Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Long-distance remote epitaxy

Abstract

Remote epitaxy, in which an epitaxial relation is established between a film and a substrate through remote interactions, enables the development of high-quality single crystalline epilayers and their transfer to and integration with other technologically crucial substates1,2. It is commonly believed that in remote epitaxy, the distance within which the remote interaction can play a leading part in the epitaxial process is less than 1 nm, as the atomically resolved fluctuating electric potential decays very rapidly to a negligible value after a few atomic distances3. Here we show that it is possible to achieve remote epitaxy when the epilayer–substrate distance is as large as 2–7 nm. We experimentally demonstrate long-distance remote epitaxy of CsPbBr3 film on an NaCl substrate, KCl film on a KCl substrate and ZnO microrods on GaN, and show that a dislocation in the GaN substrate exists immediately below every remotely epitaxial ZnO microrod. These findings indicate that remote epitaxy could be designed and engineered by means of harnessing defect-mediated long-distance remote interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of remote epitaxy through thick a-C.
Fig. 2: CsPbBr3 film on a-C/NaCl by remote epitaxy.
Fig. 3: a-C, dislocations, and early-stage growth.
Fig. 4: Atomic-level modelling of substrate–cluster interaction in remote epitaxy at the presence of edge dislocations.
Fig. 5: Growth of epitaxial ZnO microrods on a-C/GaN.
Fig. 6: Spatial correlation between ZnO microrods and substrate dislocations.

Similar content being viewed by others

Data availability

The datasets generated or analysed during this study are available at Zenodo (https://doi.org/10.5281/zenodo.15770342)51 and from the corresponding authors upon request.

Code availability

Public packages were used for computational studies and the relevant results are available at Zenodo (https://doi.org/10.5281/zenodo.15770342)51, as well as from the corresponding authors upon request.

References

  1. Kim, H. et al. Remote epitaxy. Nat. Rev. Methods Primers 2, 40 (2022).

    Article  Google Scholar 

  2. Kim, Y. et al. Remote epitaxy through graphene enables two-dimensional material-based layer transfer. Nature 544, 340–343 (2017).

    Article  ADS  PubMed  Google Scholar 

  3. Kong, W. et al. Polarity governs atomic interaction through two-dimensional materials. Nat. Mater. 17, 999–1004 (2018).

    Article  ADS  PubMed  Google Scholar 

  4. Guo, Y. et al. A reconfigurable remotely epitaxial VO2 electrical heterostructure. Nano Lett. 20, 33–42 (2020).

    Article  ADS  PubMed  Google Scholar 

  5. Kum, H. S. et al. Heterogeneous integration of single-crystalline complex-oxide membranes. Nature 578, 75–81 (2020).

    Article  ADS  PubMed  Google Scholar 

  6. Jiang, J. et al. Carrier lifetime enhancement in halide perovskite via remote epitaxy. Nat. Commun. 10, 4145 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  7. Kim, Y. et al. Chip-less wireless electronic skins by remote epitaxial freestanding compound semiconductors. Science 377, 859–864 (2022).

    Article  ADS  PubMed  Google Scholar 

  8. Jeong, J. et al. Remote heteroepitaxy of GaN microrod heterostructures for deformable light-emitting diodes and wafer recycle. Sci. Adv. 6, eaaz5180 (2020).

  9. Choi, J. et al. Facet-selective morphology-controlled remote epitaxy of ZnO microcrystals via wet chemical synthesis. Sci. Rep. 11, 22697 (2021).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  10. Jeong, J. et al. Remote homoepitaxy of ZnO microrods across graphene layers. Nanoscale 10, 22970–22980 (2018).

    Article  PubMed  Google Scholar 

  11. Jin, D. K. et al. Position-controlled remote epitaxy of ZnO for mass-transfer of as-deployed semiconductor microarrays. APL Mater. 9, 051102 (2021).

    Article  ADS  Google Scholar 

  12. Jeong, J. et al. Remote heteroepitaxy across graphene: hydrothermal growth of vertical ZnO microrods on graphene-coated GaN substrate. Appl. Phys. Lett. 113, 233103 (2018).

    Article  ADS  Google Scholar 

  13. Chang, H. et al. Transfer-free graphene-guided high-quality epitaxy of AlN film for deep ultraviolet light-emitting diodes. J. Appl. Phys. 130, 193103 (2021).

    Article  ADS  Google Scholar 

  14. Chen, Z. et al. Improved epitaxy of AlN film for deep-ultraviolet light-emitting diodes enabled by graphene. Adv. Mater. 31, 1807345 (2019).

    Article  Google Scholar 

  15. Chang, H. et al. Quasi-2D growth of aluminum nitride film on graphene for boosting deep ultraviolet light-emitting diodes. Adv. Sci. 7, 2001272 (2020).

    Article  Google Scholar 

  16. Kim, H. et al. High-throughput manufacturing of epitaxial membranes from a single wafer by 2D materials-based layer transfer process. Nat. Nanotechnol. 18, 464–470 (2023).

    Article  ADS  PubMed  Google Scholar 

  17. Wang, D. et al. Remote heteroepitaxy of atomic layered hafnium disulfide on sapphire through hexagonal boron nitride. Nanoscale 11, 9310–9318 (2019).

    Article  PubMed  Google Scholar 

  18. Yoon, H. et al. Freestanding epitaxial SrTiO3 nanomembranes via remote epitaxy using hybrid molecular beam epitaxy. Sci. Adv. 8, eadd5328 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Manzo, S. et al. Pinhole-seeded lateral epitaxy and exfoliation of GaSb films on graphene-terminated surfaces. Nat. Commun. 13, 4014 (2022).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  20. Kim, H. et al. Impact of 2D–3D heterointerface on remote epitaxial interaction through graphene. ACS Nano 15, 10587–10596 (2021).

    Article  PubMed  Google Scholar 

  21. Jia, R. et al. Van der Waals epitaxy and remote epitaxy of LiNbO3 thin films by pulsed laser deposition. J. Vac. Sci. Technol. A 39, 040405 (2021).

    Article  Google Scholar 

  22. Jang, D. et al. Thru-hole epitaxy: a highway for controllable and transferable epitaxial growth. Adv. Mater. Interfaces10, 2201406 (2023).

  23. Al Balushi, Z. Y. et al. Two-dimensional gallium nitride realized via graphene encapsulation. Nat. Mater. 15, 1166–1171 (2016).

    Article  ADS  PubMed  Google Scholar 

  24. Briggs, N. et al. Atomically thin half-van der Waals metals enabled by confinement heteroepitaxy. Nat. Mater. 19, 637–643 (2020).

    Article  ADS  PubMed  Google Scholar 

  25. Voevodin, A. A. & Donley, M. S. Preparation of amorphous diamond-like carbon by pulsed laser deposition: a critical review. Surf. Coat. Technol. 82, 199–213 (1996).

    Article  Google Scholar 

  26. Stoumpos, C. C. et al. Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection. Cryst. Growth Des. 13, 2722–2727 (2013).

    Article  Google Scholar 

  27. Wang, Y. et al. High-temperature ionic epitaxy of halide perovskite thin film and the hidden carrier dynamics. Adv. Mater. 29, 1702643 (2017).

    Article  Google Scholar 

  28. Chan, K. T., Neaton, J. B. & Cohen, M. L. First-principles study of metal adatom adsorption on graphene. Phys. Rev. B 77, 235430 (2008).

    Article  ADS  Google Scholar 

  29. Ren, F. et al. Van der Waals epitaxy of nearly single-crystalline nitride films on amorphous graphene-glass wafer. Sci. Adv. 7, eabf5011 (2021).

  30. Alaskar, Y. et al. Towards van der Waals epitaxial growth of GaAs on Si using a graphene buffer layer. Adv. Funct. Mater. 24, 6629–6638 (2014).

    Article  Google Scholar 

  31. Lesiak, B. et al. C sp2/sp3 hybridisations in carbon nanomaterials – XPS and (X)AES study. Appl. Surf. Sci. 452, 223–231 (2018).

    Article  ADS  Google Scholar 

  32. Mendelson, S. Dislocation etch pit formation in sodium chloride. J. Appl. Phys. 32, 1579–1583 (1961).

    Article  ADS  Google Scholar 

  33. Landeiro Dos Reis, M., Carrez, P. & Cordier, P. Interaction between dislocation and vacancies in magnesium oxide: insights from atomistic simulations and elasticity theory. Phys. Rev. Mater. 5, 063602 (2021).

    Article  Google Scholar 

  34. Mendelson, S. Dislocation etch pit formation in sodium chloride. J. Appl. Phys. 32, 1579–1583 (2004).

    Article  ADS  Google Scholar 

  35. Maeng, S.-C. Dislocations in sodium-chloride crystals. Z. Naturforsch. A 21, 301–303 (1966).

    Article  ADS  Google Scholar 

  36. Bording, J. K., Li, B. Q., Shi, Y. F. & Zuo, J. M. Size- and shape-dependent energetics of nanocrystal interfaces: experiment and simulation. Phys. Rev. Lett. 90, 226104 (2003).

    Article  ADS  PubMed  Google Scholar 

  37. Zhang, J., Huang, F. & Lin, Z. Progress of nanocrystalline growth kinetics based on oriented attachment. Nanoscale 2, 18–34 (2010).

    Article  ADS  PubMed  Google Scholar 

  38. Shi, J. et al. Electron microscopy observation of TiO2 nanocrystal evolution in high-temperature atomic layer deposition. Nano Lett. 13, 5727–5734 (2013).

    Article  ADS  PubMed  Google Scholar 

  39. Elsner, J. et al. Theory of threading edge and screw dislocations in GaN. Phys. Rev. Lett. 79, 3672–3675 (1997).

    Article  ADS  Google Scholar 

  40. Gao, Z. et al. Polarity results in different etch pit shapes of screw and edge dislocations in GaN epilayers. In Proc. 2007 International Workshop on Electron Devices and Semiconductor Technology (eds Ren, T.-L. et al.) 125–128 (IEEE, 2007).

  41. Thompson, A. P. et al. LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 271, 108171 (2022).

    Article  Google Scholar 

  42. Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Model. Simul. Mat. Sci. Eng. 18, 015012 (2010).

    Article  ADS  Google Scholar 

  43. Tosi, M. P. & Fumi, F. G. Ionic sizes and born repulsive parameters in the NaCl-type alkali halides—II: the generalized Huggins-Mayer form. J. Phys. Chem. Solids 25, 45–52 (1964).

    Article  ADS  Google Scholar 

  44. Eastwood, J. W., Hockney, R. W. & Lawrence, D. N. P3M3DP—the three-dimensional periodic particle-particle/particle-mesh program. Comput. Phys. Commun. 19, 215–261 (1980).

    Article  ADS  Google Scholar 

  45. Volksen, W., Miller, R. D. & Dubois, G. Low dielectric constant materials. Chem. Rev. 110, 56–110 (2010).

    Article  PubMed  Google Scholar 

  46. Seeger, K. Microwave measurement of the dielectric constant of high-density polyethylene. IEEE Trans. Microw. Theory Tech. 39, 352–354 (1991).

    Article  ADS  Google Scholar 

  47. Santos, E. J. G. & Kaxiras, E. Electric-field dependence of the effective dielectric constant in graphene. Nano Lett. 13, 898–902 (2013).

    Article  ADS  PubMed  Google Scholar 

  48. Kamaladasa, R. J. et al. Dislocation impact on resistive switching in single-crystal SrTiO3. J. Appl. Phys. 113, 234510 (2013).

    Article  ADS  Google Scholar 

  49. van Benthem, K., Elsässer, C. & French, R. H. Bulk electronic structure of SrTiO3: experiment and theory. J. Appl. Phys. 90, 6156–6164 (2001).

    Article  ADS  Google Scholar 

  50. Bae, S.-H. et al. Graphene-assisted spontaneous relaxation towards dislocation-free heteroepitaxy. Nat. Nanotechnol. 15, 272–276 (2020).

    Article  ADS  PubMed  Google Scholar 

  51. Jia, R., Shi, Y. & Shi, J. Long-distance remote epitaxy. Zenodo https://doi.org/10.5281/zenodo.15770342 (2025).

Download references

Acknowledgements

This work was supported by the US National Science Foundation under award numbers 2110814, 2015557 and 2024972 and by the NYSTAR Focus Center at Rensselaer Polytechnic Institute under award number C180117. This work was also supported by the US National Science Foundation (Platform for the Accelerated Realization, Analysis, and Discovery of Interface Materials (PARADIM)) under Cooperative Agreement no. DMR-1539918 and made use of the Cornell Center for Materials Research (CCMR) Shared Facilities, which are supported through the NSF MRSEC Program (no. DMR-1719875). TEM work was performed at the National High Magnetic Field Laboratory, which is supported by National Science Foundation Cooperative Agreement no. DMR-2128556 and the State of Florida. We also thank the support from US Army Research Office under ARO grant W911NF2410375.

Author information

Authors and Affiliations

Authors

Contributions

J.S. and R.J. conceived and developed the idea and planned the experiments. R.J., J.J., Y.S., Y.X., H.G. and J.S. planned the experiments. R.J., Z.W., Z.Z. and H.M. prepared samples and devices and performed optical imaging, XRD, spectroscopy and photoresponse measurements. Y.X. and H.G. performed TEM and STEM measurements. M.P. and Y.S. performed computational simulations. L.Z. and Z.L. performed SEM and EBSD measurements. R.Y., R.J. and J.L. performed AFM measurements. S.P., K.P., Y.M. and Y.H. contributed to the experimental setups. R.J., Y.S. and Y.X. processed the data, and R.J. Y.X., Y.S. and J.S. interpreted the results. R.J. wrote the initial draft, and J.S., Y.S. Y.X. and Z.W. revised the manuscript. G.-C.W., T.-M.L., W.B. and all the other authors participated in discussion of data collection and/or analysis.

Corresponding authors

Correspondence to Yunfeng Shi, Hanwei Gao or Jian Shi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–41 and Table 1.

Supplementary Video 1

a-C membrane floating on water.

Supplementary Video 2

Our molecular dynamics simulation of deposition of NaCl on 7-nm a-C-coated NaCl substrate containing two edge dislocations, at 900 K. The islands were not aligned owing to their smaller size, lower interaction and high deposition rates.

Supplementary Video 3

Defocus–focus–overfocus approach under an optical microscope for identification of epitaxially aligned ZnO microrods.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, R., Xin, Y., Potter, M. et al. Long-distance remote epitaxy. Nature (2025). https://doi.org/10.1038/s41586-025-09484-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41586-025-09484-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing