Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A cation-exchange approach to tunable magnetic intercalation superlattices

Abstract

Tailoring magnetic ordering in solid-state materials is essential for emerging spintronics1,2. However, substitutional lattice doping in magnetic semiconductors is often constrained by the low solubility of magnetic elements3,4,5, limiting the maximum achievable doping concentration (for example, less than 5%) and ferromagnetic ordering temperature6. The intercalation of magnetic elements in layered two-dimensional atomic crystals (2DACs) without breaking in-plane covalent bonds offers an alternative approach to incorporate a much higher concentration of magnetic atoms (for example, up to 50%) beyond the typical solubility limit. However, commonly used chemical and electrochemical intercalation methods are largely confined to a few isolated examples so far. Here we report a general two-step intercalation and cation-exchange strategy to produce a library of highly ordered magnetic intercalation superlattices (MISLs) with tunable magnetic ordering. Monovalent transition-metal cations Cu+ and Ag+, divalent magnetic cations Mn2+, Fe2+, Co2+ and Ni2+, and trivalent rare-earth cations Eu3+ and Gd3+ have been successfully incorporated into group-VIB 2DACs, including MoS2, MoSe2, MoTe2, WS2, WSe2 and WTe2, and group-IVB, -VB, -IIIA, -IVA and -VA 2DACs, including TiS2, NbS2, NbSe2, TaS2, In2Se3, SnSe2, Bi2Se3 and Bi2Te3. We show that these MISLs can be prepared with tunable concentrations of magnetic intercalants, enabling tailored magnetic ordering across a diverse array of functional 2DACs, including semiconductors, topological insulators, and superconductors. This work establishes a versatile material platform for both fundamental investigations and spintronics applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic illustration of the Li intercalation and cation-exchange process to produce a library of MISLs.
Fig. 2: Characterization of the cation-exchange process.
Fig. 3: Atomistic structural analyses of Co1/2MoS2 superlattice.
Fig. 4: A library of MISLs.
Fig. 5: Tunable magnetic ordering in MISLs.

Similar content being viewed by others

Data availability

The original data files that support the findings of this study are available on the figshare public database at https://doi.org/10.6084/m9.figshare.28908146 (ref. 50) and from X.D. upon request.

References

  1. Picozzi, S. Engineering ferromagnetism. Nat. Mater. 3, 349–350 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Ohno, H. A window on the future of spintronics. Nat. Mater. 9, 952–954 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Ohno, H. Making nonmagnetic semiconductors ferromagnetic. Science 281, 951–956 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Ohno, Y. et al. Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature 402, 790–792 (1999).

    Article  ADS  CAS  Google Scholar 

  5. Csontos, M. et al. Pressure-induced ferromagnetism in (In,Mn)Sb dilute magnetic semiconductor. Nat. Mater. 4, 447–449 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Dietl, T. A ten-year perspective on dilute magnetic semiconductors and oxides. Nat. Mater. 9, 965–974 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Deng, H. et al. High-temperature quantum anomalous Hall regime in a MnBi2Te4/Bi2Te3 superlattice. Nat. Phys. 17, 36–42 (2021).

    Article  CAS  Google Scholar 

  8. Yi, D. et al. Emergent electric field control of phase transformation in oxide superlattices. Nat. Commun. 11, 902 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu, S. et al. Two-dimensional ferromagnetic superlattices. Natl Sci. Rev. 7, 745–754 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Ren, H., Wan, Z. & Duan, X. Van der Waals superlattices. Natl Sci. Rev. 9, nwab166 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wan, Z., Qian, Q., Huang, Y. & Duan, X. Layered hybrid superlattices as designable quantum solids. Nature 635, 49–60 (2024).

    Article  CAS  PubMed  Google Scholar 

  12. Li, Z. et al. Molecule-confined engineering toward superconductivity and ferromagnetism in two-dimensional superlattice. J. Am. Chem. Soc. 139, 16398–16404 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Husremović, S. et al. Hard ferromagnetism down to the thinnest limit of iron-intercalated tantalum disulfide. J. Am. Chem. Soc. 144, 12167–12176 (2022).

    Article  PubMed  Google Scholar 

  14. Wang, C. et al. Monolayer atomic crystal molecular superlattices. Nature 555, 231–236 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Whittingham, M. S. & Gamble, F. R. The lithium intercalates of the transition metal dichalcogenides. Mater. Res. Bull. 10, 363–371 (1975).

    Article  CAS  Google Scholar 

  16. Zheng, J. et al. High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide. Nat. Commun. 5, 2995 (2014).

    Article  ADS  PubMed  Google Scholar 

  17. Qian, Q. et al. Chiral molecular intercalation superlattices. Nature 606, 902–908 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Li, Z. et al. Imprinting ferromagnetism and superconductivity in single atomic layers of molecular superlattices. Adv. Mater. 32, 1907645 (2020).

    Article  CAS  Google Scholar 

  19. Koski, K. J. et al. Chemical intercalation of zerovalent metals into 2D layered Bi2Se3 nanoribbons. J. Am. Chem. Soc. 134, 13773–13779 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Gong, Y. et al. Spatially controlled doping of two-dimensional SnS2 through intercalation for electronics. Nat. Nanotechnol. 13, 294–299 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Ren, H. et al. Precision control of amphoteric doping in CuxBi2Se3 nanoplates. Precis. Chem. 2, 421–427 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zeng, Z. et al. An effective method for the fabrication of few-layer-thick inorganic nanosheets. Angew. Chem. Int. Ed. 51, 9052–9056 (2012).

    Article  CAS  Google Scholar 

  23. Lin, Z. et al. Solution-processable 2D semiconductors for high-performance large-area electronics. Nature 562, 254–258 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. He, Q. et al. In situ probing molecular intercalation in two-dimensional layered semiconductors. Nano Lett. 19, 6819–6826 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Wang, G. et al. Revisiting the structural evolution of MoS2 during alkali metal (Li, Na, and K) intercalation. ACS Appl. Energy Mater. 4, 14180–14190 (2021).

    Article  CAS  Google Scholar 

  26. Acerce, M., Voiry, D. & Chhowalla, M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotechnol. 10, 313–318 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Guo, Y. et al. Probing the dynamics of the metallic-to-semiconducting structural phase transformation in MoS2 crystals. Nano Lett. 15, 5081–5088 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Molina-Sánchez, A. & Wirtz, L. Phonons in single-layer and few-layer MoS2 and WS2. Phys. Rev. B 84, 155413 (2011).

    Article  ADS  Google Scholar 

  29. Zou, J., Li, F., Bissett, M. A., Kim, F. & Hardwick, L. J. Intercalation behaviour of Li and Na into 3-layer and multilayer MoS2 flakes. Electrochim. Acta 331, 135284 (2020).

    Article  CAS  Google Scholar 

  30. Li, H. et al. From bulk to monolayer MoS2: evolution of Raman scattering. Adv. Funct. Mater. 22, 1385–1390 (2012).

    Article  ADS  CAS  Google Scholar 

  31. Zhu, L. et al. Investigation of CoS2-based thin films as model catalysts for the oxygen reduction reaction. J. Catal. 258, 235–242 (2008).

    Article  CAS  Google Scholar 

  32. Kappera, R. et al. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 13, 1128–1134 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Flory, M. A., McLamarrah, S. K. & Ziurys, L. M. High-resolution spectroscopy of CoS (X4Δi): examining 3d transition-metal sulfide bonds. J. Chem. Phys. 123, 164312 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Yu, Z. X. et al. The structure of the CoS2 (100)-(1×1) surface. J. Condens. Matter Phys. 19, 156223 (2007).

    Article  ADS  Google Scholar 

  35. Luo, Y. et al. Two-dimensional MoS2 confined Co(OH)2 electrocatalysts for hydrogen evolution in alkaline electrolytes. ACS Nano 12, 4565–4573 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Schlapp, R. & Penney, W. G. Influence of crystalline fields on the susceptibilities of salts of paramagnetic ions. II. The iron group, especially Ni, Cr and Co. Phys. Rev. 42, 666–686 (1932).

    Article  ADS  CAS  Google Scholar 

  37. Greaney, M., Huan, G., Ramanujachary, K. V., Teweldemedhin, Z. & Greenblatt, M. Antiferro-to-ferromagnetic transition in metallic TlCo2SxSe2−x (0 ≤ x ≤ 2.0) with the ThCr2Si2 type structure. Solid State Commun. 79, 803–810 (1991).

    Article  ADS  CAS  Google Scholar 

  38. Griffith, J. S. & Orgel, L. E. Ligand-field theory. Q. Rev. Chem. Soc. 11, 381–393 (1957).

    Article  CAS  Google Scholar 

  39. Deng, W. et al. Constructing matched sub-nanometric cobalt clusters with multiple oxidation and metallic states for efficient propane dehydrogenation. Commun. Mater. 5, 215 (2024).

    Article  CAS  Google Scholar 

  40. Ko, K. T. et al. RKKY ferromagnetism with Ising-like spin states in intercalated Fe1/4TaS2. Phys. Rev. Lett. 107, 247201 (2011).

    Article  ADS  PubMed  Google Scholar 

  41. Ruderman, M. A. & Kittel, C. Indirect exchange coupling of nuclear magnetic moments by conduction electrons. Phys. Rev. 96, 99–102 (1954).

    Article  ADS  CAS  Google Scholar 

  42. Yosida, K. Magnetic properties of Cu–Mn alloys. Phys. Rev. 106, 893–898 (1957).

    Article  ADS  Google Scholar 

  43. Priour, D. J. & Das Sarma, S. Phase diagram of the disordered RKKY model in dilute magnetic semiconductors. Phys. Rev. Lett. 97, 127201 (2006).

    Article  ADS  PubMed  Google Scholar 

  44. Lei, S. et al. High mobility in a van der Waals layered antiferromagnetic metal. Sci. Adv. 6, eaay6407 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mugiraneza, S. & Hallas, A. M. Tutorial: a beginner’s guide to interpreting magnetic susceptibility data with the Curie-Weiss law. Commun. Phys. 5, 95 (2022).

    Article  Google Scholar 

  46. Xie, L. S., Husremović, S., Gonzalez, O., Craig, I. M. & Bediako, D. K. Structure and magnetism of iron- and chromium-intercalated niobium and tantalum disulfides. J. Am. Chem. Soc. 144, 9525–9542 (2022).

    Article  CAS  PubMed  Google Scholar 

  47. Pfleiderer, C. et al. Coexistence of superconductivity and ferromagnetism in the d-band metal ZrZn2. Nature 412, 58–61 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Shermadini, Z. et al. Coexistence of magnetism and superconductivity in the iron-based compound Cs0.8(FeSe0.98)2. Phys. Rev. Lett. 106, 117602 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Rahmanian, E. et al. 1T-phase tungsten chalcogenides (WS2, WSe2, WTe2) decorated with TiO2 nanoplatelets with enhanced electron transfer activity for biosensing applications. ACS Appl. Nano Mater. 1, 7006–7015 (2018).

    Article  CAS  Google Scholar 

  50. Zhou, J., Zhou. J. & Duan, X. Replication data for: A cation-exchange approach to tunable magnetic intercalation superlattices. figshare https://doi.org/10.6084/m9.figshare.28908146 (2025).

Download references

Acknowledgements

We acknowledge discussions and support from S. Zheng and C. Zhang on structural analysis. We thank N. Bodzin for the support with the focused-ion-beam sample preparations. We are grateful for the support from the Office of Naval Research through grant number N00014-22-1-2631. We acknowledge the Electron Imaging Center for NanoMachines (EICN) at California NanoSystem Institute (CNSI) and Nanoelectronic Research Facility (NRF) at UCLA for technical support. The cross-sectional STEM experiments were partly conducted using facilities and instrumentation at the UC Irvine Materials Research Institute (IMRI), which is supported in part by the National Science Foundation through the UC Irvine Materials Research Science and Engineering Center (DMR-2011967). W.F. and Y.P. acknowledge the support by NSF through the University of Wisconsin Materials Research Science and Engineering Center (DMR-2309000). Z.S. was supported by the ERC-CZ programme (project LL2101) and by project LUAUS23049 from the Ministry of Education Youth and Sports and by large infrastructure from project registration number CZ.02.1.01/0.0/0.0/15_003/0000444 financed by the European Funding for Regional Development (EFRR).

Author information

Authors and Affiliations

Authors

Contributions

X.D. and Y.H. conceived of the research. Jingxuan Zhou and Jingyuan Zhou designed the experiments, developed the cation-exchange procedure, performed material characterizations and analysed the data together. Z.W., Q.Q. and H.R. contributed to the discussions and data analysis. X.Y. and X.P. contributed STEM characterizations. B.Z. performed Raman measurement and data analysis A.Z. performed XPS measurements. W.F. and Y.P. contributed to discussion and data analysis in theoretical modelling. Z.S. provided TaS2, TiS2, NbS2, NbSe2, SnSe2, WTe2, WS2 and MoTe2 crystals. Y.H. and X.D. supervised the research. Jingxuan Zhou, Jingyuan Zhou and X.D. co-wrote the paper with input from all the authors. All authors discussed the results and commented on the paper.

Corresponding authors

Correspondence to Yu Huang or Xiangfeng Duan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Yongji Gong, Su-Yang Xu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Additional characterizations of Li-intercalation/cation-exchange process.

a, XRD of unprotected LiMoS2, protected LiMoS2, and Co1/2MoS2. The LiMoS2 without hermetic sealing exhibited a significantly expanded interlayer spacing of 11.6 Å, likely due to the formation of Li(H2O)xMoS2 or (LiOH)xMoS2 upon exposure to environmental moisture. b, Zoom-in Raman spectra of pristine MoS2, LiMoS2 and Co1/2MoS2 superlattice. c, EDS mapping of Co, Mo, and S in Co1/2MoS2 nanosheets confirming the homogeneous distribution of Co atoms in Co1/2MoS2 superlattice. Scale bar, 500 nm.

Extended Data Fig. 2 Structural model and structural analyses of Co1/2MoS2 superlattice.

a,b,c, Proposed Co1/2MoS2 supercell (1×2×1) (a), schematic structure along [001] direction (b) and [110] direction (c). d,e, Experimental SAED (d) and simulated SAED patterns (e) from the proposed structural model of Co1/2MoSsuperlattice, exhibiting consistent diffraction patterns with some intensity deviation. Scale bars: 5 nm–1; f, Simulated SAED of Co1/2MoS2 superlattice with 5% vacancies in Co sublattice gives highly consistent diffraction patterns. Scale bar, 5 nm–1. g,k, HAADF-STEM images of Li-exfoliated MoS2 and Co1/2MoS2 superlattice, respectively. Scale bars, 1 nm. h,l, Simulated HAADF-STEM images of Li-exfoliated MoS2 and Co1/2MoS2 superlattice, respectively. Scale bars, 1 nm. i,m, Cross-sectional HAADF-STEM images of few layers Li-exfoliated MoS2 and Co1/2MoS2 superlattice. Scale bars, 1 nm. j,n, Simulated cross-sectional STEM images of few layers MoS2 and Co1/2MoS2 superlattice. Scale bars, 1 nm. It is noted that that XPS studies suggest a partial restoration of 2H-phase in Co1/2MoS2 superlattice, thus, identification of other possible local structural configurations will be an interesting topic in future studies. Green, Mo; yellow, S; red, Co.

Extended Data Fig. 3 Supplementary atomistic structural analyses of Co1/2MoS2 superlattice.

a-f, In-plane HAADF-STEM images of additional Co1/2MoS2 superlattice samples. Scale bars, 1 nm. g-i, Cross-sectional HAADF-STEM images of additional Co1/2MoS2 superlattice samples. Scale bars, 1 nm.

Extended Data Fig. 4 Photographs of cation-exchange intercalation in other 2DACs.

a, LiMoSe2 and CoxMoSe2 soaked in water. b, LiMoTe2 and CoxMoTe2 soaked in water. c, LiWS2 and CoxWS2 soaked in water. d, LiWSe2 and CoxWSe2 soaked in water. e, LiWTe2 and CoxWTe2 soaked in water. f, LiIn2Se3 and CoxIn2Se3 soaked in water. g, LiSnSe2 and CoxSnSe2 soaked in water. h, LiBi2Se3 and CoxBi2Se3 soaked in water. Li-intercalated materials react strongly with water, causing significant hydrogen bubble formation and rapid exfoliation. In contrast, Co-exchanged materials remain stable in water, indicating their distinct chemical reactivities and visually confirming the successful replacement of Li+ with Co2+.

Extended Data Fig. 5 Structural analyses of RE+-intercalated superlattices.

Cross-sectional HAADF-STEM images and corresponding structural models of Eu1/3MoS2 superlattice along (a,b) “zigzag” direction and (c,d) “armchair” direction. Cross-sectional HAADF-STEM images of Eu1/3MoS2 superlattice revealed that the Eu cations are centered within the vdW gap, occupying the octahedral interstitial sites, which is consistent with the larger ionic radius of Eu3+ (95 pm) compared to Co2+ (75 pm) and Li+ (76 pm). Scale bars, 0.5 nm. e,f, Cross-sectional HADDF-STEM images of GdxNbSe2 superlattice (e) and EuxWTe2 superlattice (f). Scale bars, 0.5 nm. Blue, Mo; yellow, S; red, Eu.

Extended Data Fig. 6 Temperature dependent magnetic properties of Co1/2MoS2 superlattice.

a, Temperature dependent (2–400 K) M-H loops of Co1/2MoS2 superlattice under magnetic field Hab. b, Temperature dependent (2–1000 K) M-H of Co1/2MoS2 superlattice under magnetic field H//ab. The inset zoom-in plots show persistent hysteresis as high temperature. c, Coercivity Hc vs temperature of Co1/2MoS2 superlattice, magnetic field Hab. d, M-H loops of Co1/2MoS2 superlattice powder before and after exposure in ambient conditions (~25 °C, ~30–60% humidity) for two months, exhibiting nearly the same magnetic properties with little change. e, M-H loops of CoxMoS2 superlattices with different Co2+ concentrations at room temperature (under magnetic field Hab).

Extended Data Fig. 7 Comparison of metallic Co0.5MoS2 and semiconducting Co0.16MoS2 with lower Co concentration.

a,b, XPS spectra of Mo 3d in Co0.5MoS2 and Co0.16MoS2, demonstrating partial 1T-phase transition in Co1/2MoS2 (a) and preservation of 2H-phase in Co0.16MoS2 (b). The Co concentration was controlled by reducing the initial Li-intercalation concentration. c,d, PL spectra of Co0.5MoS2 and Co0.16MoS2 nanoflakes before (black) and after (red) Li-intercalation/cation-exchange process. In comparison with notable PL degradation (due to 1T-phase transition) in Co0.5MoS2, little PL degradation is observed in Co0.16MoS2, confirming the preservation of 2H-semiconducting phase. Inset of d shows the OM image of Co0.16MoS2 flake and corresponding PL intensity mapping at 680 nm. e,f, Corresponding M-H loops of Co0.5MoS2 and Co0.16MoS2 at 300 K, respectively. The S-shaped M-H curve confirms ferromagnetic ordering in Co0.16MoS2 at 300 K.

Extended Data Fig. 8 Ferromagnetic and antiferromagnetic characteristics of CoxMoS2 with variable Co concentrations.

a, Magnetic hysteresis (M-H) curves of CoxMoS2 with different Co concentrations at 300 K. b, Temperature-dependent magnetic susceptibility measurement of CoxMoS2 with various Co concentration. In Co0.03MoS2 and Co0.05MoS2, the sharp turning around 5 K (Neel temperature) manifests an antiferromagnetic ground state of CoxMoS2 with diluted Co concentrations.

Extended Data Fig. 9 Magnetization measurements (M-H loops) of MoS2 intercalated with different magnetic cations.

a, MnxMoS2. b, FexMoS2. c, NixMoS2. d, EuxMoS2. e, GdxMoS2.

Extended Data Fig. 10 Magnetization measurements of Co-intercalated 2DACs.

a-k, Magnetic hysteresis (M-H) loops of CoxMoSe2 (a), CoxMoTe2 (b), CoxWSe2 (c), CoxWTe2 (d), CoxTiS2 (e), CoxNbS2 (f), CoxTaS2 (g), CoxSnSe2 (h), CoxBi2Se3 (i), CoxBi2Te3 (j), and CoxGraphite (k).

Supplementary information

Supplementary Information

Supplementary Tables 1–4 and References.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Zhou, J., Wan, Z. et al. A cation-exchange approach to tunable magnetic intercalation superlattices. Nature 643, 683–690 (2025). https://doi.org/10.1038/s41586-025-09147-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-025-09147-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing