Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mechanisms of actin filament severing and elongation by formins

Abstract

Humans express 15 formins that play crucial roles in actin-based processes, including cytokinesis, cell motility and mechanotransduction1,2. However, the lack of structures bound to the actin filament (F-actin) has been a major impediment to understanding formin function. Whereas formins are known for their ability to nucleate and elongate F-actin3,4,5,6,7, some formins can additionally depolymerize, sever or bundle F-actin. Two mammalian formins, inverted formin 2 (INF2) and diaphanous 1 (DIA1, encoded by DIAPH1), exemplify this diversity. INF2 shows potent severing activity but elongates weakly8,9,10,11 whereas DIA1 has potent elongation activity but does not sever4,8. Using cryo-electron microscopy (cryo-EM) we show five structural states of INF2 and two of DIA1 bound to the middle and barbed end of F-actin. INF2 and DIA1 bind differently to these sites, consistent with their distinct activities. The formin-homology 2 and Wiskott–Aldrich syndrome protein-homology 2 (FH2 and WH2, respectively) domains of INF2 are positioned to sever F-actin, whereas DIA1 appears unsuited for severing. These structures also show how profilin-actin is delivered to the fast-growing barbed end, and how this is followed by a transition of the incoming monomer into the F-actin conformation and the release of profilin. Combined, the seven structures presented here provide step-by-step visualization of the mechanisms of F-actin severing and elongation by formins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cryo-EM structures of INF2 and DIA1 bound to F-actin.
Fig. 2: Hand-over-hand severing mechanism.
Fig. 3: Load, exchange, release and advance elongation mechanism.

Similar content being viewed by others

Data availability

Molecular models and cryo-EM density maps have been deposited with the following accession codes: INF2 middle up (PDB code 9B03; EMDB codes EMD-44026, EMD-44020, EMD-44022, EMD-44023, EMD-44024, EMD-44025, EMD-44948); INF2 middle down (PDB code 9B0K; EMDB codes EMD-44045, EMD-44027, EMD-44030, EMD-44031, EMD-44032, EMD-44033, EMD-44943); DIA1 middle (PDB code 9B3D; EMDB codes EMD-44135); INF2 barbed end (PDB code 9AZ4; EMDB codes EMD-44012, EMD-44009, EMD-44010, EMD-44011, EMD-44950, EMD-44951); DIA1 barbed end (PDB code 9B27; EMDB code EMD-44099); INF2 with incoming profilin-actin (PDB code 9AZP; EMDB codes EMD-44018, EMD-44956, EMD-44958); INF2 with incoming actin (PDB code 9AZQ; EMDB codes EMD-44019, EMD-44973, EMD-44972); previously published structures used in model building (PDB codes 2PAV and 8F8P).

References

  1. Breitsprecher, D. & Goode, B. L. Formins at a glance. J. Cell Sci. 126, 1–7 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Valencia, D. A. & Quinlan, M. E. Formins. Curr. Biol. 31, R517–R522 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Romero, S. et al. Formin is a processive motor that requires profilin to accelerate actin assembly and associated ATP hydrolysis. Cell 119, 419–429 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Kovar, D. R., Harris, E. S., Mahaffy, R., Higgs, H. N. & Pollard, T. D. Control of the assembly of ATP- and ADP-actin by formins and profilin. Cell 124, 423–435 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Otomo, T. et al. Structural basis of actin filament nucleation and processive capping by a formin homology 2 domain. Nature 433, 488–494 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Paul, A. S. & Pollard, T. D. Review of the mechanism of processive actin filament elongation by formins. Cell Motil. Cytoskeleton 66, 606–617 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Thompson, M. E., Heimsath, E. G., Gauvin, T. J., Higgs, H. N. & Kull, F. J. FMNL3 FH2-actin structure gives insight into formin-mediated actin nucleation and elongation. Nat. Struct. Mol. Biol. 20, 111–118 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Chhabra, E. S. & Higgs, H. N. INF2 Is a WASP homology 2 motif-containing formin that severs actin filaments and accelerates both polymerization and depolymerization. J. Biol. Chem. 281, 26754–26767 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Gurel, P. S. et al. INF2-mediated severing through actin filament encirclement and disruption. Curr. Biol. 24, 156–164 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gurel, P. S. et al. Assembly and turnover of short actin filaments by the formin INF2 and profilin. J. Biol. Chem. 290, 22494–22506 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Korobova, F., Ramabhadran, V. & Higgs, H. N. An actin-dependent step in mitochondrial fission mediated by the ER-associated formin INF2. Science 339, 464–467 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Higgs, H. N. Formin proteins: a domain-based approach. Trends Biochem. Sci. 30, 342–353 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Zimmermann, D. & Kovar, D. R. Feeling the force: formin’s role in mechanotransduction. Curr. Opin. Cell Biol. 56, 130–140 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Labat-de-Hoz, L. & Alonso, M. A. Formins in human disease. Cells 10, 2554 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mullins, R. D., Bieling, P. & Fletcher, D. A. From solution to surface to filament: actin flux into branched networks. Biophys. Rev. 10, 1537–1551 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xu, Y. et al. Crystal structures of a Formin Homology-2 domain reveal a tethered dimer architecture. Cell 116, 711–723 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Zigmond, S. H. et al. Formin leaky cap allows elongation in the presence of tight capping proteins. Curr. Biol. 13, 1820–1823 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Kovar, D. R., Kuhn, J. R., Tichy, A. L. & Pollard, T. D. The fission yeast cytokinesis formin Cdc12p is a barbed end actin filament capping protein gated by profilin. J. Cell Biol. 161, 875–887 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gould, C. J. et al. The formin DAD domain plays dual roles in autoinhibition and actin nucleation. Curr. Biol. 21, 384–390 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Quinlan, M. E., Hilgert, S., Bedrossian, A., Mullins, R. D. & Kerkhoff, E. Regulatory interactions between two actin nucleators, Spire and Cappuccino. J. Cell Biol. 179, 117–128 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Breitsprecher, D. et al. Rocket launcher mechanism of collaborative actin assembly defined by single-molecule imaging. Science 336, 1164–1168 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yamana, N. et al. The Rho-mDia1 pathway regulates cell polarity and focal adhesion turnover in migrating cells through mobilizing Apc and c-Src. Mol. Cell. Biol. 26, 6844–6858 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Brandt, D. T. et al. Dia1 and IQGAP1 interact in cell migration and phagocytic cup formation. J. Cell Biol. 178, 193–200 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fessenden, T. B. et al. Dia1-dependent adhesions are required by epithelial tissues to initiate invasion. J. Cell Biol. 217, 1485–1502 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Brown, E. J. et al. Mutations in the formin gene INF2 cause focal segmental glomerulosclerosis. Nat. Genet. 42, 72–76 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Boyer, O. et al. INF2 mutations in Charcot-Marie-Tooth disease with glomerulopathy. N. Engl. J. Med. 365, 2377–2388 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Ueyama, T. et al. Constitutive activation of DIA1 (DIAPH1) via C-terminal truncation causes human sensorineural hearing loss. EMBO Mol. Med. 8, 1310–1324 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Carman, P. J., Barrie, K. R., Rebowski, G. & Dominguez, R. Structures of the free and capped ends of the actin filament. Science 380, eadg6812 (2023).

    Article  Google Scholar 

  30. Jaiswal, R. et al. The formin Daam1 and fascin directly collaborate to promote filopodia formation. Curr. Biol. 23, 1373–1379 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bombardier, J. P. et al. Single-molecule visualization of a formin-capping protein ‘decision complex’ at the actin filament barbed end. Nat. Commun. 6, 8707 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Harris, E. S., Rouiller, I., Hanein, D. & Higgs, H. N. Mechanistic differences in actin bundling activity of two mammalian formins, FRL1 and mDia2. J. Biol. Chem. 281, 14383–14392 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Scott, B. J., Neidt, E. M. & Kovar, D. R. The functionally distinct fission yeast formins have specific actin-assembly properties. Mol. Biol. Cell 22, 3826–3839 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ramabhadran, V., Gurel, P. S. & Higgs, H. N. Mutations to the formin homology 2 domain of INF2 protein have unexpected effects on actin polymerization and severing. J. Biol. Chem. 287, 34234–34245 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Maufront, J. et al. Direct observation of the conformational states of formin mDia1 at actin filament barbed ends and along the filament. Mol. Biol. Cell 34, ar2 (2023).

    Article  CAS  PubMed  Google Scholar 

  36. Chereau, D. et al. Actin-bound structures of Wiskott-Aldrich syndrome protein (WASP)-homology domain 2 and the implications for filament assembly. Proc. Natl Acad. Sci. USA 102, 16644–16649 (2005).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dominguez, R. The WH2 domain and actin nucleation: necessary but insufficient. Trends Biochem. Sci 41, 478–490 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zsolnay, V., Katkar, H. H., Chou, S. Z., Pollard, T. D. & Voth, G. A. Structural basis for polarized elongation of actin filaments. Proc. Natl Acad. Sci. USA 117, 30458–30464 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Oda, T., Iwasa, M., Aihara, T., Maeda, Y. & Narita, A. The nature of the globular- to fibrous-actin transition. Nature 457, 441–445 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Pollard, T. D. Actin and actin-binding proteins. Cold Spring Harb. Perspect Biol. https://doi.org/10.1101/cshperspect.a018226 (2016).

  41. Oosterheert, W. et al. Molecular mechanism of actin filament elongation by formins. Science 384, eadn9560 (2024).

    Article  CAS  PubMed  Google Scholar 

  42. Ferron, F., Rebowski, G., Lee, S. H. & Dominguez, R. Structural basis for the recruitment of profilin-actin complexes during filament elongation by Ena/VASP. EMBO J. 26, 4597–4606 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bepler, T. et al. Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs. Nat. Methods 16, 1153–1160 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Naydenova, K. & Russo, C. J. Measuring the effects of particle orientation to improve the efficiency of electron cryomicroscopy. Nat. Commun. 8, 629 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  47. Casanal, A., Lohkamp, B. & Emsley, P. Current developments in Coot for macromolecular model building of electron cryo-microscopy and crystallographic data. Protein Sci. 29, 1069–1078 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. van Zundert, G. C. P., Moriarty, N. W., Sobolev, O. V., Adams, P. D. & Borrelli, K. W. Macromolecular refinement of X-ray and cryoelectron microscopy structures with Phenix/OPLS3e for improved structure and ligand quality. Structure 29, 913–921 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank H. Higgs for providing the INF2 and Diaph1 genes and for valuable discussions. This study was supported by National Institutes of Health grant nos. R01 GM073791 and RM1 GM136511 to R.D. and T32 AR053461 to N.J.P. Data collection was supported by the Electron Microscopy Resource Lab and The Beckman Center for Cryo-Electron Microscopy, University of Pennsylvania (Research Resource Identifier SCR_022375) and the National Center for CryoEM Access and Training through National Institutes of Health grant no. U24 GM129539.

Author information

Authors and Affiliations

Authors

Contributions

N.J.P., K.R.B. and R.D. conceived and designed the study. N.J.P. performed sample preparation and cryo-EM data collection. N.J.P. and K.R.B. processed the cryo-EM data and generated three-dimensional reconstructions. N.J.P., K.R.B. and R.D. conducted structural analyses and interpretations. N.J.P., K.R.B. and R.D. prepared figures and videos. R.D. wrote the initial draft, acquired funding and supervised the work. N.J.P., K.R.B. and R.D. edited the final manuscript.

Corresponding author

Correspondence to Roberto Dominguez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Edward Egelman and Thomas Pollard for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Definitions and nomenclatures used.

(a) Domain diagrams of INF2 and Dia1, with zooms defining sub-domains within the FH2 domain. (b) The FH2 dimer forms a ring-like structure mediated by head-to-tail lasso-post interactions (left). FH2 subdomains colored as in part a (right). The newly-defined HCBH is highlighted in red. (c) Actin filament (PDB code: 8F8P) indicating short and long-pitch helices, pointed and barbed ends, plug, H-cleft, and D-loop. (d) Two perpendicular views of the actin monomer (PDB code: 1J6Z) with subdomains 1–4 labeled in blue circles. The H-cleft, nucleotide cleft, D-loop, and plug are indicated. (e) G- (blue, twisted) to F-actin (gray, flat) conformational transition, characterized by a 20° rotation of subdomains 1 and 2 relative to 3 and 4.

Extended Data Fig. 2 Cryo-EM maps around FH2 and HCBH.

(a-g) FH2 fit to the cryo-EM maps for the seven structures described here (as indicated). (h) HCBH of the mobile FH2 of INF2 fit to the cryo-EM map in the up and down mid-filament-bound states.

Extended Data Fig. 3 F-actin-FH2 contact surface areas.

(a-g) For each interaction, the contact area in F-actin is colored according to the interacting FH2. On the FH2 side, contact areas are colored cyan, marine blue, blue, and white depending on which actin subunit it contacts. Contact surface areas (given for each interaction in black boxes) were calculated using the server GetArea (https://curie.utmb.edu/getarea.html).

Extended Data Fig. 4 Comparisons between INF2 and Dia1.

(a) Sequence alignment of WASP WH2 (UniProt code: P42768) with the WH2s of INF2 and Dia1. Note the absence of the LKKT motif in Dia1. (b) Superimposition of AlphaFold models of the FH2-WH2 regions of INF2 (632–991) and Dia1 (833–1200), highlighting differences in the length of the antennas and WH2-FH2 linkers. (c-d) Comparisons of the positions of the FH2s of INF2 (magenta) and Dia1 (orange) bound to A5 and A6 at the barbed end. The comparison is based on a superimposition of the corresponding actin subunits in the two structures.

Extended Data Fig. 5 Long-pitch interactions.

(a-c) Long-pitch interactions and corresponding cryo-EM maps of subdomain 2 in F-actin (a), incoming profilin-actin (b) and incoming actin (c). In all the structures, the D-loop inserts into the H-cleft of the subunit above. However, for the incoming monomer (blue), subdomain 4 contacts subdomain 3 of A5 only after a 14° rotation and the G- to F-actin transition (see also Fig. 3e,f in the main text).

Extended Data Table 1 Cryo-EM data collection, refinement, and validation statistics for INF2
Extended Data Table 2 Cryo-EM data collection, refinement, and validation statistics for Dia1

Supplementary information

Supplementary Information

Supplementary Figs. 1–14.

Reporting Summary

Supplementary Video 1

Structures of INF2 and Dia1 in the middle of F-actin. Comparison of the structures of INF2 and Dia1 bound in the middle of F-actin, highlighting differences in position between the up and down states of INF2 with Dia1 in the middle.

Supplementary Video 2

Proposed hand-over-hand mechanism of F-actin severing by INF2. The video shows cryo-EM maps and models of proposed steps of the severing mechanism (see also Fig. 2 in main text).

Supplementary Video 3

Structures of INF2 and Dia1 at the barbed end. Comparison of the structures of INF2 and Dia1 at the barbed end, highlighting differences in position between their FH2s.

Supplementary Video 4

Proposed LERA F-actin elongation mechanism by formins. The video shows cryo-EM maps and models of proposed steps of the elongation mechanism (see also Fig. 3 in main text).

Peer Review File

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palmer, N.J., Barrie, K.R. & Dominguez, R. Mechanisms of actin filament severing and elongation by formins. Nature 632, 437–442 (2024). https://doi.org/10.1038/s41586-024-07637-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-024-07637-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing