Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Experimental demonstration of logical magic state distillation

Abstract

Realizing universal fault-tolerant quantum computation is a key goal in quantum information science1,2,3,4. By encoding quantum information into logical qubits using quantum error correcting codes, physical errors can be detected and corrected, enabling a substantial reduction in logical error rates5,6,7,8,9,10,11. However, the set of logical operations that can be easily implemented on these encoded qubits is often constrained1,12, necessitating the use of special resource states known as ‘magic states’13 to implement universal, classically hard circuits14. A key method to prepare high-fidelity magic states is to perform ‘distillation’, creating them from multiple lower-fidelity inputs13,15. Here we present the experimental realization of magic state distillation with logical qubits on a neutral-atom quantum computer. Our approach uses a dynamically reconfigurable architecture8,16 to encode and perform quantum operations on many logical qubits in parallel. We demonstrate the distillation of magic states encoded in d = 3 and d = 5 colour codes, observing improvements in the logical fidelity of the output magic states compared with the input logical magic states. These experiments demonstrate a key building block of universal fault-tolerant quantum computation and represent an important step towards large-scale logical quantum processors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Logical MSD factory.
Fig. 2: Parallel logical encoding of arbitrary states.
Fig. 3: The 5-to-1 MSD.
Fig. 4: Scaling of distillation as a function of data code distance.

Similar content being viewed by others

Data availability

Peer reviewer reports are available. All data supporting the findings of this study are available from Zenodo at https://doi.org/10.1038/s41586-025-09367-3 (ref. 75).

References

  1. Shor, P. W. Fault-tolerant quantum computation. In Proc. 37th IEEE Symposium on the Foundations of Computer Science 56–65 (IEEE, 1996).

  2. Aharonov, D. & Ben-Or, M. Fault-tolerant quantum computation with constant error rate. SIAM J. Comput. 38, 1207–1282 (2008).

    Article  MathSciNet  Google Scholar 

  3. Gottesman, D. An introduction to quantum error correction and fault-tolerant quantum computation. Preprint at https://doi.org/10.48550/arXiv.0904.2557 (2010).

  4. Campbell, E. T., Terhal, B. M., & Vuillot, C. Roads towards fault-tolerant universal quantum computation. Nature 549, 172–179 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Google Quantum AI and Collaborators. Quantum error correction below the surface code threshold. Nature 638, 920–926 (2025).

    Article  ADS  CAS  Google Scholar 

  6. Google Quantum AI. Suppressing quantum errors by scaling a surface code logical qubit. Nature 614, 676–681 (2023).

    Article  ADS  CAS  Google Scholar 

  7. Ryan-Anderson, C. et al. Implementing fault-tolerant entangling gates on the five-qubit code and the color code. Preprint at https://doi.org/10.48550/arXiv.2208.01863 (2022).

  8. Bluvstein, D. et al. Logical quantum processor based on reconfigurable atom arrays. Nature 626, 58–65 (2024).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Putterman, H. et al. Hardware-efficient quantum error correction using concatenated bosonic qubits. Nature 638, 927–934 (2025)

  10. Sivak, V. V. et al. Real-time quantum error correction beyond break-even. Nature 616, 50–55 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Paetznick, A. et al. Demonstration of logical qubits and repeated error correction with better-than-physical error rates. Preprint at https://doi.org/10.48550/arXiv.2404.02280 (2024).

  12. Eastin, B. & Knill, E. Restrictions on transversal encoded quantum Gate Sets. Phys. Rev. Lett. 102, 110502 (2009).

    Article  ADS  PubMed  Google Scholar 

  13. Bravyi, S. & Kitaev, A. Universal quantum computation with ideal Clifford gates and noisy ancillas. Phys. Rev. A 71, 022316 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  14. Gottesman, D. The Heisenberg representation of quantum computers. In Proc. XXII International Colloquium on Group Theoretical Methods in Physics (eds Corney, S. P. et al.) 32–43 (International Press, 1999)

  15. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2010).

  16. Bluvstein, D. et al. A quantum processor based on coherent transport of entangled atom arrays. Nature 604, 451–456 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bravyi, S. & Koenig, R. Classification of topologically protected gates for local stabilizer codes. Phys. Rev. Lett. 110, 170503 (2012).

    Article  Google Scholar 

  18. Fowler, A. G., Mariantoni, M., Martinis, J. M. & Cleland, A. N. Surface codes: towards practical large-scale quantum computation. Phys. Rev. A 86, 032324 (2012).

    Article  ADS  Google Scholar 

  19. Bombin, H. & Martin-Delgado, M. A. Topological quantum distillation. Phys. Rev. Lett. 97, 180501 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Litinski, D. Magic state distillation: not as costly as you think. Quantum 3, 205 (2019).

    Article  Google Scholar 

  21. Gidney, C. & Fowler, A. G. Efficient magic state factories with a catalyzed |CCZ to 2|T transformation. Quantum 3, 135 (2019).

    Article  Google Scholar 

  22. O’Gorman, J. & Campbell, E. T. Quantum computation with realistic magic-state factories. Phys. Rev. A 95, 032338 (2017).

    Article  ADS  Google Scholar 

  23. Souza, A. M., Zhang, J., Ryan, C. A. & Laflamme, R. Experimental magic state distillation for fault-tolerant quantum computing. Nat. Commun. 2, 169 (2011).

    Article  ADS  PubMed  Google Scholar 

  24. Brown, N. C. et al. Advances in compilation for quantum hardware — a demonstration of magic state distillation and repeat-until-success protocols. Preprint at https://doi.org/10.48550/arXiv.2310.12106 (2023).

  25. Postler, L. et al. Demonstration of fault-tolerant universal quantum gate operations. Nature 605, 675–680 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Ye, Y. et al. Logical magic state preparation with fidelity beyond the distillation threshold on a superconducting quantum processor. Phys. Rev. Lett. 131, 210603 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Gupta, R. S. et al. Encoding a magic state with beyond break-even fidelity. Nature 625, 259–263 (2024).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chamberland, C. & Cross, A. W. Fault-tolerant magic state preparation with flag qubits. Quantum 3, 143 (2019).

    Article  Google Scholar 

  29. Gidney, C., Shutty, N. & Jones, C. Magic state cultivation: growing T states as cheap as CNOT gates. Preprint at https://doi.org/10.48550/arXiv.2409.17595 (2024).

  30. Daguerre, L. & Kim, I. H. Code switching revisited: low-overhead magic state preparation using color codes. Phys. Rev. Research 7, 023080 (2025).

  31. Cain, M. et al. Correlated decoding of logical algorithms with transversal gates. Phys. Rev. Lett. 133, 240602 (2024).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  32. Chao, R. & Reichardt, B. W. Fault-tolerant quantum computation with few qubits. npj Quantum Inf. 4, 42 (2018).

    Article  ADS  Google Scholar 

  33. Kim, Y., Sevior, M. & Usman, M. Magic state injection on IBM quantum processors above the distillation threshold. Preprint at https://doi.org/10.48550/arXiv.2412.01446 (2024).

  34. Laflamme, R., Miquel, C., Paz, J. P. & Zurek, W. H. Perfect quantum error correcting code. Phys. Rev. Lett. 77, 198–201 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Smith, S. C., Brown, B. J. & Bartlett, S. D. Mitigating errors in logical qubits. Commun. Phys. 7, 386 (2024).

    Article  Google Scholar 

  36. Bombín, H., Pant, M., Roberts, S. & Seetharam, K. I. Fault-tolerant post-selection for low overhead magic state preparation. PRX Quantum 5, 010302 (2024).

  37. Chao, R. & Reichardt, B. W. Quantum error correction with only two extra qubits. Phys. Rev. Lett. 121, 050502 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Ryan-Anderson, C. et al. Realization of real-time fault-tolerant quantum error correction. Phys. Rev. X 11, 041058 (2021).

    CAS  Google Scholar 

  39. Graham, T. M. et al. Midcircuit measurements on a single-species neutral alkali atom quantum processor. Phys. Rev. X 13, 041051 (2023).

    CAS  Google Scholar 

  40. Deist, E. et al. Mid-circuit cavity measurement in a neutral atom array. Phys. Rev. Lett. 129, 203602 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Singh, K. et al. Mid-circuit correction of correlated phase errors using an array of spectator qubits. Science 380, 1265–1269 (2023).

  42. Lis, J. W. et al. Midcircuit operations using the omg architecture in neutral atom arrays. Phys. Rev. X 13, 041035 (2023).

    CAS  Google Scholar 

  43. Norcia, M. A. et al. Midcircuit qubit measurement and rearrangement in a 171Yb atomic array. Phys. Rev. X 13, 041034 (2023).

    CAS  Google Scholar 

  44. Bombín, H. Gauge color codes: optimal transversal gates and gauge fixing in topological stabilizer codes. New J. Phys. 17, 083002 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  45. Kubica, A., Yoshida, B. & Pastawski, F. Unfolding the color code. New J. Phys. 17, 083026 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  46. Chamberland, C. & Noh, K. Very low overhead fault-tolerant magic state preparation using redundant ancilla encoding and flag qubits. npj Quantum Inf. 6, 91 (2020).

    Article  ADS  Google Scholar 

  47. Hirano, Y., Itogawa, T. & Fujii, K. Leveraging zero-level distillation to generate high-fidelity magic states. In IEEE International Conference on Quantum Computing and Engineering 843–853 (IEEE, 2024).

  48. Itogawa, T., Takada, Y., Hirano, Y. & Fujii, K. Even more efficient magic state distillation by zero-level distillation. PRX Quantum 6, 020356 (2025).

  49. Jones, C. Multilevel distillation of magic states for quantum computing. Phys. Rev. A 87, 042305 (2013).

    Article  ADS  Google Scholar 

  50. Barredo, D., de Léséleuc, S., Lahaye, T. & Browaeys, A. An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays. Science 354, 1021–1023 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  51. Endres, M. et al. Atom-by-atom assembly of defect-free one-dimensional cold atom arrays. Science 354, 1024–1027 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  52. Kim, H. et al. In situ single-atom array synthesis using dynamic holographic optical tweezers. Nat. Commun. 7, 13317 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ebadi, S. et al. Quantum phases of matter on a 256-atom programmable quantum simulator. Nature 595, 227–232 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  54. Levine, H. et al. Dispersive optical systems for scalable Raman driving of hyperfine qubits. Phys. Rev. A 105, 032618 (2022).

    Article  ADS  CAS  Google Scholar 

  55. Levine, H. et al. Parallel implementation of high-fidelity multiqubit gates with neutral atoms. Phys. Rev. Lett. 123, 170503 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  56. Evered, S. J. et al. High-fidelity parallel entangling gates on a neutral-atom quantum computer. Nature 622, 268–272 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ma, S. et al. High-fidelity gates and mid-circuit erasure conversion in an atomic qubit. Nature 622, 279–284 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  58. Jandura, S. & Pupillo, G. Time-optimal two- and three-qubit gates for Rydberg atoms. Quantum 6, 712 (2022).

    Article  Google Scholar 

  59. Scholl, P. et al. Erasure conversion in a high-fidelity Rydberg quantum simulator. Nature 622, 273–278 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  60. Emerson, J. et al. Scalable noise estimation with random unitary operators. J Opt. B Quantum Semiclassical Opt. 7, S347 (2005).

    Article  MathSciNet  Google Scholar 

  61. Goto, H. Minimizing resource overheads for fault-tolerant preparation of encoded states of the Steane code. Sci. Rep. 6, 19578 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mayer, K. et al. Benchmarking logical three-qubit quantum Fourier transform encoded in the Steane code on a trapped-ion quantum computer. Preprint at https://doi.org/10.48550/arXiv.2404.08616 (2024).

  63. Gottesman, D. E. Stabilizer Codes and Quantum Error Correction. PhD thesis, California Institute of Technology (1997).

  64. Cleve, R. & Gottesman, D. Efficient computations of encodings for quantum error correction. Physical Review A 56, 76–82 (1997).

    Article  ADS  CAS  Google Scholar 

  65. Gidney, C. Stim: a fast stabilizer circuit simulator. Quantum 5, 497 (2021).

    Article  Google Scholar 

  66. Bravyi, S. et al. Simulation of quantum circuits by low-rank stabilizer decompositions. Quantum 3, 181 (2019).

    Article  Google Scholar 

  67. Javadi-Abhari, A. et al. Quantum computing with Qiskit. Preprint at https://doi.org/10.48550/arXiv.2405.08810 (2024).

  68. Granade, C., Ferrie, C., & Flammia, S. T. Practical adaptive quantum tomography. New J. Phys. 19, 113017 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  69. Rice, J. A. Mathematical Statistics and Data Analysis, 3rd edn, Vol. 371 (Thomson Brooks/Cole, 2007).

  70. Schmied, R. Quantum state tomography of a single qubit: comparison of methods. J. Mod. Optics 63, 1744–1758 (2016).

    Article  ADS  Google Scholar 

  71. Gurobi Optimization. Gurobi Optimizer Reference Manual (Gurobi Optimization, 2024).

  72. Landahl, A. J., Anderson, J. T. & Rice, P. R. Fault-tolerant quantum computing with color codes. Preprint at https://doi.org/10.48550/arXiv.1108.5738 (2011).

  73. Meister, N., Pattison, C. A. & Preskill, J. Efficient soft-output decoders for the surface code. Preprint at https://doi.org/10.48550/arXiv.2405.07433 (2024).

  74. Gidney, C., Newman, M., Brooks, P. & Jones, C. Yoked surface codes. Nat. Commun. 16, 4498 (2025).

  75. QuEra Computing and collaborators. Data for “Experimental demonstration of logical magic state distillation”. Zenodo https://doi.org/10.1038/s41586-025-09367-3 (2025).

Download references

Acknowledgements

We acknowledge the discussions with L. Jiang, M. Kang, G. Masella, C. Pattison, A. Piñeiro Orioli, Q. Xu and M. Yuan and technical contributions from I. Paus, C. Skinker and Q. Yu. This work, including the design, assembly and operation of the Gemini-class neutral-atom quantum computer, was supported by QuEra Computing. Pathfinding work at Harvard and MIT was supported by IARPA and the Army Research Office, under the Entangled Logical Qubits program (cooperative agreement no. W911NF-23-2-0219), the DARPA ONISQ program (W911NF2010021), the DARPA MeasQuIT program (HR0011-24-9-0359), the Center for Ultracold Atoms (an NSF Physics Frontiers Center, PHY-1734011), the National Science Foundation (grant no. PHY-2012023 and grant no. CCF-2313084), the Army Research Office MURI (grant no. W911NF-20-1-0082) and QuEra Computing. Z.H. acknowledges support from the NSF Graduate Research Fellowship Program (grant no. 2141064). D.B. acknowledges support from the NSF Graduate Research Fellowship Program (grant no. DGE1745303) and The Fannie and John Hertz Foundation. S.J.E. acknowledges support from the National Defense Science and Engineering Graduate (NDSEG) fellowship. T. Manovitz acknowledges support from the Harvard Quantum Initiative Postdoctoral Fellowship in Science and Engineering. M.C. acknowledges support from the Department of Energy Computational Science Graduate Fellowship (award no. DE-SC0020347).

Author information

Authors and Affiliations

Authors

Contributions

The QuEra Computing staff designed, built and ran the experiment and performed data analysis. P.S.R., J.M.R., P.N.J., Z.H., C.D., C.Z., K.-H.W., J.C., K.B., M. Kwon, T. Karolyshyn, P.W., M.C., S.J.E., A.A.G., M. Kalinowski, S.H.L., T. Manovitz, J.A.-G., J.I.B., L.B., B.B., A.B., A.C., R.J.D., F.F., C.F., P.F., D.H., M. Hamdan, J.H., N.H., M.-G.H., F.H., N.J., D.K., M. Kornjač, F.L., J. Long, J. Lopatin, P.L.S.L., X.-Z.L., T. Macrì, O.M., L.A.M.-M., X.M., S.O., E.O., D.P., Z.Q., V.S., A.S., M.S., N.S., H.T., N.W., Y.W., D.W.-L., T.W., J.W., A.Z., L.Z., M.G., A.K., N.G., V.V., T. Kitagawa, S.-T.W., D.B., M.D.L., A.L., H.Z. and S.H.C. discussed the results, revised and contributed to the writing of this paper.

Corresponding authors

Correspondence to Hengyun Zhou or Sergio H. Cantú.

Ethics declarations

Competing interests

M.G., V.V. and M.D.L. are co-founders and shareholders of QuEra Computing. Authors affiliated with QuEra Computing are employees or interns at QuEra Computing at the time of their contributions.

Peer review

Peer review information

Nature thanks Michael Vasmer and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Experimental layout of magic state distillation factory.

a, We arrange 7 to 17 87Rb atoms, each corresponding to a physical qubit, into a row. This horizontal register represents a logical qubit, tiled into 5 rows for a total of five logical qubits (LQ1 to LQ5). b, Encoding. Once the register of physical qubits is prepared, we coherently rearrange atoms to perform two-qubit entangling gates using the Rydberg blockade mechanism. We break up the circuit into “layers” each containing one set of local rotations, transport, and CZ gates. c, Coherent movement of logical qubits to perform transversal CZ gates. In the case of 5-to-1 distillation, this is achieved in three layers. The circuit as drawn here corresponds 1 to 1 to the atom layout, whereas in Fig. 3 logical qubits LQ1 and LQ2 are swapped for clarity. d, Global measurement of qubits after circuit execution.

Extended Data Fig. 2 Experimental layout of d = 5 encoding.

The arbitrary-state encoding circuit for the d = 5 color code (left) is comprised of five entangling gate layers, illustrated by averaged images of the corresponding atom configurations (right), and local gates between the layers. We execute encoding with 5x parallelism, one instance per row (LQ1 to LQ5). The horizontal AOD trap array is tiled vertically by the second AOD. For each layer, atoms start in SLM sites, we apply local rotations, pick up and move atoms to their gate location, execute parallel CZ gates, echo (omitted for clarity), and finally move back to SLM sites.

Extended Data Fig. 3 Encoded magic state fidelity and stabilizers.

a, Spatial dependence of distance-3 magic state encoding fidelity, for the experimental run with no added coherent error. Logical qubits numbered 1-5 and 6-10 are the input qubits to two parallel distillation circuits. We observe some spatial dependence on both the fidelity and perfect stabilizer rate, which we attribute to local single-qubit gate inhomogeneity and two-qubit gate inhomogeneity. b, Time dependence of distance-3 color code stabilizers, for the experimental run with no added coherent error. Time traces are averaged with window size of 100. c,d, Same as a and b for distance-5.

Extended Data Fig. 4 Additional decoding results.

a, Simulated injected and distilled magic state fidelities as a function of global rescaling of physical error rates, when no stabilizer postselection is applied. Relative to our error model for decoding, the physical error rates have been further increased by 1.25 × to match the experimental injected and distilled fidelities. b, Simulation and experimental data in table format for d = 3, sorted into bins corresponding to 3 × 5 = 15 stabilizers and 5 logical observables, for a total of 220 bins. We see good agreement between simulation and experiment. c, Sliding-scale postselection of experimental distillation fidelity with added input errors. Fidelity of the output magic state (blue line) as a function of the total accepted fraction. The accepted fraction range decreases with added errors due to the factory acceptance rate decreasing. Horizontal line segments indicate the error corrected fidelity of the factory input states (green). Shaded regions indicate 68% confidence intervals.

Extended Data Fig. 5 Comparison of different fidelity estimation methods for d = 5 distillation.

For low accepted fractions, the small number of samples causes the maximum likelihood estimate (red, allowed to exceed 1 here) and Bayesian estimates (blue) to differ noticeably, since the latter will be influenced by the prior. In our figures in the main text, we therefore focus on the region in which the two methods give consistent estimates. Horizontal line indicates the error corrected fidelity of the factory input states (green). Shaded regions indicate 68% confidence intervals.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sales Rodriguez, P., Robinson, J.M., Jepsen, P.N. et al. Experimental demonstration of logical magic state distillation. Nature 645, 620–625 (2025). https://doi.org/10.1038/s41586-025-09367-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-025-09367-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing