Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sustained in situ protein production and release in the mammalian gut by an engineered bacteriophage

Abstract

Oral administration of biologic drugs is challenging because of the degradative activity of the upper gastrointestinal tract. Strategies that use engineered microbes to produce biologics in the lower gastrointestinal tract are limited by competition with resident commensal bacteria. Here we demonstrate the engineering of bacteriophage (phage) that infect resident commensals to express heterologous proteins released during cell lysis. Working with the virulent T4 phage, which targets resident, nonpathogenic Escherichia coli, we first identify T4-specific promoters with maximal protein expression and minimal impact on T4 phage titers. We engineer T4 phage to express a serine protease inhibitor of a pro-inflammatory enzyme with increased activity in ulcerative colitis and observe reduced enzyme activity in a mouse model of colitis. We also apply the approach to reduce weight gain and inflammation in mouse models of diet-induced obesity. This work highlights an application of virulent phages in the mammalian gut as engineerable vectors to release therapeutics from resident gut bacteria.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Phage-induced lysis of bacteria releases intracellular proteins.
Fig. 2: Survey of T4 phage promoters for in vitro sfGFP production.
Fig. 3: In vivo sfGFP production by engineered phage.
Fig. 4: Reduction of DSS-induced colitis via Serpin production.
Fig. 5: The efficacy of T4::clpB to reduce food consumption and weight gain.

Similar content being viewed by others

Data availability

Source data for figures in the main text and Supplementary Information are provided with this paper. 16S amplicon reads are available on Mendeley Data85. Source data are provided with this paper.

Code availability

No code was generated in this study.

References

  1. Hua, S. Advances in oral drug delivery for regional targeting in the gastrointestinal tract—influence of physiological, pathophysiological and pharmaceutical factors. Front. Pharmacol. 11, 524 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tripathi, J., Thapa, P., Maharjan, R. & Jeong, S. H. Currentstate and future perspectives on gastroretentive drug delivery systems. Pharmaceutics 11, 193 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. New, R. Oral delivery of biologics via the intestine. Pharmaceutics 13, 18 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Dahlgren, D. & Lennernas, H. Intestinal permeability and drug absorption: predictive experimental, computational and in vivo approaches. Pharmaceutics 11, 411 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Brown, M. T. & Bussell, J. K. Medication adherence: WHO cares? Mayo Clin. Proc. 86, 304–314 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Merril, C. R., Scholl, D. & Adhya, S. L. The prospect for bacteriophage therapy in Western medicine. Nat. Rev. Drug Discov. 2, 489–497 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Barr, J. J. et al. Bacteriophage adhering to mucus provide a non-host-derived immunity. Proc. Natl Acad. Sci. USA 110, 10771–10776 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Van Belleghem, J. D., Dabrowska, K., Vaneechoutte, M., Barr, J. J. & Bollyky, P. L. Interactions between bacteriophage, bacteria, and the mammalian immune system. Viruses 11, 10 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Shkoporov, A. N. et al. The human gut virome is highly diverse, stable, and individual specific. Cell Host Microbe 26, 527–541 e525 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Minot, S. et al. Rapid evolution of the human gut virome. Proc. Natl Acad. Sci. USA 110, 12450–12455 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shkoporov, A. N. et al. PhiCrAss001 represents the most abundant bacteriophage family in the human gut and infects Bacteroides intestinalis. Nat. Commun. 9, 4781 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Weiss, M. et al. In vivo replication of T4 and T7 bacteriophages in germ-free mice colonized with Escherichia coli. Virology 393, 16–23 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Hsu, B. B. et al. Dynamic modulation of the gut microbiota and metabolome by bacteriophages in a mouse model. Cell Host Microbe 25, 803–814 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Maura, D. et al. Intestinal colonization by enteroaggregative Escherichia coli supports long-term bacteriophage replication in mice. Environ. Microbiol. 14, 1844–1854 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Javaudin, F., Latour, C., Debarbieux, L. & Lamy-Besnier, Q. Intestinal bacteriophage therapy: looking for optimal efficacy. Clin. Microbiol. Rev. 34, e0013621 (2021).

    Article  PubMed  Google Scholar 

  16. Tennoune, N. et al. Bacterial ClpB heat-shock protein, an antigen-mimetic of the anorexigenic peptide α-MSH, at the origin of eating disorders. Transl. Psychiatry 4, e458 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Legrand, R. et al. Commensal Hafnia alvei strain reduces food intake and fat mass in obese mice—a new potential probiotic for appetite and body weight management. Int. J. Obes. 44, 1041–1051 (2020).

    Article  CAS  Google Scholar 

  18. Miller, E. S. et al. Bacteriophage T4 genome. Microbiol. Mol. Biol. Rev. 67, 86–156 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Luke, K. et al. Microarray analysis of gene expression during bacteriophage T4 infection. Virology 299, 182–191 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Grigonyte, A. Engineering Bacteriophages to Enhance their Potential Use in Therapy (University of Warwick, 2018).

  21. Duong, M. M., Carmody, C. M. & Nugen, S. R. Phage-based biosensors: in vivo analysis of native T4 phage promoters to enhance reporter enzyme expression. Analyst 145, 6291–6297 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Tiemann, B. et al. ModA and ModB, two ADP-ribosyltransferases encoded by bacteriophage T4: catalytic properties and mutation analysis. J. Bacteriol. 186, 7262–7272 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fokine, A. et al. Molecular architecture of the prolate head of bacteriophage T4. Proc. Natl Acad. Sci. USA 101, 6003–6008 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yap, M. L. & Rossmann, M. G. Structure and function of bacteriophage T4. Future Microbiol. 9, 1319–1327 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Leatham, M. P. et al. Mouse intestine selects nonmotile flhDC mutants of Escherichia coli MG1655 with increased colonizing ability and better utilization of carbon sources. Infect. Immun. 73, 8039–8049 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sweeney, N. J. et al. The Escherichia coli K-12 gntP gene allows E. coli F-18 to occupy a distinct nutritional niche in the streptomycin-treated mouse large intestine. Infect. Immun. 64, 3497–3503 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Curciarello, R. et al. Human neutrophil elastase proteolytic activity in ulcerative colitis favors the loss of function of therapeutic monoclonal antibodies. J. Inflamm. Res. 13, 233–243 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Barry, R. et al. Faecal neutrophil elastase-antiprotease balance reflects colitis severity. Mucosal Immunol. 13, 322–333 (2020).

    Article  CAS  PubMed  Google Scholar 

  29. Herrero-Cervera, A., Soehnlein, O. & Kenne, E. Neutrophils in chronic inflammatory diseases. Cell Mol. Immunol. 19, 177–191 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Morohoshi, Y. et al. Inhibition of neutrophil elastase prevents the development of murine dextran sulfate sodium-induced colitis. J. Gastroenterol. 41, 318–324 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Leborgne, N. G. F., Taddeo, A., Freigang, S. & Benarafa, C. Serpinb1a is dispensable for the development and cytokine response of invariant natural killer T cell subsets. Front. Immunol. 11, 562587 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lin, R. et al. Resolving neutrophils due to TRAM deletion renders protection against experimental sepsis. Inflamm. Res. 72, 1733–1744 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang, Y. et al. Immune-enhancing neutrophils reprogrammed by subclinical low-dose endotoxin in cancer treatment. EMBO Mol. Med. 16, 1886–1900 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen, G. Y., Tang, J., Zheng, P. & Liu, Y. CD24 and Siglec-10 selectively repress tissue damage-induced immune responses. Science 323, 1722–1725 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Boyapati, R. K., Rossi, A. G., Satsangi, J. & Ho, G. T. Gut mucosal DAMPs in IBD: from mechanisms to therapeutic implications. Mucosal Immunol. 9, 567–582 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Geng, S. et al. Monocytes reprogrammed by 4-PBA potently contribute to the resolution of inflammation and atherosclerosis. Circ. Res. 135, 856–872 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang, X. et al. CD24-Siglec axis is an innate immune checkpoint against metaflammation and metabolic disorder. Cell Metab. 34, 1088–1103 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ahmed, M. A. et al. CD24 is upregulated in inflammatory bowel disease and stimulates cell motility and colony formation. Inflamm. Bowel Dis. 16, 795–803 (2010).

    Article  PubMed  Google Scholar 

  39. Dechelotte, P. et al. The probiotic strain H. alvei HA4597((R)) improves weight loss in overweight subjects under moderate hypocaloric diet: a proof-of-concept, multicenter randomized, double-blind placebo-controlled study. Nutrients 13, 1902 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dominique, M. et al. Effects of bacterial CLPB protein fragments on food intake and PYY secretion. Nutrients 13, 2223 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Panaro, B. L. et al. The melanocortin-4 receptor is expressed in enteroendocrine L cells and regulates the release of peptide YY and glucagon-like peptide 1 in vivo. Cell Metab. 20, 1018–1029 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yeo, G. S. H. et al. The melanocortin pathway and energy homeostasis: from discovery to obesity therapy. Mol. Metab. 48, 101206 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lourenco, M. et al. The spatial heterogeneity of the gut limits predation and fosters coexistence of bacteria and bacteriophages. Cell Host Microbe 28, 390–401 (2020).

    Article  CAS  PubMed  Google Scholar 

  44. Mangalea, M. R. & Duerkop, B. A. Fitness trade-offs resulting from bacteriophage resistance potentiate synergistic antibacterial strategies. Infect. Immun. 88, e00926 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Xu, H. et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Invest. 112, 1821–1830 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hotamisligil, G. S. Inflammation and metabolic disorders. Nature 444, 860–867 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Wellen, K. E. & Hotamisligil, G. S. Inflammation, stress, and diabetes. J. Clin. Invest. 115, 1111–1119 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tang, C., Chen, S., Qian, H. & Huang, W. Interleukin-23: as a drug target for autoimmune inflammatory diseases. Immunology 135, 112–124 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Martins, L. M. S. et al. Interleukin-23 promotes intestinal T helper type17 immunity and ameliorates obesity-associated metabolic syndrome in a murine high-fat diet model. Immunology 154, 624–636 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sumarac-Dumanovic, M. et al. Increased activity of interleukin-23/interleukin-17 proinflammatory axis in obese women. Int. J. Obes. 33, 151–156 (2009).

    Article  CAS  Google Scholar 

  51. Iwakura, Y. & Ishigame, H. The IL-23/IL-17 axis in inflammation. J. Clin. Invest. 116, 1218–1222 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kanda, H. et al. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J. Clin. Invest. 116, 1494–1505 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Panee, J. Monocyte chemoattractant protein 1 (MCP-1) in obesity and diabetes. Cytokine 60, 1–12 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sartipy, P. & Loskutoff, D. J. Monocyte chemoattractant protein 1 in obesity and insulin resistance. Proc. Natl Acad. Sci. USA 100, 7265–7270 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cani, P. D., Osto, M., Geurts, L. & Everard, A. Involvement of gut microbiota in the development of low-grade inflammation and type 2 diabetes associated with obesity. Gut Microbes 3, 279–288 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Tetart, F., Repoila, F., Monod, C. & Krisch, H. M. Bacteriophage T4 host range is expanded by duplications of a small domain of the tail fiber adhesin. J. Mol. Biol. 258, 726–731 (1996).

    Article  CAS  PubMed  Google Scholar 

  57. Zhang, H. et al. Human gut microbiota in obesity and after gastric bypass. Proc. Natl Acad. Sci. USA 106, 2365–2370 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yun, Y. et al. Comparative analysis of gut microbiota associated with body mass index in a large Korean cohort. BMC Microbiol. 17, 151 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Edwards, R. A. et al. Global phylogeography and ancient evolution of the widespread human gut virus crAssphage. Nat. Microbiol. 4, 1727–1736 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Charbonneau, M. R., Isabella, V. M., Li, N. & Kurtz, C. B. Developing a new class of engineered live bacterial therapeutics to treat human diseases. Nat. Commun. 11, 1738 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Isabella, V. M. et al. Development of a synthetic live bacterial therapeutic for the human metabolic disease phenylketonuria. Nat. Biotechnol. 36, 857–864 (2018).

    Article  CAS  PubMed  Google Scholar 

  62. Kurtz, C. B. et al. An engineered E. coli Nissle improves hyperammonemia and survival in mice and shows dose-dependent exposure in healthy humans. Sci. Transl. Med. 11, eaau7975 (2019).

    Article  CAS  PubMed  Google Scholar 

  63. Maura, D., Galtier, M., Le Bouguenec, C. & Debarbieux, L. Virulent bacteriophages can target O104:H4 enteroaggregative Escherichia coli in the mouse intestine. Antimicrob. Agents Chemother. 56, 6235–6242 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Geiduschek, E. P. & Kassavetis, G. A. Transcription of the T4 late genes. Virol J. 7, 288 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Stirling, F. et al. Rational design of evolutionarily stable microbial kill switches. Mol. Cell 68, 686–697 (2017).

  66. Rottinghaus, A. G., Ferreiro, A., Fishbein, S. R. S., Dantas, G. & Moon, T. S. Genetically stable CRISPR-based kill switches for engineered microbes. Nat. Commun. 13, 672 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Smati, M. et al. Quantitative analysis of commensal Escherichia coli populations reveals host-specific enterotypes at the intra-species level. Microbiologyopen 4, 604–615 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Tenaillon, O., Skurnik, D., Picard, B. & Denamur, E. The population genetics of commensal Escherichia coli. Nat. Rev. Microbiol. 8, 207–217 (2010).

    Article  CAS  PubMed  Google Scholar 

  69. Strathdee, S. A., Hatfull, G. F., Mutalik, V. K. & Schooley, R. T. Phage therapy: from biological mechanisms to future directions. Cell 186, 17–31 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gogokhia, L. et al. Expansion of bacteriophages is linked to aggravated intestinal inflammation and colitis. Cell Host Microbe 25, 285–299 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nguyen, S. et al. Bacteriophage transcytosis provides a mechanism to cross epithelial cell layers. mBio 8, e01874 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Clooney, A. G. et al. Whole-virome analysis sheds light on viral dark matter in inflammatory bowel disease. Cell Host Microbe 26, 764–778 (2019).

    Article  CAS  PubMed  Google Scholar 

  73. Engler, C., Kandzia, R. & Marillonnet, S. A one pot, one step, precision cloning method with high throughput capability. PLoS ONE 3, e3647 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Yan, Q. & Fong, S. S. Study of in vitro transcriptional binding effects and noise using constitutive promoters combined with UP element sequences in Escherichia coli. J. Biol. Eng. 11, 33 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Qi, L. S. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 1173–1183 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Silver, S. Acriflavine resistance: a bacteriophage mutation affecting the uptake of dye by the infected bacterial cells. Proc. Natl Acad. Sci. USA 53, 24–30 (1965).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wang, F. J. & Ripley, L. S. The spectrum of acridine resistant mutants of bacteriophage T4 reveals cryptic effects of the tsL141 DNA polymerase allele on spontaneous mutagenesis. Genetics 148, 1655–1665 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Park, S., Reyer, M. A., McLean, E. L., Liu, W. & Fei, J. An improved method for bacterial immunofluorescence staining to eliminate antibody exclusion from the fixed nucleoid. Biochemistry 58, 4457–4465 (2019).

    Article  CAS  PubMed  Google Scholar 

  79. De Paepe, M. & Taddei, F. Viruses’ life history: towards a mechanistic basis of a trade-off between survival and reproduction among phages. PLoS Biol. 4, e193 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Weichhart, T. mTor: Methods and Protocols (Humana Press, 2012).

  81. Charles River Research Model. C57BL/6 Mouse Clinical Pathology Data, C57BL/6 mouse hematology: North American colonies. (2012).

  82. Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hasegawa, Y., Mark Welch, J. L., Rossetti, B. J. & Borisy, G. G. Preservation of three-dimensional spatial structure in the gut microbiome. PLoS ONE 12, e0188257 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Baker, Z. 16S Illumina sequencing reads. Mendeley Data data.mendeley.com/datasets/pt9m6b9s4z/1 (2024).

Download references

Acknowledgements

We thank T. Thorn, S. DiLorenzo and J. Cartwright at Virginia Tech for technical assistance, as well as E. Ng at the FLSI Light Microscopy Facility at Virginia Tech for fluorescence microscopy support. Research reported in this publication was supported in part by the National Institutes of Health (R35 GM147484 (to B.B.H.) and R01 AI172133 (to L.L.)) and Virginia Tech Dean’s Discovery Fund (fund 446728 to B.B.H. and. L.L.).

Author information

Authors and Affiliations

Authors

Contributions

B.B.H. and L.L. conceptualized the project. Z.B. and B.B.H. developed the methodology. Z.B., Y.Z., H.Z., H.F., P.B.S.S. and T.S. conducted the investigation. Z.B. and B.B.H. wrote the original draft of the paper. L.L. and B.B.H. reviewed and edited the paper, provided supervision and secured funding.

Corresponding authors

Correspondence to Liwu Li or Bryan B. Hsu.

Ethics declarations

Competing interests

Z.B., L.L. and B.B.H. are inventors on a pending patent application related to the phage-based heterologous gene expression system described in this paper. The other authors declare no competing interests.

Peer review

Peer review information

Nature Biotechnology thanks Jeremy Barr, Laurent Debarbieux and Tae Seok Moon for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–7 and Supplementary Tables 1 and 2.

Reporting Summary

Supplementary Data 1

Supporting data for Supplementary Figs. 1, 3–5 and 7.

Supplementary Data 2

Oligonucleotide sequences used in this study.

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baker, Z.R., Zhang, Y., Zhang, H. et al. Sustained in situ protein production and release in the mammalian gut by an engineered bacteriophage. Nat Biotechnol (2025). https://doi.org/10.1038/s41587-025-02570-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41587-025-02570-7

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research