Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

n-Type thermoelectric elastomers

Abstract

Intrinsically elastic thermoelectric generators with superior conformal coverage and shape adaptability are highly desirable for developing self-powered wearable electronics, soft bioelectronics and personal temperature regulators1,2. Until now, all reported high-performance thermoelectric materials have realized only flexibility, rather than elasticity3,4. Here we present one of the first n-type thermoelectric elastomers by integrating uniform bulk nanophase separation, thermally activated crosslinking and targeted doping into a single material. The thermoelectric elastomers could exhibit exceptional rubber-like recovery of up to 150% strains and high figure of merit values rivalling flexible inorganic materials even under mechanical deformations. Conventional wisdom suggests that incorporating insulating polymers should dilute the active component in organic thermoelectrics, resulting in lower performance. However, we demonstrate that carefully selected elastomers and dopants can promote the formation of uniformly distributed, elastomer-wrapped and heavily n-doped semiconducting polymer nanofibrils, leading to improved electrical conductivity and decreased thermal conductivity. These thermoelectric elastomers have the potential to make elastic thermoelectric generators in wearable applications much more conformable and efficient.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of our design strategy for TEEs.
Fig. 2: Characterization of the morphology and mechanical properties of the thermoelectric polymer/elastomer composites.
Fig. 3: Dopant selection and thermoelectric property characterization.
Fig. 4: Fabrication and measurement of the intrinsically elastic TEGs.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available in the paper and its Supplementary Information. Other related raw data are fully and freely available from the corresponding author at the point of publication. Source data are provided with this paper.

References

  1. Hou, C. & Zhu, M. Semiconductors flex thermoelectric power. Science 377, 815–816 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Hong, S. et al. Wearable thermoelectrics for personalized thermoregulation. Sci. Adv. 5, eaaw0536 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yang, Q. et al. Flexible thermoelectrics based on ductile semiconductors. Science 377, 854–858 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Wei, T.-R. et al. Exceptional plasticity in the bulk single-crystalline van der Waals semiconductor InSe. Science 369, 542–545 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Bell, L. E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457–1461 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Shi, X.-L., Zou, J. & Chen, Z. G. Advanced thermoelectric design: from materials and structures to devices. Chem. Rev. 120, 7399 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Shi, X. & He, J. Thermopower and harvesting heat. Science 371, 343–344 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Jia, Y. et al. Wearable thermoelectric materials and devices for self-powered electronic systems. Adv. Mater. 33, 2102990 (2021).

    Article  CAS  Google Scholar 

  9. Bahk, J.-H., Fang, H., Yazawa, K. & Shakouri, A. Flexible thermoelectric materials and device optimization for wearable energy harvesting. J. Mater. Chem. C 3, 10362–10374 (2015).

    Article  CAS  Google Scholar 

  10. Peng, J. et al. 3D extruded composite thermoelectric threads for flexible energy harvesting. Nat. Commun. 10, 5590 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Han, S. et al. Multiscale nanowire-microfluidic hybrid strain sensors with high sensitivity and stretchability. npj Flex. Electron. 2, 16 (2018).

    Article  Google Scholar 

  12. Qin, B. et al. Moving fast makes for better cooling: optimizing carrier mobility with composition and processing is key for thermoelectric coolers. Science 378, 832–833 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Mallick, M. M. et al. High figure-of-merit telluride-based flexible thermoelectric films through interfacial modification via millisecond photonic-curing for fully printed thermoelectric generators. Adv. Sci. 9, 2202411 (2022).

    Article  CAS  Google Scholar 

  14. Tian, Y. et al. Facile fabrication of flexible and high-performing thermoelectrics by direct laser printing on plastic foil. Adv. Mater. 36, 2307945 (2024).

    Article  CAS  Google Scholar 

  15. Gao, H. et al. Transition metal-catalysed molecular n-doping of organic semiconductors. Nature 599, 67–73 (2021).

    Article  ADS  Google Scholar 

  16. Feng, K., Guo, H., Sun, H. & Guo, X. N-type organic and polymeric semiconductors based on bithiophene imide derivatives. Acc. Chem. Res. 54, 3804–3817 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Zheng, Y.-Q. et al. Monolithic optical microlithography of high-density elastic circuits. Science 373, 88–94 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Jiang, Y. et al. A universal interface for plug-and-play assembly of stretchable devices. Nature 614, 456–462 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Zhang, Z. et al. High-brightness all-polymer stretchable LED with charge-trapping dilution. Nature 603, 624–630 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Zhong, D. et al. High-speed and large-scale intrinsically stretchable integrated circuits. Nature 627, 313–320 (2024).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Kim, N. et al. Elastic conducting polymer composites in thermoelectric modules. Nat. Commun. 11, 1424 (2020).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  22. Tseng, C.-C. et al. Intrinsically stretchable organic thermoelectric polymers enabled by incorporating fused-ring conjugated breakers. Small 20, 2401966 (2024).

    Article  CAS  Google Scholar 

  23. Wang, S., Zuo, G., Kim, J. & Sirringhaus, H. Progress of conjugated polymers as emerging thermoelectric materials. Prog. Polym. Sci. 129, 101548 (2022).

    Article  CAS  Google Scholar 

  24. Yan, X. et al. Approaching disorder-tolerant semiconducting polymers. Nat. Commun. 12, 5723 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Han, Y., Tetik, H. & Malakooti, M. H. 3D soft architectures for stretchable thermoelectric wearables with electrical self-healing and damage tolerance. Adv. Mater. 36, 2407073 (2024).

    Article  CAS  Google Scholar 

  26. Han, Y., Simonsen, L.-E. & Malakooti, M. H. Printing liquid metal elastomer composites for high-performance stretchable thermoelectric generators. Adv. Energy Mater. 12, 2201413 (2022).

    Article  CAS  Google Scholar 

  27. Xu, J. et al. Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science 355, 59–64 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Anwar, O. et al. Hansen parameter evaluation for the characterization of titania photocatalysts using particle size distributions and combinatorics. Nanoscale 14, 13593–13607 (2022).

    Article  CAS  PubMed  Google Scholar 

  29. Fernández-Rico, C. et al. Elastic microphase separation produces robust bicontinuous materials. Nat. Mater. 23, 124–130 (2023).

    Article  ADS  PubMed  Google Scholar 

  30. Lepage, M. L. et al. A broadly applicable cross-linker for aliphatic polymers containing C-H bonds. Science 366, 875–878 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Wu, H.-C. et al. A rapid and facile soft contact lamination method: Evaluation of polymer semiconductors for stretchable transistors. Chem. Mater. 26, 4544–4551 (2014).

    Article  CAS  Google Scholar 

  32. Yang, C.-Y. et al. A thermally activated and highly miscible dopant for n-type organic thermoelectrics. Nat. Commun. 11, 3292 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wei, P., Oh, J. H., Dong, G. & Bao, Z. Use of a 1H-benzoimidazole derivative as an n-type dopant and to enable air-stable solution-processed n-channel organic thin-film transistors. J. Am. Chem. Soc. 132, 8852–8853 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Liu, J. et al. Thermal conductivity and elastic constants of PEDOT:PSS with high electrical conductivity. Macromolecules 48, 585–591 (2015).

    Article  ADS  CAS  Google Scholar 

  35. Brunetti, I., Dash, A., Scheunemann, D. & Kemerink, M. Is the field of organic thermoelectrics stuck? J. Mater. Res. 39, 1197–1206 (2024).

    Article  ADS  CAS  Google Scholar 

  36. Wang, D. et al. Multi-heterojunctioned plastics with high thermoelectric figure of merit. Nature 632, 528–535 (2024).

    Article  PubMed  Google Scholar 

  37. Qian, X., Zhou, J. & Chen, G. Phonon-engineered extreme thermal conductivity materials. Nat. Mater. 20, 1188–1202 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Fan, Z., Du, D., Guan, X. & Ouyang, J. Polymer films with ultrahigh thermoelectric properties arising from significant Seebeck coefficient enhancement by ion accumulation on surface. Nano Energy 51, 481–488 (2018).

    Article  CAS  Google Scholar 

  39. Jiang, Y. et al. Topological supramolecular network enabled high-conductivity, stretchable organic bioelectronics. Science 375, 1411–1417 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Zhou, T. et al. 3D printable high-performance conducting polymer hydrogel for all-hydrogel bioelectronic interfaces. Nat. Mater. 22, 895–902 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  41. He, H. et al. Salt-induced ductilization and strain-insensitive resistance of an intrinsically conducting polymer. Sci. Adv. 8, eabq8160 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wei, H. et al. Orthogonal photochemistry-assisted printing of 3D tough and stretchable conductive hydrogels. Nat. Commun. 12, 2082 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chen, X.-X. et al. High-mobility semiconducting polymers with different spin ground states. Nat. Commun. 13, 2258 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nan, K. et al. Compliant and stretchable thermoelectric coils for energy harvesting in miniature flexible devices. Sci. Adv. 4, eaau5849 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lv, H. et al. A flexible spring-shaped architecture with optimized thermal design for wearable thermoelectric energy harvesting. Nano Energy 88, 106260 (2021).

    Article  CAS  Google Scholar 

  46. Tian, Y. & Molina-Lopez, F. Boosting the performance of printed thermoelectric materials by inducing morphological anisotropy. Nanoscale 13, 5202–5215 (2021).

    Article  CAS  PubMed  Google Scholar 

  47. Yu, Z.-D. et al. High n-type and p-type conductivities and power factors achieved in a single conjugated polymer. Sci. Adv. 9, eadf3495 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lu, Y. et al. Rigid coplanar polymers for stable n-type polymer thermoelectrics. Angew. Chem. Int. Ed. 58, 11390–11394 (2019).

    Article  CAS  Google Scholar 

  49. Liu, J. et al. N-type organic thermoelectrics: demonstration of ZT > 0.3. Nat. Commun. 11, 5694 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from the National Natural Science Foundation of China (T2425010 (T.L.), 52303216 (K.L.), 52403219 (Z.Z.), 52373010 (J.H.), and T2441002 (Y.G.)), the Beijing Natural Science Foundation (JQ22006 (T.L.)), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB0520000 (Y.G. and C.D.)) and the CAS Project for Young Scientists in Basic Research (YSBR-053 (Y.G.)). K.L. appreciates the Boya Postdoctoral Fellowship of Peking University. We acknowledge the Molecular Materials and Nanofabrication Laboratory, the Materials Processing and Analysis Center and the Electron Microscopy Laboratory of Peking University for instrument use. The computational part is supported by the High-Performance Computing Platform of Peking University. We thank beamline BL14B1 (Shanghai Synchrotron Radiation Facility) for providing beamtime for part of the X-ray scattering measurement. We also acknowledge technical support of mechanical property measurements from the State Key Laboratory of Advanced Optical Polymer and Manufacturing Technology.

Author information

Authors and Affiliations

Authors

Contributions

T.L. conceived the idea and supervised the project. K.L., J.W. and T.L. designed the experiments. X.P., J.C. and C.W. synthesized the conjugated polymers and crosslinker. K.L. explored the bulk nanophase separation and the thermally activable crosslinking. K.L. and J.W. performed the selection of n-type dopants and the generality of the TEE design strategy. J.W. fabricated the elastic TEG and conducted the performance testing. S.-Y.T. and X.-Y.D. performed the atomistic molecular dynamics simulation. K.L. and Yudong Liu conducted the mechanical property characterizations. K.L. and P.L. did the GIWAXS measurement. Y.D., D.W. and C.D. conducted the thermal conductivity measurements. C.-K.P. and J.P. synthesized the thermally activatable n-dopant TAM. F.Q., J.L. and J.H. supplied the insulating elastomers and performed the mechanical tests. Y.G. and Yunqi Liu provided the AFM, UV–vis absorption and surface energy measurements and helped with the data analysis. K.L., J.W., Z.Z. and T.L. wrote the paper. All authors discussed and revised the paper.

Corresponding author

Correspondence to Ting Lei.

Ethics declarations

Competing interests

K.L., J.W. and T.L. have filed a patent application on this work (202510116577.7). The other authors declare no competing interests.

Peer review

Peer review information

Nature thanks Francisco Molina-Lopez and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Hansen solubility parameters (HSPs) of the thermoelectric polymers (a, N1 and b, N2) and elastomers.

HSP consists of three parameters representing different interactions, including δd for dispersion (van der Waals interactions), δp for polarity (dipole moment interactions), and δh for hydrogen bonding. The solubility distance (Ra) between the conjugated polymer and elastomer is determined by the formula: (Ra)2 = 4(δd2-δd1)2 + (δp2-δp1)2 + (δh2-δh1)2. Lower Ra implies better miscibility between two materials. The HSPs and Ra of the thermoelectric polymers and elastomers are summarized in Supplementary Table 2.

Source Data

Extended Data Fig. 2 Vertical phase separation analysis of the polymer/elastomer blending system.

a, ToF-SIMS depth profiles of the characteristic F ion for polymer N1 in composite films. Inset, the corresponding 3D illustration of F ions in the composite film as a function of film depth. b, Ratio changes between S(2p) and C(1 s) peak (S/C ratio) obtained from the XPS profile element analysis of the N2/elastomer composites. Inset, the corresponding 3D illustration of the vertical phase separation. c, ToF-SIMS depth profiles of the characteristic CN ion for polymer N2 in composite films. Inset, the corresponding 3D illustration of CN ions in the composite film as a function of film depth.

Source Data

Extended Data Fig. 3 Uniform bulk nanophase separation and thermally activable crosslinking to enhance elastic resilience.

a, The first stretching-releasing cycles of the pristine N1, N1/SEBS and c-N1/SEBS (5 wt% crosslinker). b, The second to fifth stretching-releasing cycles of c-N1/SEBS. c, Photograph of a freestanding c-N1/SEBS film on a stretching station. d, Energy loss rate of the first stretching-releasing cycle for pristine N1, N1/SEBS, and c-N1/SEBS films under different strains ranging from 15% to 150%.

Source Data

Supplementary information

Supplementary Information

Supplementary Materials and Methods, Supplementary Figures, legends for Supplementary Videos, Supplementary Tables and Supplementary References.

Peer Review File

Supplementary Video 1

Tensile strains of the free-standing N1 and c-N1/SEBS composite films.

Supplementary Video 2

Demonstration of the c-N1/SEBS as an elastomer material.

Supplementary Video 3

Stretching (beyond 150% strain)–releasing cycles of the free-standing c-N1/SEBS composite film.

Supplementary Video 4

Operation of an in-plane elastic TEG containing four c-TEE-1 legs after sequential bending, twisting and stretching, with a stable output voltage of approximately 1.20 mV when using skin temperature as the hot side and using ambient air temperature as the cold side (ΔT ≈ 4 K).

Supplementary Video 5

Operation of an out-of-plane elastic TEG featuring three c-TEE-2 thermoelectric pillars after sequential bending, twisting and stretching, with a stable output voltage of around 3.30 mV when using a 45 °C hot stage as the hot side and using a glove box temperature of approximately 30 °C as the cold side.

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, K., Wang, J., Pan, X. et al. n-Type thermoelectric elastomers. Nature 644, 920–926 (2025). https://doi.org/10.1038/s41586-025-09387-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-025-09387-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing