Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spatiotemporal faunal connectivity across global sea floors

Abstract

Our knowledge of biogeographic patterns and processes in the deep sea has been limited by the lack of integrated datasets that cover its vast extent1. Here we analyse a new global dataset of genomic DNA sequences, spanning an entire taxonomic class of benthic invertebrates (Ophiuroidea), to obtain a broad understanding of phylogenetic divergence and biotic movement across all oceans, from coastal margins down to the abyssal plains. We show that regional faunas on the continental shelf are phylogenetically divergent, particularly at temperate and tropical latitudes. By contrast, assemblages in the deep sea are much more connected. Many temperate deep-sea lineages have achieved distribution ranges across the planet, including over the Quaternary period. A close relationship exists between deep-sea faunas of the northern Atlantic and, on the opposite side of the globe, southern Australia. Bathymetric interchange is not only reliant on vertical migration through isothermal polar waters but also occurs across the thermal depth gradients of tropical regions. The connected nature of deep-sea life should be an important consideration in marine conservation assessments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Map of sample sites and phylogeny of the Ophiuroidea.
Fig. 2: Multidimensional scaling ordination showing evolutionary relationships between marine region-depth biomes.
Fig. 3: Relationships of biomes.
Fig. 4: The number of lineage transitions between marine biomes.

Similar content being viewed by others

Data availability

All data necessary to repeat the analyses described here are available at Dryad (https://doi.org/10.5061/dryad.xsj3tx9rh)9.

Code availability

All codes necessary to repeat the analyses described here are available at Dryad (https://doi.org/10.5061/dryad.xsj3tx9rh)9.

References

  1. Costello, M. J. et al. Marine biogeographic realms and species endemicity. Nat. Commun. 8, 1057 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Victorero, L. et al. Global benthic biogeographical regions and macroecological drivers for ophiuroids. Ecography 2023, e06627 (2023).

    Article  Google Scholar 

  3. Woolley, S. N. C. et al. Deep-sea diversity patterns are shaped by energy availability. Nature 533, 393–396 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Rabosky, D. L. et al. An inverse latitudinal gradient in speciation rate for marine fishes. Nature 559, 392–395 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. O’Hara, T. D., Hugall, A. F., Woolley, S. N. C., Bribiesca-Contreras, G. & Bax, N. J. Contrasting processes drive ophiuroid phylodiversity across shallow and deep seafloors. Nature 565, 636–639 (2019).

    Article  PubMed  Google Scholar 

  6. Vermeij, G. J. When biotas meet: understanding biotic interchange. Science 253, 1099–1104 (1991).

    Article  CAS  PubMed  Google Scholar 

  7. McClain, C. R. & Hardy, S. M. The dynamics of biogeographic ranges in the deep-sea. Proc. Roy. Soc. B 277, 3533–3546 (2010).

    Article  Google Scholar 

  8. Taylor, M. L. & Roterman, C. N. Invertebrate population genetics across Earth’s largest habitat: the deep-sea floor. Mol. Ecol. 26, 4872–4896 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. O’Hara, T. & Hugall, A. Global seafloor connectivity over evolutionary time. Dryad https://doi.org/10.5061/dryad.xsj3tx9rh (2025).

  10. Stöhr, S., O’Hara, T. D. & Thuy, B. Global diversity of brittle stars (Echinodermata: Ophiuroidea). PLoS ONE 7, e31940 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  11. O’Hara, T. D., Hugall, A. F., Thuy, B. & Moussalli, A. Phylogenomic resolution of the Class Ophiuroidea unlocks a global microfossil record. Curr. Biol. 24, 1874–1879 (2014).

    Article  PubMed  Google Scholar 

  12. O’Hara, T. D., Thuy, B. & Hugall, A. F. Relict from the Jurassic: new family of brittle-stars from a New Caledonian seamount. Proc. Roy. Soc. B 288, 20210684 (2021).

    Article  Google Scholar 

  13. O’Hara, T. D., Hugall, A. F., Thuy, B., Stöhr, S. & Martynov, A. V. Restructuring higher taxonomy using broad-scale phylogenomics: the living Ophiuroidea. Mol. Phylogenet. Evol. 107, 415–430 (2017).

    Article  PubMed  Google Scholar 

  14. Friedman, S. T. & Muñoz, M. M. A latitudinal gradient of deep-sea invasions for marine fishes. Nat. Commun. 14, 773 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mironov, A. N., Dilman, A. & Kylova, E. M. Global distribution patterns of genera occurring in the Arctic Ocean deeper 2000 m. Invertebr. Zool. 10, 167–194 (2013).

    Article  Google Scholar 

  16. Thuy, B. et al. Ancient origin of the modern deep-sea fauna. PLoS ONE 7, e46913 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Crame, J. A. & McGowan, A. J. Origin of the tropical–polar biodiversity contrast. Glob. Ecol. Biogeogr. 31, 1207–1227 (2022).

    Article  Google Scholar 

  18. Bluhm, B. A. et al. Diversity of the Arctic deep-sea benthos. Mar. Biodivers. 41, 87–107 (2011).

    Article  Google Scholar 

  19. Bribiesca-Contreras, G., Verbruggen, H., Hugall, A. F. & O’Hara, T. D. The importance of offshore origination revealed through ophiuroid phylogenomics. Proc. Roy. Soc. B 284, 20170160 (2017).

    Article  Google Scholar 

  20. Brown, A. & Thatje, S. Explaining bathymetric diversity patterns in marine benthic invertebrates and demersal fishes: physiological contributions to adaptation of life at depth. Biol. Rev. Camb. Philos. Soc. 89, 406–426 (2014).

    Article  PubMed  Google Scholar 

  21. Bribiesca-Contreras, G., Verbruggen, H., Hugall, A. F. & O’Hara, T. D. Spatio-temporal patterns of tropical shallow-water brittle stars. J. Biogeogr. 46, 1287–1299 (2019).

    Article  Google Scholar 

  22. Vermeij, G. J. Anatomy of an invasion: the trans-Arctic interchange. Paleobiology 17, 281–307 (1991).

    Article  Google Scholar 

  23. Tierney, J. E. et al. Glacial cooling and climate sensitivity revisited. Nature 584, 569–573 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Karstensen, J., Stramma, L. & Visbeck, M. Oxygen minimum zones in the eastern tropical Atlantic and Pacific oceans. Prog. Oceanogr. 77, 331–350 (2008).

    Article  Google Scholar 

  25. Khon, V. C., Hoogakker, B. A. A., Schneider, B., Segschneider, J. & Park, W. Effect of an open Central American Seaway on ocean circulation and the oxygen minimum zone in the tropical Pacific from model simulations. Geophys. Res. Lett. 50, e2023GL103728 (2023).

    Article  CAS  Google Scholar 

  26. O’Hara, T. D., England, P. R., Gunasekera, R. & Naughton, K. M. Limited phylogeographic structure for five bathyal ophiuroids at continental scales. Deep Sea Res. I 84, 18–28 (2014).

    Article  Google Scholar 

  27. O’Hara, T. D. & Thuy, B. Biogeography and taxonomy of Ophiuroidea (Echinodermata) from the Îles Saint-Paul and Amsterdam in the southern Indian Ocean. Zootaxa 5124, 1–49 (2022).

    Article  Google Scholar 

  28. Branch, T. A. A review of orange roughy Hoplostethus atlanticus fisheries, estimation methods, biology and stock structure. S. Afr. J. Mar. Sci. 23, 181–203 (2001).

    Article  Google Scholar 

  29. Tong, R. et al. Environmental drivers and the distribution of cold-water corals in the global ocean. Front. Mar. Sci. https://doi.org/10.3389/fmars.2023.1217851 (2023).

  30. Henry, L.-A. et al. Global ocean conveyor lowers extinction risk in the deep sea. Deep Sea Res. I 88, 8–16 (2014).

    Article  CAS  Google Scholar 

  31. Gubili, C. et al. Species diversity in the cryptic abyssal holothurian Psychropotes longicauda (Echinodermata). Deep Sea Res. II 137, 288–296 (2017).

    Article  Google Scholar 

  32. Meißner, K., Schwentner, M., Götting, M., Knebelsberger, T. & Fiege, D. Polychaetes distributed across oceans—examples of widely recorded species from abyssal depths of the Atlantic and Pacific Oceans. Zool. J. Linn. Soc. 199, 906–944 (2023).

    Article  Google Scholar 

  33. Kaiser, S. et al. Diversity, distribution and composition of abyssal benthic Isopoda in a region proposed for deep-seafloor mining of polymetallic nodules: a synthesis. Mar. Biodivers. 53, 30 (2023).

    Article  Google Scholar 

  34. Meckler, A. N. et al. Cenozoic evolution of deep ocean temperature from clumped isotope thermometry. Science 377, 86–90 (2022).

    Article  CAS  PubMed  Google Scholar 

  35. Auderset, A. et al. Enhanced ocean oxygenation during Cenozoic warm periods. Nature 609, 77–82 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Christodoulou, M., O’Hara, T. D., Hugall, A. F. & Arbizu, P. M. Dark ophiuroid biodiversity in a prospective abyssal mine field. Curr. Biol. 29, 3909–3912 (2019).

    Article  CAS  PubMed  Google Scholar 

  37. Christodoulou, M. et al. Unexpected high abyssal ophiuroid diversity in polymetallic nodule fields of the northeast Pacific Ocean and implications for conservation. Biogeosciences 17, 1845–1876 (2020).

    Article  CAS  Google Scholar 

  38. Young, C. M., Sewell, M. A., Tyler, P. A. & Metaxas, A. Biogeographic and bathymetric ranges of Atlantic deep-sea echinoderms and ascidians: the role of larval dispersal. Biodivers. Conserv. 6, 1507–1522 (1997).

    Article  Google Scholar 

  39. Ricklefs, R. E. A comprehensive framework for global patterns in biodiversity. Ecol. Lett. 7, 1–15 (2004).

    Article  Google Scholar 

  40. Ree, R. H., Webb, C. O. & Donoghue, M. J. A likelihood framework for inferring the evolution of geographic range on phylogenetic trees. Evolution 59, 2299–2311 (2005).

    PubMed  Google Scholar 

  41. Goldberg, E. E., Lancaster, L. T. & Ree, R. H. Phylogenetic inference of reciprocal effects between geographic range evolution and diversification. Syst. Biol. 60, 451–465 (2011).

    Article  PubMed  Google Scholar 

  42. Landis, M. J., Matzke, N. J., Moore, B. R. & Huelsenbeck, J. P. Bayesian analysis of biogeography when the number of areas is large. Syst. Biol. 62, 789–804 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lewis, P. O. A likelihood approach to estimating phylogeny from discrete morphological character data. Syst. Biol. 50, 913–925 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Vermeij, G. J. et al. The temperate marine Peruvian Province: how history accounts for its unusual biota. Ecol. Evol. 14, e70048 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hollyman, P. R. et al. Bioregionalization of the South Sandwich Islands through community analysis of bathyal fish and invertebrate assemblages using fishery-derived data. Deep Sea Res. II 198, 105054 (2022).

    Article  Google Scholar 

  46. Hugall, A. F., O’Hara, T. D., Hunjan, S., Nilsen, R. & Moussalli, A. An exon-capture system for the entire class Ophiuroidea. Mol. Biol. Evol. 33, 281–294 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. Parey, E. et al. The brittle star genome illuminates the genetic basis of animal appendage regeneration. Nat. Ecol. Evol. 8, 1505–1521 https://doi.org/10.1038/s41559-024-02456-y (2024).

  48. Stamatakis, A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Kozlov, A. M., Darriba, D., Flouri, T., Morel, B. & Stamatakis, A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35, 4453–4455 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Smith, S. A. & O’Meara, B. C. treePL: divergence time estimation using penalized likelihood for large phylogenies. Bioinformatics 28, 2689–2690 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Drummond, A. J. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Title, P. O. et al. The macroevolutionary singularity of snakes. Science 383, 918–923 (2024).

    Article  CAS  PubMed  Google Scholar 

  53. Henríquez-Piskulich, P., Hugall, A. F. & Stuart-Fox, D. A supermatrix phylogeny of the world’s bees (Hymenoptera: Anthophila). Mol. Phylogenet. Evol. 190, 107963 (2024).

    Article  PubMed  Google Scholar 

  54. FitzJohn, R. G. Diversitree: comparative phylogenetic analyses of diversification in R. Methods Ecol. Evol. 3, 1084–1092 (2012).

    Article  Google Scholar 

  55. Sanmartín, I. & Meseguer, A. S. Extinction in phylogenetics and biogeography: from timetrees to patterns of biotic assemblage. Front. Genet. 7, 35 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

    Article  Google Scholar 

  58. Morlon, H. et al. RPANDA: an R package for macroevolutionary analyses on phylogenetic trees. Methods Ecol. Evol. 7, 589–597 (2016).

    Article  Google Scholar 

  59. Stadler, T. Simulating trees with a fixed number of extant species. Syst. Biol. 60, 676–684 (2011).

    Article  PubMed  Google Scholar 

  60. Mazet, N., Morlon, H., Fabre, P.-H. & Condamine, F. L. Estimating clade-specific diversification rates and palaeodiversity dynamics from reconstructed phylogenies. Methods Ecol. Evol. 14, 2575–2591 (2023).

    Article  Google Scholar 

  61. Louca, S. & Pennell, M. W. Why extinction estimates from extant phylogenies are so often zero. Curr. Biol. 31, 3168–3173 (2021).

    Article  CAS  PubMed  Google Scholar 

  62. Louca, S. & Doebeli, M. Efficient comparative phylogenetics on large trees. Bioinformatics 34, 1053–1055 (2017).

    Article  Google Scholar 

  63. Swenson, N. G. Phylogenetic beta diversity metrics, trait evolution and inferring the functional beta diversity of communities. PLoS ONE 6, e21264 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tucker, C. M. et al. A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biol. Rev. Camb. Philos. Soc. 92, 698–715 (2017).

    Article  PubMed  Google Scholar 

  65. Oksanen, J. et al. vegan: Community Ecology Package. R package v.2.5-6 (CRAN, 2019).

  66. Ivan, J. et al. Temperature predicts the rate of molecular evolution in Australian Eugongylinae skinks. Evolution 76, 252–261 (2022).

    Article  CAS  PubMed  Google Scholar 

  67. Orton, M. G., May, J. A., Ly, W., Lee, D. J. & Adamowicz, S. J. Is molecular evolution faster in the tropics? Heredity 122, 513–524 (2019).

    Article  CAS  PubMed  Google Scholar 

  68. Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).

  69. Beaulieu, J. M. & O’Meara, B. C. Detecting hidden diversification shifts in models of trait dependent speciation and extinction. Syst. Biol. 65, 583–601 (2016).

    Article  PubMed  Google Scholar 

  70. Gu, Z., Gu, L., Eils, R., Schlesner, M. & Brors, B. circlize implements and enhances circular visualization in R. Bioinformatics 30, 2811–2812 (2014).

    Article  CAS  PubMed  Google Scholar 

  71. GEBCO Bathymetric Compilation Group 2019. The GEBCO_2019 Grid – a continuous terrain model of the global oceans and land. British Oceanographic Data Centre https://doi.org/10.5285/836f016a-33be-6ddc-e053-6c86abc0788e (2019).

  72. Boyer, T. P. et al. World Ocean Atlas 2018. Temperature, Salinity and Dissolved Oxygen. (NOAA National Centers for Environmental Information, accessed 22 May 2020); www.ncei.noaa.gov/archive/accession/NCEI-WOA18.

Download references

Acknowledgements

CSIRO Marine National Facility provided sea time and personnel on the RV Investigator for the voyages IN2017_V03, IN2021_V04 and IN2022_V08. K. Naughton and C. Keely (Museums Victoria) assisted with DNA extractions. We acknowledge the numerous museum collection managers, researchers and voyage funders that enabled the collection of ophiuroid specimens included in this study9 and philanthropic support to Museums Victoria Research Institute.

Author information

Authors and Affiliations

Authors

Contributions

T.D.O’H., A.F.H. and A.M. designed the research T.D.O’H., A.F.H., M.L.H., A.A.-T.W., A.E., M.I.B., M.E., T.F., J.A.K., P.M.A., S.M., J.M.O., G.P., F.R., S.S., C.J.S., J.S. and F.A.S.-M. assembled the data. T.D.O’H., A.F.H. and M.L.H. performed the sequence bioinformatics and macro-evolutionary analyses. All authors contributed to interpretation and discussion of results. T.D.O’H. drafted the paper with substantial input from other authors.

Corresponding author

Correspondence to Timothy D. O’Hara.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Jacquomo Monk and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Biome diversity known from taxonomy and as sampled by our phylogenetic tree.

Undescribed species determined by T O’Hara (unpublished). Phylogenetic Diversity (PD) of each biome is expressed as a percentage of the total tree branch length (53,849 Myr). Each column is coloured separately with reds indicating high values, yellows medium and greens low.

Extended Data Fig. 2 Heat maps of geometric mean of unique nearest neighbour (GUNN) ages between biomes (lower left, the distance values used to create the MDS ordination in Fig. 2) and decisive cladogenetic biome transitions from CorHMM ER model (upper right, used to create the chord diagram in Fig. 3).

Mean between biome GUNN and sum of count of biome transitions within and between depth layers is shelf-shelf (83 Myr, 186 transitions), bathyal-bathyal (46, 403), abyss-abyss (40, 23), shelf-bathyal (83, 201), shelf-abyss (137, 0), bathyal-abyss (84, 33). If polar biomes are excluded, the mean GUNN of shelf-shelf relationships is 69 Myr. If comparisons are limited to only the 7 abyssal regions, shelf-shelf is 79 Myr and bathyal-bathyal 33 Myr. AN=Antarctic, AR=Arctic, AU = S Australia, EA = E Atlantic, EP = E Pacific, IN=Indian, IP=Indo-Pacific, NA = N Atlantic, NEP = NE Pacific, NWP = NW Pacific, NZ=New Zealand, SA = S Africa, SK=Kerguelen, SM = S America, WA = W Atlantic; S=Shelf, B=Bathyal, A=Abyssal.

Extended Data Fig. 3 Schematic of methodology to calculate GUNN (geometric mean of unique nearest neighbour ages) distance measures and resulting ordination (e.g., Fig. 2).

This hypothetical example uses an ultrametric chronogram of 9 samples (1–9) spread across 3 biomes (A, B, C). Step 1 is to identify all the Most Recent Common Ancestor nodes that span nearest-neighbour samples from each pair of biomes (bidirectionally). Step 2 is to reduce this list to the unique nodes. We interpret these nodes as representing unique biome-biome transitions (i.e., connectivity). Step 3 is to average the ages of each set of unique nodes, in this example using the geometric mean (geomean), to produce GUNN measures for each biome pair. Step 4 is to ordinate a triangular matrix of these GUNN measures.

Extended Data Fig. 4 Chord diagrams with number of lineage transitions between marine biomes stratified into temporal bands.

Transitions are counted as decisive cladogenetic events on the phylogeny that result in daughter lineages living in different biomes. Ancestral reconstruction of marginal likelihoods derived from an equal rates unordered Markov-k model of biome evolution. (a-b) Models with samples grouped into 37 bathy-regional biomes (Fig. 1). (c-d) Models with samples grouped into 9 depth (shelf, bathyal, abyss) and latitude (tropical, temperate, polar) categories.

Extended Data Fig. 5 Latitude-depth transects of annual sea-water temperature and dissolved oxygen.

(a) East Pacific, (b) West Atlantic, (c) East Atlantic, (d) West Pacific transects. Transects shown in lower right inset map. Values derived from the World Ocean Atlas (WOA) 2018. Temperature averaged across longitudes into latitude-depth bins based on WOA categories.

Extended Data Fig. 6 Location of our 1415 exons across the 20 assembled chromosomes of the Amphiura filiformis genome.

Exons of a target-capture sample of A. filiformis mapped by amino-acid matching against the genome (NCBI: Afil_fr2py GCA_039555335.1 Amphiura filiformis FM-2023a 46).

Extended Data Fig. 7 The influence of temperature and depth.

(a) Ultrametric phylogeny of the Ophiuroidea with depth and sea temperature where each sample was found (n = 2699) displayed as coloured rings (27 equal-sized categories, root=265 my). (b-e) Influence of site substitution rate variation aggregated at 3 organisational scales. (b) Phylogenetic Generalized Least Squares (PGLS) analysis showing a weak relationship between sample root-to-tip site substitution path length (RTTPL) from RAxML phylogram and temperature (df=2039, p = 1.4e-4, adjusted R2 = 0.018). (c) Regression showing a non-significant relationship between mean RTTPL per biome and mean age of the tip branch on our ultrametric chronogram per biome (df=35, p = 0.6), with point labels indicating A=abyssal, B=bathyal and S=shelf biomes. (d) A 2-factor multiple regression of biome means (df=34, linear regression t-tests, adjusted R2 = 0.62) showing a positive relationship of tip age and temperature, but a negative one with RTTPL. (e) Mean sample values aggregated into depth layers showing that the range of mean tip ages is far greater than for RTTPL or the smoothing rate applied to the tip branches.

Extended Data Fig. 8 Sampling and lineages through time plots.

(a) Mean (line), 75% (dark fill) and 95% (light fill) quantiles of 110, 65, and 30 Ma lineages sampled per number of tips on the tree, tip accumulation randomised 100 times. Additional sampling has led to few additional 110 Ma (family-level) lineages. (b) Lineage through time (LTT) plots for the species-level trees of Class Ophiuroidea and the 6 extant taxonomic Orders, along with Ophiuroidea birth-death simulations (n = 100) and model-fit net diversification. X-axis truncated to 220 Ma.

Extended Data Fig. 9 MDS reliability tests.

The MDS pattern in Fig. 2 (using all nodes in our phylogeny and the geomean statistic) is largely robust to the statistic phylogeny or procedure used, including: (a) mean, (b) median or (c) harmonic mean; temporal selection of input nodes: (d) restricted to <=65 Ma or (e) > 3 and <=65 Ma; (f) the mean of 100 jackknifed (90% without replacement) datasets (see methods for details); (g) addition of dummy samples to reflect the known distribution of species across biomes, and (h) the use of a non-ultrametric (RAxML v8.1.20) phylogeny with branch lengths based on site substitution rates (rather than ages). The position of the Arctic bathyal biome is labile reflecting its varying relationship to Arctic shelf and Eastern Atlantic bathyal biomes. The temperate shelf biomes are notably more dispersed when older nodes are excluded (d, e) or down-weighted (c).

Extended Data Fig. 10 Comparison of tested CorHMM models and node marginal likelihoods of final ER model.

(a) ER = Equal rates, ARD = all rates, SYM = symmetrical rates, ARD-2 and SYM-2 reduce the number of rates to be estimated by excluding transitions that tended to zero in the SYM model, ARD-3 (the final model) further reduces the number of rates estimated by excluding transitions that tended to zero in the ARD-2 model. The reported model in each case was the model with the highest Log Likelihood from 10 starts. (b) Decisive (ML > 0.67) marginal states (biomes) from the ER model, mapped onto edges on the phylogeny (root = 265 Ma). The majority (99%) of decisive edges date from less than 65 Ma.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Hara, T.D., Hugall, A.F., Haines, M.L. et al. Spatiotemporal faunal connectivity across global sea floors. Nature 645, 423–428 (2025). https://doi.org/10.1038/s41586-025-09307-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-025-09307-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing