Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Observation of vortices in a dipolar supersolid

Abstract

Supersolids are states of matter that spontaneously break two continuous symmetries: translational invariance owing to the appearance of a crystal structure and phase invariance owing to phase locking of single-particle wavefunctions, responsible for superfluid phenomena. Although originally predicted to be present in solid helium1,2,3,4,5, ultracold quantum gases provided a first platform to observe supersolids6,7,8,9,10, with particular success coming from dipolar atoms8,9,10,11,12. Phase locking in dipolar supersolids has been investigated through, for example, measurements of the phase coherence8,9,10 and gapless Goldstone modes13, but quantized vortices, a hydrodynamic fingerprint of superfluidity, have not yet been observed. Here, with the prerequisite pieces at our disposal, namely a method to generate vortices in dipolar gases14,15 and supersolids with two-dimensional crystalline order11,16,17, we report on the theoretical investigation and experimental observation of vortices in the supersolid phase (SSP). Our work reveals a fundamental difference in vortex seeding dynamics between unmodulated and modulated quantum fluids. This opens the door to study the hydrodynamic properties of exotic quantum systems with numerous spontaneously broken symmetries, in disparate domains such as quantum crystals and neutron stars18.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Simulation of vortex nucleation in a supersolid and unmodulated BEC.
Fig. 2: Magnetostirring of a 164Dy dipolar supersolid.
Fig. 3: Vortex nucleation in a dipolar supersolid and BEC.
Fig. 4: TOF interference pattern.

Similar content being viewed by others

Data availability

Data pertaining to this work can be found at https://doi.org/10.5281/zenodo.10695943 (ref. 72). Source data are provided with this paper.

Code availability

The codes that support the findings of this study are available from the corresponding author on reasonable request.

References

  1. Gross, E. P. Unified theory of interacting bosons. Phys. Rev. 106, 161 (1957).

    ADS  CAS  Google Scholar 

  2. Gross, E. P. Classical theory of boson wave fields. Ann. Phys. 4, 57–74 (1958).

    ADS  MathSciNet  Google Scholar 

  3. Andreev, A. F. & Lifshitz, I. M. Quantum theory of defects in crystals. J. Exp. Theor. Phys. 56, 2057–2068 (1969).

    CAS  Google Scholar 

  4. Chester, G. V. Speculations on Bose-Einstein condensation and quantum crystals. Phys. Rev. A 2, 256–258 (1970).

    ADS  Google Scholar 

  5. Leggett, A. J. Can a solid be “superfluid”? Phys. Rev. Lett. 25, 1543 (1970).

    ADS  CAS  Google Scholar 

  6. Li, J.-R. et al. A stripe phase with supersolid properties in spin–orbit-coupled Bose–Einstein condensates. Nature 543, 91–94 (2017).

    ADS  CAS  PubMed  Google Scholar 

  7. Léonard, J., Morales, A., Zupancic, P., Esslinger, T. & Donner, T. Supersolid formation in a quantum gas breaking a continuous translational symmetry. Nature 543, 87–90 (2017).

    ADS  PubMed  Google Scholar 

  8. Böttcher, F. et al. Transient supersolid properties in an array of dipolar quantum droplets. Phys. Rev. X 9, 011051 (2019).

    Google Scholar 

  9. Tanzi, L. et al. Observation of a dipolar quantum gas with metastable supersolid properties. Phys. Rev. Lett. 122, 130405 (2019).

    ADS  CAS  PubMed  Google Scholar 

  10. Chomaz, L. et al. Long-lived and transient supersolid behaviors in dipolar quantum gases. Phys. Rev. X 9, 021012 (2019).

    CAS  Google Scholar 

  11. Norcia, M. A. et al. Two-dimensional supersolidity in a dipolar quantum gas. Nature 596, 357–361 (2021).

    ADS  CAS  PubMed  Google Scholar 

  12. Chomaz, L. et al. Dipolar physics: a review of experiments with magnetic quantum gases. Rep. Prog. Phys 86, 026401 (2022).

    ADS  Google Scholar 

  13. Guo, M. et al. The low-energy Goldstone mode in a trapped dipolar supersolid. Nature 564, 386–389 (2019).

    ADS  Google Scholar 

  14. Klaus, L. et al. Observation of vortices and vortex stripes in a dipolar condensate. Nat. Phys. 18, 1453–1458 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Bland, T., Lamporesi, G., Mark, M. J. & Ferlaino, F. Vortices in dipolar Bose–Einstein condensates. C. R. Phys. 24, 133–152 (2023).

    Google Scholar 

  16. Norcia, M. A. et al. Can angular oscillations probe superfluidity in dipolar supersolids? Phys. Rev. Lett. 129, 040403 (2022).

    ADS  CAS  PubMed  Google Scholar 

  17. Bland, T. et al. Two-dimensional supersolid formation in dipolar condensates. Phys. Rev. Lett. 128, 195302 (2022).

    ADS  CAS  PubMed  Google Scholar 

  18. Poli, E. et al. Glitches in rotating supersolids. Phys. Rev. Lett. 131, 223401 (2023).

    ADS  CAS  PubMed  Google Scholar 

  19. Onsager, L. Discussion on a paper by C. J. Gorter. Nuovo Cimento Suppl. 6, 249–250 (1949).

    MathSciNet  Google Scholar 

  20. Feynman, R. P. in Progress in Low Temperature Physics (ed. Gorter, C. J.) 17–53 (Elsevier, 1955).

  21. Yarmchuk, E., Gordon, M. & Packard, R. Observation of stationary vortex arrays in rotating superfluid helium. Phys. Rev. Lett. 43, 214 (1979).

    ADS  CAS  Google Scholar 

  22. Bewley, G. P., Lathrop, D. P. & Sreenivasan, K. R. Visualization of quantized vortices. Nature 441, 588 (2006).

    ADS  CAS  PubMed  Google Scholar 

  23. Abo-Shaeer, J. R., Raman, C., Vogels, J. M. & Ketterle, W. Observation of vortex lattices in Bose-Einstein condensates. Science 292, 476–479 (2001).

    ADS  CAS  PubMed  Google Scholar 

  24. Zwierlein, M. W., Abo-Shaeer, J. R., Schirotzek, A., Schunck, C. H. & Ketterle, W. Vortices and superfluidity in a strongly interacting Fermi gas. Nature 435, 1047–1051 (2005).

    ADS  CAS  PubMed  Google Scholar 

  25. Lagoudakis, K. G. et al. Quantized vortices in an exciton–polariton condensate. Nat. Phys. 4, 706–710 (2008).

    CAS  Google Scholar 

  26. Wells, F. S., Pan, A. V., Wang, X. R., Fedoseev, S. A. & Hilgenkamp, H. Analysis of low-field isotropic vortex glass containing vortex groups in YBa2Cu3O7−x thin films visualized by scanning SQUID microscopy. Sci. Rep. 5, 8677 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Embon, L. et al. Imaging of super-fast dynamics and flow instabilities of superconducting vortices. Nat. Commun. 8, 85 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hamidian, M. et al. Detection of a Cooper-pair density wave in Bi2Sr2CaCu2O8+x. Nature 532, 343–347 (2016).

    ADS  CAS  PubMed  Google Scholar 

  29. Nyéki, J. et al. Intertwined superfluid and density wave order in two-dimensional 4He. Nat. Phys. 13, 455–459 (2017).

    Google Scholar 

  30. Levitin, L. V. et al. Evidence for a spatially modulated superfluid phase of 3He under confinement. Phys. Rev. Lett. 122, 085301 (2019).

    ADS  CAS  PubMed  Google Scholar 

  31. Agterberg, D. F. et al. The physics of pair-density waves: cuprate superconductors and beyond. Annu. Rev. Condens. Matter Phys. 11, 231–270 (2020).

    ADS  CAS  Google Scholar 

  32. Liu, Y. et al. Pair density wave state in a monolayer high-Tc iron-based superconductor. Nature 618, 934–939 (2023).

    ADS  CAS  PubMed  Google Scholar 

  33. Maragò, O. M. et al. Observation of the scissors mode and evidence for superfluidity of a trapped Bose-Einstein condensed gas. Phys. Rev. Lett. 84, 2056 (2000).

    ADS  PubMed  Google Scholar 

  34. Tanzi, L. et al. Evidence of superfluidity in a dipolar supersolid from nonclassical rotational inertia. Science 371, 1162–1165 (2021).

    ADS  MathSciNet  CAS  PubMed  Google Scholar 

  35. Roccuzzo, S., Recati, A. & Stringari, S. Moment of inertia and dynamical rotational response of a supersolid dipolar gas. Phys. Rev. A 105, 023316 (2022).

    ADS  CAS  Google Scholar 

  36. Gallemí, A., Roccuzzo, S., Stringari, S. & Recati, A. Quantized vortices in dipolar supersolid Bose-Einstein-condensed gases. Phys. Rev. A 102, 023322 (2020).

    ADS  Google Scholar 

  37. Roccuzzo, S., Gallemí, A., Recati, A. & Stringari, S. Rotating a supersolid dipolar gas. Phys. Rev. Lett. 124, 045702 (2020).

    ADS  CAS  PubMed  Google Scholar 

  38. Henkel, N., Cinti, F., Jain, P., Pupillo, G. & Pohl, T. Supersolid vortex crystals in Rydberg-dressed Bose-Einstein condensates. Phys. Rev. Lett. 108, 265301 (2012).

    ADS  CAS  PubMed  Google Scholar 

  39. Ancilotto, F., Barranco, M., Pi, M. & Reatto, L. Vortex properties in the extended supersolid phase of dipolar Bose-Einstein condensates. Phys. Rev. A 103, 033314 (2021).

    ADS  CAS  Google Scholar 

  40. Matsushita, T. Flux Pinning in Superconductors (Springer, 2014).

  41. Prasad, S. B., Bland, T., Mulkerin, B. C., Parker, N. G. & Martin, A. M. Vortex lattice formation in dipolar Bose-Einstein condensates via rotation of the polarization. Phys. Rev. A 100, 023625 (2019).

    ADS  CAS  Google Scholar 

  42. Stuhler, J. et al. Observation of dipole-dipole interaction in a degenerate quantum gas. Phys. Rev. Lett. 95, 150406 (2005).

    ADS  CAS  PubMed  Google Scholar 

  43. Wächtler, F. & Santos, L. Quantum filaments in dipolar Bose-Einstein condensates. Phys. Rev. A 93, 061603 (2016).

    ADS  Google Scholar 

  44. Ferrier-Barbut, I., Kadau, H., Schmitt, M., Wenzel, M. & Pfau, T. Observation of quantum droplets in a strongly dipolar Bose gas. Phys. Rev. Lett. 116, 215301 (2016).

    ADS  PubMed  Google Scholar 

  45. Chomaz, L. et al. Quantum-fluctuation-driven crossover from a dilute Bose-Einstein condensate to a macrodroplet in a dipolar quantum fluid. Phys. Rev. X 6, 041039 (2016).

    Google Scholar 

  46. Bisset, R. N., Wilson, R. M., Baillie, D. & Blakie, P. B. Ground-state phase diagram of a dipolar condensate with quantum fluctuations. Phys. Rev. A 94, 033619 (2016).

    ADS  Google Scholar 

  47. Recati, A., Zambelli, F. & Stringari, S. Overcritical rotation of a trapped Bose-Einstein condensate. Phys. Rev. Lett. 86, 377 (2001).

    ADS  CAS  PubMed  Google Scholar 

  48. Sinha, S. & Castin, Y. Dynamic instability of a rotating Bose-Einstein condensate. Phys. Rev. Lett. 87, 190402 (2001).

    ADS  CAS  PubMed  Google Scholar 

  49. Madison, K. W., Chevy, F., Bretin, V. & Dalibard, J. Stationary states of a rotating Bose-Einstein condensate: routes to vortex nucleation. Phys. Rev. Lett. 86, 4443 (2001).

    ADS  CAS  PubMed  Google Scholar 

  50. van Bijnen, R. M., O’Dell, D. H., Parker, N. G. & Martin, A. Dynamical instability of a rotating dipolar Bose-Einstein condensate. Phys. Rev. Lett. 98, 150401 (2007).

    PubMed  Google Scholar 

  51. Sohmen, M. et al. Birth, life, and death of a dipolar supersolid. Phys. Rev. Lett. 126, 233401 (2021).

    ADS  CAS  PubMed  Google Scholar 

  52. Matthews, M. R. et al. Vortices in a Bose-Einstein condensate. Phys. Rev. Lett. 83, 2498 (1999).

    ADS  CAS  Google Scholar 

  53. Madison, K. W., Chevy, F., Wohlleben, W. & Dalibard, J. Vortex formation in a stirred Bose-Einstein condensate. Phys. Rev. Lett. 84, 806 (2000).

    ADS  CAS  PubMed  Google Scholar 

  54. Šindik, M., Recati, A., Roccuzzo, S. M., Santos, L. & Stringari, S. Creation and robustness of quantized vortices in a dipolar supersolid when crossing the superfluid-to-supersolid transition. Phys. Rev. A 106, L061303 (2022).

    ADS  Google Scholar 

  55. Poli, E. et al. Maintaining supersolidity in one and two dimensions. Phys. Rev. A 104, 063307 (2021).

    ADS  CAS  Google Scholar 

  56. Pomeau, Y. & Rica, S. Dynamics of a model of supersolid. Phys. Rev. Lett. 72, 2426 (1994).

    ADS  CAS  PubMed  Google Scholar 

  57. Blatter, G., Feigel’man, M. V., Geshkenbein, V. B., Larkin, A. I. & Vinokur, V. M. Vortices in high-temperature superconductors. Rev. Mod. Phys. 66, 1125 (1994).

    ADS  CAS  Google Scholar 

  58. Kwok, W.-K. et al. Vortices in high-performance high-temperature superconductors. Rep. Prog. Phys. 79, 116501 (2016).

    ADS  PubMed  Google Scholar 

  59. Chamel, N. Neutron conduction in the inner crust of a neutron star in the framework of the band theory of solids. Phys. Rev. C 85, 035801 (2012).

    ADS  Google Scholar 

  60. Tang, Y., Sykes, A., Burdick, N. Q., Bohn, J. L. & Lev, B. L. s-wave scattering lengths of the strongly dipolar bosons 162Dy and 164Dy. Phys. Rev. A 92, 022703 (2015).

    ADS  Google Scholar 

  61. Maier, T. et al. Broad universal Feshbach resonances in the chaotic spectrum of dysprosium atoms. Phys. Rev. A 92, 060702 (2015).

    ADS  Google Scholar 

  62. Tang, Y. et al. Anisotropic expansion of a thermal dipolar Bose gas. Phys. Rev. Lett. 117, 155301 (2016).

    ADS  CAS  PubMed  Google Scholar 

  63. Lima, A. R. P. & Pelster, A. Quantum fluctuations in dipolar Bose gases. Phys. Rev. A 84, 041604 (2011).

    ADS  Google Scholar 

  64. Blakie, P., Bradley, A., Davis, M., Ballagh, R. & Gardiner, C. Dynamics and statistical mechanics of ultra-cold Bose gases using c-field techniques. Adv. Phys. 57, 363–455 (2008).

    ADS  CAS  Google Scholar 

  65. Cidrim, A., dos Santos, F. E., Henn, E. A. & Macrì, T. Vortices in self-bound dipolar droplets. Phys. Rev. A 98, 023618 (2018).

    ADS  CAS  Google Scholar 

  66. Lee, A.-C., Baillie, D., Bisset, R. N. & Blakie, P. B. Excitations of a vortex line in an elongated dipolar condensate. Phys. Rev. A 98, 063620 (2018).

    ADS  CAS  Google Scholar 

  67. Lee, A.-C., Baillie, D. & Blakie, P. B. Numerical calculation of dipolar-quantum-droplet stationary states. Phys. Rev. Res. 3, 013283 (2021).

    CAS  Google Scholar 

  68. Li, G. et al. Strongly anisotropic vortices in dipolar quantum droplets. Phys. Rev. Lett. 133, 053804 (2024).

    MathSciNet  CAS  PubMed  Google Scholar 

  69. Scherer, D. R., Weiler, C. N., Neely, T. W. & Anderson, B. P. Vortex formation by merging of multiple trapped Bose-Einstein condensates. Phys. Rev. Lett. 98, 110402 (2007).

    ADS  PubMed  Google Scholar 

  70. Stringari, S. & Pitaevskii, L. Bose-Einstein Condensation and Superfluidity (Oxford Univ. Press, 2016).

  71. Powell, M. J. D. An efficient method for finding the minimum of a function of several variables without calculating derivatives. Comput. J. 7, 155–162 (1964).

    MathSciNet  Google Scholar 

  72. Casotti, E. et al. Data from “Observation of vortices in a dipolar supersolid”. Zenodo https://doi.org/10.5281/zenodo.10695943 (2024).

Download references

Acknowledgements

We are indebted to J. Dalibard for inspiring discussions on the interference pattern of supersolids in the presence of a vortex. We thank W. Ketterle, S. Stringari, A. Recati and G. Lamporesi for discussions. This work was supported by the European Research Council through the Advanced Grant DyMETEr (no. 101054500), the QuantERA grant MAQS by the Austrian Science Fund (FWF) (no. I4391-N), a joint project grant from the Austrian Science Fund (FWF) (no. I-4426), a NextGenerationEU grant AQuSIM by the Austrian Research Promotion Agency (FFG) (no. FO999896041) and by the Austrian Science Fund (FWF) Cluster of Excellence quantA (10.55776/COE1). A.L. acknowledges financial support through the Disruptive Innovation – Early Career Seed Money grant by the Austrian Science Fund (FWF) and Austrian Academy of Sciences (ÖAW). E.P. acknowledges support by the Austrian Science Fund (FWF) within the DK-ALM (no. W1259-N27). T.B. acknowledges financial support through an ESQ Discovery grant by the Austrian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Contributions

E.C., L.K., A.L., C.U., C.P., M.J.M. and F.F. performed the experimental work and data analysis. E.P. and T.B. performed the theoretical work. All authors contributed to the interpretation of the results and the preparation of the manuscript.

Corresponding author

Correspondence to Francesca Ferlaino.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Mehmet Özgür Oktel and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Loss spectrum of 164Dy.

The spectrum is obtained from horizontal absorption imaging by varying the magnetic field at which the evaporative cooling (T ≈ 500 nK) is conducted, with a step size of 20 mG. The magnetic-field values used are highlighted in red (SSP) and green (BEC). Error bars represent the standard error.

Extended Data Fig. 2 Ground-state phase diagram obtained by varying the atom number and the scattering length.

The results are obtained from eGPE calculations with (ω, ωz) = 2π × [50, 103] Hz. The identified phases are: BEC, SS (supersolid), SD (single droplet) and ID (isolated droplets). On the sides are exemplar ground states extracted from the phase diagram.

Extended Data Fig. 3 Vortex nucleation in a dipolar BEC and supersolid for different parameters.

Vortex nucleation in a dipolar BEC (a) and in a supersolid (b) for different atom number and different scattering length as. c, Vortex nucleation for initial noise with different temperatures. All of the results are obtained from eGPE calculations with (ω, ωz) = 2π × [50, 103] Hz, magnetic-field angle from the z axis θ = 30° and three-body recombination losses are included.

Extended Data Fig. 4 Phase-coherence measurement of the initial four-droplet state before rotation, after 36-ms TOF.

The lower (right) figure shows the horizontal (vertical) integrated density. The modulation and central interference peak are present on single images (grey lines) and remain after averaging over 173 images (black line).

Extended Data Fig. 5 Vortex number and expectation value of the angular momentum.

Left, vortex number after 1 s of rotation. Right, expectation value of the angular-momentum operator also after 1 s of rotation. The other parameters are the same as in Fig. 1.

Extended Data Fig. 6 TOF predictions from the Gaussian toy model.

Longer TOF density profiles for the solution shown in Fig. 4. The inset of the first figure shows the initial condition for all states. After 10 ms, the density pattern has frozen into the momentum distribution of the initial cloud. The grey lines show the axis centre (0, 0), highlighting the immediate difference between a no-vortex and vortex expansion from the central density.

Extended Data Fig. 7 Comparison of different vortex-detection methods applied to the theoretical data.

Each point is obtained by applying the experimental vortex-detection algorithm to the states of Fig. 3 and averaging over time. For the SSP, the scattering length is ramped from as = 93a0 to as = 104a0 in 1 ms and the state is expanded for 3 ms, before applying the algorithm. The results are shown for different sizes of Gaussian filter σ and compared with the standard method of counting the 2π phase windings (black line) and the experimental data, in green (red) for the BEC (SSP). The shaded area indicates the error on the mean.

Extended Data Fig. 8 Image processing for the detection of vortices.

Each row indicates different rotation frequency and duration parameters (indicated on the left), for which images are taken following an interaction quench from the supersolid to unmodulated BEC phase. Each column is a step of the processing protocol that proceeds as follows. The data (column 1) are normalized and denoised with a Gaussian filter of size σ = 1 (column 2) and a sharpening mask is applied to magnify the presence of vortices (column 3). The reference image is built from the data image, in which all density variations are eliminated with a Gaussian filter of size σ = 3 (column 4). The residuals (column 5) are obtained from the subtraction of the data to the reference, converting the density depletions to a positive signal. The vortices (black circles) are detected with a peak-detection algorithm with threshold 0.38. The last column shows the location of the vortices on the original image data. Varying the threshold value modifies the absolute vortex count of each individual image but not the overall qualitative result (see Extended Data Fig. 9).

Extended Data Fig. 9 Experimental vortex detection as a function of the threshold parameter.

Normalized vortex occurrence integrated over 1 s of rotation in the BEC phase (a) and in the SSP (b) as a function of the rotation frequency, for varying contrast threshold between 0.34 and 0.42 (see Extended Data Fig. 8). The shaded areas indicate the error on the mean, that is, the standard deviation divided by the square root of the number of points (8). The solid lines are guides to the eye. The results of the eGPE simulations (see Fig. 3) are plotted in thick solid lines as a comparison.

Extended Data Fig. 10 Probability of detecting a vortex as a function of the rotation frequency.

a, Cumulative distribution function obtained from the calculated sum squared differences over the whole dataset, 83 images per frequency, with each of the vortex (solid line) and vortex-free (dashed line) references (see inset images). b, With a defined threshold X (dashed-dotted lines in a) on the cumulative distribution function. Each image is assigned to a category: vortex (red empty circles), vortex-free (blue filled circles) or no classification (grey filled circles). c, Probability of detecting a vortex signal and vortex-free signal out of the selected images in b. The error bars indicate the Clopper–Pearson uncertainty associated with image classification. Top and bottom rows show the classification result for respective thresholds 0.15 and 0.30 on the cumulative distribution function, showing the independence of the signal from the threshold.

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casotti, E., Poli, E., Klaus, L. et al. Observation of vortices in a dipolar supersolid. Nature 635, 327–331 (2024). https://doi.org/10.1038/s41586-024-08149-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-024-08149-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing