing study of Mendelian and sporadic AD in the human brain. Alzheimers Res. Ther. 11, 71 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Young, M. D. & Behjati, S. SoupX removes ambient RNA contamination from droplet-based single-cell RNA sequencing data. Gigascience 9, giaa151 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. McGinnis, C. S., Murrow, L. M. & Gartner, Z. J. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst. 8, 329–337 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yu, G., Wang, L. G. & He, Q. Y. ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics 31, 2382–2383 (2015).

    Article  CAS  PubMed  Google Scholar 

  79. Yates, A. D. et al. Ensembl 2020. Nucleic Acids Res. 48, D682–D688 (2020).

    Article  CAS  PubMed  Google Scholar 

  80. Qiu, X. et al. Reversed graph embedding resolves complex single-cell trajectories. Nat. Methods 14, 979–982 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Efremova, M., Vento-Tormo, M., Teichmann, S. A. & Vento-Tormo, R. CellPhoneDB: inferring cell–cell communication from combined expression of multi-subunit ligand–receptor complexes. Nat. Protoc. 15, 1484–1506 (2020).

    Article  CAS  PubMed  Google Scholar 

  82. Bryois, J. et al. Genetic identification of cell types underlying brain complex traits yields insights into the etiology of Parkinson’s disease. Nat. Genet. 52, 482–493 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Granja, J. M. et al. ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis. Nat. Genet. 53, 403–411 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Shen, W., Le, S., Li, Y. & Hu, F. SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS ONE 11, e0163962 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank W. Liu and L. Xu from the Huazhen Laboratory Animal Breeding Centre for helping in the collection of monkey tissues, D. Zhu and H. Li from the Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory) for technical help, G. Guo and H. Sun from Zhejiang University for providing HCL and MCA gene expression data matrices, G. Dong and C. Liu from BGI Research, and X. Zhang, P. Li and C. Qi from the Guangzhou Institutes of Biomedicine and Health for experimental advice or providing reagents. This work was supported by the Shenzhen Basic Research Project for Excellent Young Scholars (RCYX20200714114644191), Shenzhen Key Laboratory of Single-Cell Omics (ZDSYS20190902093613831), Shenzhen Bay Laboratory (SZBL2019062801012) and Guangdong Provincial Key Laboratory of Genome Read and Write (2017B030301011). In addition, L.L. was supported by the National Natural Science Foundation of China (31900466), Y. Hou was supported by the Natural Science Foundation of Guangdong Province (2018A030313379) and M.A.E. was supported by a Changbai Mountain Scholar award (419020201252), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA16030502), a Chinese Academy of Sciences–Japan Society for the Promotion of Science joint research project (GJHZ2093), the National Natural Science Foundation of China (92068106, U20A2015) and the Guangdong Basic and Applied Basic Research Foundation (2021B1515120075). M.L. was supported by the National Key Research and Development Program of China (2021YFC2600200).

Author information

Authors and Affiliations

Authors

Contributions

L.H., Y. Hou, X.X., M.A.E. and L.L. conceived the idea; Y. Hou, X.X., M.A.E. and L.L. supervised the work; L.H., Xiaoyu Wei, Y. Yuan, M.A.E. and L.L. designed the experiments; L.H., Xiaoyu Wei, G.V., Y. Yuan, X. Zhang, P.F., P.G., Xingyuan Liu, F.Y., S.S., G.L., J.A., Y. Lei, Y. Lai, M.C., C.-W. Wong, X.G., S.L. and J.M. collected tissue samples; C.L., G.V., Zhifeng Wang, Y. Yuan, X. Zhang, P.F., Q.D., Ya Liu, Y. Huang, H.L., B.W., M.C., J.X., M.W., C. Wang, Y.Z., Y. Yu, H. Zheng, Y.W. and S.X. performed the experiments. L.H., Xiaoyu Wei, G.V., Z. Zhuang, X. Zou, T.P., Y. Lai, L.W., Q. Shi, H. Yu, Yang Liu, D.X., F.H., Z. Zhu and C. Ward performed data analysis. L.H., Xiaoyu Wei, C.L., G.V., Z. Zhuang, X. Zou, Z. Wang, T.P., Y. Yang, J.L. and L.L. prepared the figures. H. Yu, Xiaofeng Wei, F.C., T.Y., W.D. and J.C. prepared the website. Zongren Wang, Z.P., C.-W.W., B.Q., A.S., J.I., L.F., Yan Liu, Z.L., Xiaolei Liu, H. Zhang, M.L., Q. Sun, P.H.M., N.B., P.M.-C., Y.G., J.M., M.U., T.T., S.L., H. Yang and J.W. provided relevant advice and reviewed the manuscript. L.H., G.V., M.A.E. and L.L. wrote the manuscript with input from all authors. All other authors contributed to the work. All authors read and approved the manuscript for submission.

Corresponding authors

Correspondence to Yong Hou, Xun Xu, Miguel A. Esteban or Longqi Liu.

Ethics declarations

Competing interests

Employees of BGI have stock holdings in BGI. All other authors declare no competing interests.

Peer review

Peer review information

Nature thanks Benjamin Humphreys, Itai Yanai and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains the Supplementary Note, the legends for Supplementary Figs. 1–46 and the legends for Supplementary Tables 1–6.

Reporting Summary.

Peer Review File

Supplementary Table 1

Description of all profiled monkey tissues, cell types and markers used for cluster annotation.

Supplementary Table 2

Global analysis of monkey common cell types and tissue-specific signatures.

Supplementary Table 3

Global distribution of LGR5, LGR6 and MKI67 expression in monkey tissues.

Supplementary Table 4

Species-specific genes in kidney DCTCs between monkey, human and mouse.

Supplementary Table 5

Expression of virus receptors, ACE2 and TMPRSS2 in monkey tissues.

Supplementary Table 6

Association of GWAS traits and human genetic diseases with monkey cell types.

Source Data Supplementary Figures 1–3

Source Data Supplementary Figures 4–8

Source Data Supplementary Figures 9–10

Source Data Supplementary Figures 11

Source Data Supplementary Figures 12–22

Source Data Supplementary Figures 23–25

Source Data Supplementary Figures 26–30

Source Data Supplementary Figures 31–40

Source Data Supplementary Figures 41–46

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, L., Wei, X., Liu, C. et al. Cell transcriptomic atlas of the non-human primate Macaca fascicularis. Nature 604, 723–731 (2022). https://doi.org/10.1038/s41586-022-04587-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-022-04587-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing