Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spatiotemporal control of subcellular O-GlcNAc signaling using Opto-OGT

Abstract

The post-translational modification of intracellular proteins through O-linked β-N-acetylglucosamine (O-GlcNAc) is a conserved regulatory mechanism in multicellular organisms. Catalyzed by O-GlcNAc transferase (OGT), this dynamic modification has an essential role in signal transduction, gene expression, organelle function and systemic physiology. Here, we present Opto-OGT, an optogenetic probe that allows for precise spatiotemporal control of OGT activity through light stimulation. By fusing a photosensitive cryptochrome protein to OGT, Opto-OGT can be robustly and reversibly activated with high temporal resolution by blue light and exhibits minimal background activity without illumination. Transient activation of Opto-OGT results in mTORC activation and AMPK suppression, which recapitulate nutrient-sensing signaling. Furthermore, Opto-OGT can be customized to localize to specific subcellular sites. By targeting OGT to the plasma membrane, we demonstrate the downregulation of site-specific AKT phosphorylation and signaling outputs in response to insulin stimulation. Thus, Opto-OGT is a powerful tool for defining the role of O-GlcNAcylation in cell signaling and physiology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design and characterization of Opto-OGT.
Fig. 2: Opto-OGT is tunable and reversible, and further characterization of Opto-OGT reveals the requirements for it to work.
Fig. 3: Optogenetic activation of OGT reveals temporal dependence of nutrient status sensing.
Fig. 4: Optogenetic activation of OGT via CIBN−CRY2 recruitment results in a subcellular compartment-specific increase of O-GlcNAcylation.

Similar content being viewed by others

Data availability

The MS proteomics data have been deposited to the JPOST repository with the dataset identifier JPST002053. Further information on the MS data and AlphaFold simulation is available in the Supplementary Information. Data supporting the findings of this study are available in the Article, Supplementary Videos and Supplementary Information. Source data are provided with this paper.

References

  1. Haltiwanger, R. S., Holt, G. D. & Hart, G. W. Enzymatic addition of O-GlcNAc to nuclear and cytoplasmic proteins. Identification of a uridine diphospho-N-acetylglucosamine:peptide β-N-acetylglucosaminyltransferase. J. Biol. Chem. 265, 2563–2568 (1990).

    CAS  PubMed  Google Scholar 

  2. Hart, G. W., Housley, M. P. & Slawson, C. Cycling of O-linked β-N-acetylglucosamine on nucleocytoplasmic proteins. Nature 446, 1017–1022 (2007).

    CAS  PubMed  Google Scholar 

  3. Yang, X. & Qian, K. Protein O-GlcNAcylation: emerging mechanisms and functions. Nat. Rev. Mol. Cell Biol. 18, 452–465 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Lazarus, M. B., Nam, Y., Jiang, J., Sliz, P. & Walker, S. Structure of human O-GlcNAc transferase and its complex with a peptide substrate. Nature 469, 564–569 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Elsen, N. L. et al. Insights into activity and inhibition from the crystal structure of human O-GlcNAcase. Nat. Chem. Biol. 13, 613–615 (2017).

    CAS  PubMed  Google Scholar 

  6. Bond, M. R. & Hanover, J. A. A little sugar goes a long way: the cell biology of O-GlcNAc. J. Cell Biol. 208, 869–880 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Nagel, A. K. & Ball, L. E. O-GlcNAc transferase and O-GlcNAcase: achieving target substrate specificity. Amino Acids 46, 2305–2316 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Stephen, H. M., Adams, T. M. & Wells, L. Regulating the regulators: mechanisms of substrate selection of the O-GlcNAc cycling enzymes OGT and OGA. Glycobiology 2021, 1–10 (2021).

    Google Scholar 

  9. Bullen, J. W. et al. Cross-talk between two essential nutrient-sensitive enzymes: O-GlcNAc transferase (OGT) and AMP-activated protein kinase (AMPK). J. Biol. Chem. 289, 10592–10606 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Harwood, K. R. & Hanover, J. A. Nutrient-driven O-GlcNAc cycling—think globally but act locally. J. Cell Sci. 127, 1857–1867 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Bond, M. R. & Hanover, J. A. O- GlcNAc cycling: a link between metabolism and chronic disease. Annu. Rev. Nutr. 33, 205–229 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. de Queiroz, R. M., Carvalho, E. & Dias, W. B. O-GlcNAcylation: the sweet side of the cancer. Front. Oncol. 4, 132 (2014).

    PubMed  PubMed Central  Google Scholar 

  13. Qian, K. et al. Transcriptional regulation of O-GlcNAc homeostasis is disrupted in pancreatic cancer. J Biol. Chem. 293, 13989–14000 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Ma, Z. & Vosseller, K. Cancer metabolism and elevated O-GlcNAc in oncogenic signaling. J. Biol. Chem. 289, 34457–34465 (2014).

    PubMed  PubMed Central  Google Scholar 

  15. Sodi, V. L. et al. Signal transduction mTOR/MYC axis regulates O-GlcNAc transferase expression and O-GlcNAcylation in breast cancer. Mol. Cancer Res. 13, 923–933 (2015).

  16. Martínez-Viturro, C. M. et al. Diazaspirononane nonsaccharide inhibitors of O-GlcNAcase (OGA) for the treatment of neurodegenerative disorders. J. Med. Chem. 63, 14017–14044 (2020).

    PubMed  Google Scholar 

  17. Selnick, H. G. et al. Discovery of MK-8719, a potent O-GlcNAcase inhibitor as a potential treatment for tauopathies. J. Med. Chem. 62, 10062–10097 (2019).

    CAS  PubMed  Google Scholar 

  18. Ryan, J. M. et al. O1-12-05: Phase 1 study in healthy volunteers of the O-Glcnacase inhibitor ASN120290 as a novel therapy for progressive supranuclear palsy and related tauopathies. Alzheimer’s Dement. 14, P251 (2018).

    Google Scholar 

  19. Leney, A. C., El Atmioui, D., Wu, W., Ovaa, H. & Heck, A. J. R. Elucidating crosstalk mechanisms between phosphorylation and O-GlcNAcylation. Proc. Natl Acad. Sci. USA 114, E7255–E7261 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Ruan, H. B., Nie, Y. & Yang, X. Regulation of protein degradation by O-GlcNAcylation: crosstalk with ubiquitination. Mol. Cell. Proteom. 12, 3489–3497 (2013).

    CAS  Google Scholar 

  21. Ong, Q., Han, W. & Yang, X. O-GlcNAc as an integrator of signaling pathways. Front. Endocrinol. 9, 599 (2018).

    Google Scholar 

  22. Tischer, D. & Weiner, O. D. Illuminating cell signalling with optogenetic tools. Nat. Rev. Mol. Cell Biol. 15, 551–558 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kwon, E. & Heo, W. D. Optogenetic tools for dissecting complex intracellular signaling pathways. Biochem. Biophys. Res. Commun. 527, 331–336 (2020).

    CAS  PubMed  Google Scholar 

  24. Zhang, K. & Cui, B. Optogenetic control of intracellular signaling pathways. Trends Biotechnol. 33, 92–100 (2015).

    PubMed  Google Scholar 

  25. Wu, Y. I. et al. A genetically encoded photoactivatable Rac controls the motility of living cells. Nature 461, 104–108 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kennedy, M. J. et al. Rapid blue-light-mediated induction of protein interactions in living cells. Nat. Methods 7, 973–975 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Toettcher, J. E., Voigt, C. A., Weiner, O. D. & Lim, W. A. The promise of optogenetics in cell biology: interrogating molecular circuits in space and time. Nat. Methods 8, 35–38 (2011).

    CAS  PubMed  Google Scholar 

  28. Duan, L. et al. Optical activation of TrkA signaling. ACS Synth. Biol. 7, 1685–1693 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Huang, P. et al. Optical activation of TrkB signaling. J. Mol. Biol. 432, 3761–3770 (2020).

    CAS  PubMed  Google Scholar 

  30. Zhang, K. et al. Light-mediated kinetic control reveals the temporal effect of the Raf/MEK/ERK pathway in PC12 cell neurite outgrowth. PLoS ONE 9, e92917 (2014).

    PubMed  PubMed Central  Google Scholar 

  31. Toettcher, J. E., Weiner, O. D. & Lim, W. A. Using optogenetics to interrogate the dynamic control of signal transmission by the Ras/Erk module. Cell 155, 1422–1434 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Ong, Q. et al. The timing of Raf/ERK and AKT activation in protecting PC12 cells against oxidative stress. PLoS ONE 11, e0153487 (2016).

    PubMed  PubMed Central  Google Scholar 

  33. Paonessa, F. et al. Regulation of neural gene transcription by optogenetic inhibition of the RE1-silencing transcription factor. Proc. Natl Acad. Sci. USA 113, E91–E100 (2016).

    CAS  PubMed  Google Scholar 

  34. Polesskaya, O. et al. Optogenetic regulation of transcription. BMC Neurosci. 19, 12 (2018).

    PubMed  PubMed Central  Google Scholar 

  35. Lan, T. H., He, L., Huang, Y. & Zhou, Y. Optogenetics for transcriptional programming and genetic engineering. Trends Genet. 38, 1253–1270 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Nguyen, M. K. et al. Optogenetic oligomerization of Rab GTPases regulates intracellular membrane trafficking. Nat. Chem. Biol. 12, 431–436 (2016).

    CAS  PubMed  Google Scholar 

  37. Inaba, H., Miao, Q. & Nakata, T. Optogenetic control of small GTPases reveals RhoA mediates intracellular calcium signaling. J. Biol. Chem. 296 100290 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Bryant, P., Pozzati, G. & Elofsson, A. Improved prediction of protein−protein interactions using AlphaFold2. Nat. Commun. 13, 1–11 (2022).

    Google Scholar 

  39. Kozakov, D. et al. The ClusPro web server for protein–protein docking. Nat. Protoc. 12, 255–278 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Duan, L. et al. Understanding CRY2 interactions for optical control of intracellular signaling. Nat. Commun. 8, 547 (2017).

    PubMed  PubMed Central  Google Scholar 

  41. Sohn, J. W. & Ho, W. K. Cellular and systemic mechanisms for glucose sensing and homeostasis. Pflügers Arch. 472, 1547–1561 (2020).

    CAS  PubMed  Google Scholar 

  42. Cork, G. K., Thompson, J. & Slawson, C. Real talk: the inter-play between the mTOR, AMPK and hexosamine biosynthetic pathways in cell signaling. Front. Endocrinol. 9, 522 (2018).

    Google Scholar 

  43. González, A., Hall, M. N., Lin, S. C. & Hardie, D. G. AMPK and TOR: the yin and yang of cellular nutrient sensing and growth control. Cell Metab. 31, 472–492 (2020).

    PubMed  Google Scholar 

  44. Duan, L. et al. Optogenetic control of molecular motors and organelle distributions in cells. Chem. Biol. 22, 671–682 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Yang, X. et al. Phosphoinositide signalling links O-GlcNAc transferase to insulin resistance. Nature 451, 964–969 (2008).

    CAS  PubMed  Google Scholar 

  46. Ruan, H. B., Singh, J. P., Li, M. D., Wu, J. & Yang, X. Cracking the O-GlcNAc code in metabolism. Trends Endocrinol. Metab. 24, 301–309 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Decourcelle, A., Loison, I., Baldini, S., Leprince, D. & Dehennaut, V. Evidence of a compensatory regulation of colonic O-GlcNAc transferase and O-GlcNAcase expression in response to disruption of O-GlcNAc homeostasis. Biochem. Biophys. Res. Commun. 521, 125–130 (2020).

    CAS  PubMed  Google Scholar 

  48. Tan, Z. W. et al. O-GlcNAc regulates gene expression by controlling detained intron splicing. Nucleic Acids Res. 48, 5656–5669 (2021).

    Google Scholar 

  49. Xu, Q. et al. AMPK regulates histone H2B O-GlcNAcylation. Nucleic Acids Res. 42, 5594–5604 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Luo, B. et al. Chronic hexosamine flux stimulates fatty acid oxidation by activating AMP-activated protein kinase in adipocytes. J. Biol. Chem. 282, 7172–7180 (2007).

    CAS  PubMed  Google Scholar 

  51. Latorre-Muro, P. et al. A cold-stress-inducible PERK/OGT axis controls TOM70-assisted mitochondrial protein import and cristae formation. Cell Metab. 33, 598–614 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Kreppel, L. K. & Hart, G. W. Regulation of a cytosolic and nuclear O-GlcNAc transferase. Role of the tetratricopeptide repeats. J. Biol. Chem. 274, 32015–32022 (1999).

    CAS  PubMed  Google Scholar 

  53. Iyer, S. P. N. & Hart, G. W. Roles of the tetratricopeptide repeat domain in O-GlcNAc transferase targeting and protein substrate specificity. J. Biol. Chem. 278, 24608–24616 (2003).

    CAS  PubMed  Google Scholar 

  54. Iyer, S. P. N., Akimoto, Y. & Hart, G. W. Identification and cloning of a novel family of coiled-coil domain proteins that interact with O-GlcNac transferase. J. Biol. Chem. 278, 5399–5409 (2003).

    CAS  PubMed  Google Scholar 

  55. Meek, R. W. et al. Cryo-EM structure provides insights into the dimer arrangement of the O-linked β-N-acetylglucosamine transferase OGT. Nat. Commun. 12, 6508 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhou, W. & Deiters, A. Chemogenetic and optogenetic control of post-translational modifications through genetic code expansion. Curr. Opin. Chem. Biol. 63, 123–131 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. He, J. et al. Spatiotemporal activation of protein O-GlcNAcylation in living cells. J. Am. Chem. Soc. 144, 4289–4293 (2022).

    CAS  PubMed  Google Scholar 

  58. Ge, Y. et al. Target protein deglycosylation in living cells by a nanobody-fused split O-GlcNAcase. Nat. Chem. Biol. 17, 593–600 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Ramirez, D. H. et al. Engineering a proximity-directed O-GlcNAc transferase for selective protein O-GlcNAcylation in cells. ACS Chem. Biol. 15, 1059–1066 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhu, Y. & Hart, G. W. Dual-specificity RNA aptamers enable manipulation of target-specific O-GlcNAcylation and unveil functions of O-GlcNAc on β-catenin. Cell 186, 428–445 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Lehtinen, K., Nokia, M. S. & Takala, H. Red light optogenetics in neuroscience. Front. Cell. Neurosci. 15, 532 (2022).

    Google Scholar 

  62. Carpenter, A. E. et al. CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 7, R100 (2006).

    PubMed  PubMed Central  Google Scholar 

  63. Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Desta, I. T., Porter, K. A., Xia, B., Kozakov, D. & Vajda, S. Performance and its limits in rigid body protein−protein docking. Structure 28, 1071–1081 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Chuah, Y. H. et al. CAMK2D serves as a molecular scaffold for RNF8−MAD2 complex to induce mitotic checkpoint in glioma. Cell Death Differ. 30, 1973–1987 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (R01DK089098, R01DK137467 and R01DK102648 to X.Y.), American Diabetes Association (1-19-IBS-119 to X.Y.), intramural support from the Agency for Science, Technology and Research (A*STAR) Biomedical Research Council core fund (to W.H.), A*STAR Strategic Research Program (the Brain-Body Initiative, iGrants no. 21718 to W.H.), an A*STAR Use-Inspired Basic Research award (to W.H.), the National Research Foundation Competitive Research Program (NRF-CRP23-2019-0004 to W.H.) and the National Medical Research Council Young Individual Research Grant (OFYIRG19nov-0045 to Q.O.). We thank P. L. Chia and H. Mao for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Q.O., W.H. and X.Y. conceived the project. Q.O., Y.L. and X.Y. designed the experiments. Q.O., L.T.R.L., S.E.C., C.J.Y.L., V.K., J.Y. and T.T. performed the optogenetic experiments. Q.O., S.E.C., C.J.Y.L., S.-Y.K. and S.L.L. performed cloning experiments. Q.O. and C.G. performed the AlphaFold experiments. L.C.W and S.G.L. performed the MS experiments. Q.O., C.G., Y.L., V.K., T.T., L.C.W and S.G.L. analyzed the data. L.T.R.L., S.E.C., R.D., A.B. and R.S. offered technical advice. Q.O., A.B., W.H. and X.Y. wrote the paper with input from all authors.

Corresponding authors

Correspondence to Weiping Han or Xiaoyong Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Biology thanks Luc Bertrand, Robert Hughes and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Comparison of nutrient sensing pathways when subjected to glucose concentration changes or Opto-OGT activation.

a, Representative Western blots of key nutrient sensing pathways when HEK293T cells are subjected to glucose concentration changes from 0 mM to 25 mM. Immunoblots shown are representative of two independent biological repeats. b, Representative Western blots of HEK293T cells transfected with OGT-mCherry-CRY2 undergoing 15 minutes of blue light. Key downstream signaling pathways are probed as labelled. Immunoblots shown are representative of two independent biological repeats. c, Representative Western blots of phosphor-ULK1 when HEK293T cells transfected with OGT-mCherry-CRY2 underwent 15 minutes of blue light. Immunoblots shown are representative of two independent biological repeats.

Source data

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2, Figs. 1–11 and source data for supplementary figures.

Reporting Summary

Supplementary Video 1

Movie showing HEK293T cells transfected with OGT−mCherry−CRY2. The first 300 s are without blue light, while in the next 300 s, the cells are supplied with blue light at a 100-ms pulse every 5 s. No blue light is illuminated from 600−1,800 s and blue light is reapplied from 1,800−2,400 s at a 100-ms pulse every 5 s.

Supplementary Video 2

Movie showing COS-7 cells transfected with both OGT−mCherry−CRY2 (right) and CIBN−GFP−miro (left). Green and blue lights are continually supplied to the system at a 100-ms pulse every 15 s.

Supplementary Video 3

Movie showing HEK293T cells transfected with both OGT−mCherry−CRY2 (right) and CIBN−GFP−CAAX (left). Green and blue lights are continually supplied to the system at a 100-ms pulse every 5 s.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 1

Unprocessed western blots and MS statistical source data.

Source Data Fig. 2

Statistical source data

Source Data Fig. 2

Unprocessed western blots.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 4

Unprocessed western blots.

Source Data Extended Data Fig. 1

Unprocessed western blots.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ong, Q., Lim, L.T.R., Goh, C. et al. Spatiotemporal control of subcellular O-GlcNAc signaling using Opto-OGT. Nat Chem Biol 21, 300–308 (2025). https://doi.org/10.1038/s41589-024-01770-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41589-024-01770-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing