Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Monitoring in real time and far-red imaging of H2O2 dynamics with subcellular resolution

A preprint version of the article is available at bioRxiv.

Abstract

Monitoring H2O2 dynamics in conjunction with key biological interactants is critical for elucidating the physiological outcome of cellular redox regulation. Optogenetic hydrogen peroxide sensor with HaloTag with JF635 (oROS-HT635) allows fast and sensitive chemigenetic far-red H2O2 imaging while overcoming drawbacks of existing red fluorescent H2O2 indicators, including oxygen dependency, high pH sensitivity, photoartifacts and intracellular aggregation. The compatibility of oROS-HT635 with blue-green-shifted optical tools allows versatile optogenetic dissection of redox biology. In addition, targeted expression of oROS-HT635 and multiplexed H2O2 imaging enables spatially resolved imaging of H2O2 targeting the plasma membrane and neighboring cells. Here we present multiplexed use cases of oROS-HT635 with other green fluorescence reporters by capturing acute and real-time changes in H2O2 with intracellular redox potential and Ca2+ levels in response to auranofin, an inhibitor of antioxidative enzymes, via dual-color imaging. oROS-HT635 enables detailed insights into intricate intracellular and intercellular H2O2 dynamics, along with their interactants, through spatially resolved, far-red H2O2 imaging in real time.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structure-guided engineering of oROS-HT635: bright far-red optogenetic sensor for H2O2.
Fig. 2: Characterization of oROS-HT635: a bright, sensitive and fast H2O2 sensor.
Fig. 3: Biophysical properties and versatility of oROS-HT635 under varying environmental conditions.
Fig. 4: Multiparametric analysis of the acute effect of auranofin on H2O2, redox potential and Ca2+.
Fig. 5: Modeled interplay between ICaL and SERCA reveals oxidative stress-induced Ca2+ dysregulation.
Fig. 6: Spatiotemporally resolved imaging of H2O2.

Similar content being viewed by others

Data availability

The complete minimal raw dataset from the experiments, representative images, downstream analysis and visualizations generated for this article are available on figshare at https://doi.org/10.6084/m9.figshare.28306691 (ref. 96). Plasmids for oROS-HT and its loss-of-function (C199S) and subcellular targeting variants described in this paper are available through Addgene at pC1-lifeact-oROS-HT (216420), pC1-IMS-oROS-HT (216419), pC1-dmito-oROS-HT (216418), pC1-oROS-HT-CaaX (216417), pDisplay-oROS-HT (216416), AAV2_CAG_oROS-HT(C199S)_WPRE (216415), AAV2_CAG_oROS-HT_WPRE (216414), pC1_oROS-HT (216413) and pC1_oROS-HT_LF(C199S) (216412). We will also provide plasmids upon request. The study accessed the PDB database (1I6A, 1I69 and 6U2M) for structural analysis. Source data are provided with this paper.

Code availability

Source code for simulation, data extraction, analysis and visualization is available on figshare at https://doi.org/10.6084/m9.figshare.28306691 (ref. 96).

References

  1. Forman, H. J. & Zhang, H. Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov. 20, 689–709 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sies, H. & Jones, D. P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 21, 363–383 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Sies, H. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: oxidative eustress. Redox Biol. 11, 613–619 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schieber, M. & Chandel, N. S. ROS function in redox signaling and oxidative stress. Curr. Biol. 24, R453–R462 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Finkel, T. Signal transduction by reactive oxygen species. J. Cell Biol. 194, 7–15 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. D’Autréaux, B. & Toledano, M. B. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat. Rev. Mol. Cell Biol. 8, 813–824 (2007).

    Article  PubMed  Google Scholar 

  7. Ren, X. et al. Redox signaling mediated by thioredoxin and glutathione systems in the central nervous system. Antioxid. Redox Signal. 27, 989–1010 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Marinho, H. S., Real, C., Cyrne, L., Soares, H. & Antunes, F. Hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox Biol. 2, 535–562 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Johnson, F. & Giulivi, C. Superoxide dismutases and their impact upon human health. Mol. Aspects Med. 26, 340–352 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Martin, C., Binda, C., Fraaije, M. W. & Mattevi, A. The multipurpose family of flavoprotein oxidases. Enzymes 47, 63–86 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Halliwell, B. Understanding mechanisms of antioxidant action in health and disease. Nat. Rev. Mol. Cell Biol. 25, 13–33 (2024).

  12. Kishi, S., Nagasu, H., Kidokoro, K. & Kashihara, N. Oxidative stress and the role of redox signalling in chronic kidney disease. Nat. Rev. Nephrol. 20, 101–119 (2024).

  13. Chun, H. et al. Severe reactive astrocytes precipitate pathological hallmarks of Alzheimer’s disease via H2O2 production. Nat. Neurosci. 23, 1555–1566 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Pak, V. V. et al. Ultrasensitive genetically encoded indicator for hydrogen peroxide identifies roles for the oxidant in cell migration and mitochondrial function. Cell Metab. 31, 642–653 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ermakova, Y. G. et al. Red fluorescent genetically encoded indicator for intracellular hydrogen peroxide. Nat. Commun. 5, 5222 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Pang, Y. et al. SHRIMP: genetically encoded mScarlet-derived red fluorescent hydrogen peroxide sensor with high brightness and minimal photoactivation. Preprint at bioRxiv https://doi.org/10.1101/2023.08.09.552302 (2023).

  17. Morgan, B. et al. Real-time monitoring of basal H2O2 levels with peroxiredoxin-based probes. Nat. Chem. Biol. 12, 437–443 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Gutscher, M. et al. Proximity-based protein thiol oxidation by H2O2-scavenging peroxidases. J. Biol. Chem. 284, 31532–31540 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Eid, M., Barayeu, U., Sulková, K., Aranda-Vallejo, C. & Dick, T. P. Using the heme peroxidase APEX2 to probe intracellular H2O2 flux and diffusion. Nat. Commun. 15, 1239 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Murphy, M. P. et al. Guidelines for measuring reactive oxygen species and oxidative damage in cells and in vivo. Nat. Metab. 4, 651–662 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Patriarchi, T. et al. An expanded palette of dopamine sensors for multiplex imaging in vivo. Nat. Methods 17, 1147–1155 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dana, H. et al. Sensitive red protein calcium indicators for imaging neural activity. eLife 5, e12727 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wu, J. et al. Improved orange and red Ca2+ indicators and photophysical considerations for optogenetic applications. ACS Chem. Neurosci. 4, 963–972 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ning, L. et al. A bright, nontoxic, and non-aggregating red fluorescent protein for long-term labeling of fine structures in neurons. Front. Cell Dev. Biol. 10, 893468 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Pedre, B. et al. Structural snapshots of OxyR reveal the peroxidatic mechanism of H2O2 sensing. Proc. Natl Acad. Sci. USA 115, E11623–E11632 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Åslund, F., Zheng, M., Beckwith, J. & Storz, G. Regulation of the OxyR transcription factor by hydrogen peroxide and the cellular thiol-disulfide status. Proc. Natl Acad. Sci. USA 96, 6161–6165 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Tao, K. In vivo oxidation–reduction kinetics of OxyR, the transcriptional activator for an oxidative stress-inducible regulon in Escherichia coli. FEBS Lett. 457, 90–92 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Lee, C. et al. Redox regulation of OxyR requires specific disulfide bond formation involving a rapid kinetic reaction path. Nat. Struct. Mol. Biol. 11, 1179–1185 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee, J. D. et al. Structure-guided engineering of a fast genetically encoded sensor for real-time H2O2 monitoring. Preprint at bioRxiv https://doi.org/10.1101/2024.01.31.578117 (2024).

  31. Choi, H. et al. Structural basis of the redox switch in the OxyR transcription factor. Cell 105, 103–113 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Jo, I. et al. Structural details of the OxyR peroxide-sensing mechanism. Proc. Natl Acad. Sci. USA 112, 6443–6448 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fenno, L. E. et al. Comprehensive dual- and triple-feature intersectional single-vector delivery of diverse functional payloads to cells of behaving mammals. Neuron 107, 836–853 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Deo, C. et al. The HaloTag as a general scaffold for far-red tunable chemigenetic indicators. Nat. Chem. Biol. 17, 718–723 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Grimm, J. B. et al. A general method to fine-tune fluorophores for live-cell and in vivo imaging. Nat. Methods 14, 987–994 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jan, Y.-H. et al. Vitamin K3 (menadione) redox cycling inhibits cytochrome P450-mediated metabolism and inhibits parathion intoxication. Toxicol. Appl. Pharmacol. 288, 114–120 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Loor, G. et al. Menadione triggers cell death through ROS-dependent mechanisms involving PARP activation without requiring apoptosis. Free Radic. Biol. Med. 49, 1925–1936 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Criddle, D. N. et al. Menadione-induced reactive oxygen species generation via redox cycling promotes apoptosis of murine pancreatic acinar cells. J. Biol. Chem. 281, 40485–40492 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Tongul, B. & Tarhan, L. The effect of menadione-induced oxidative stress on the in vivo reactive oxygen species and antioxidant response system of Phanerochaete chrysosporium. Process Biochem. 49, 195–202 (2014).

    Article  CAS  Google Scholar 

  40. Lim, J. B., Langford, T. F., Huang, B. K., Deen, W. M. & Sikes, H. D. A reaction–diffusion model of cytosolic hydrogen peroxide. Free Radic. Biol. Med. 90, 85–90 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. Heppert, J. K. et al. Comparative assessment of fluorescent proteins for in vivo imaging in an animal model system. Mol. Biol. Cell 27, 3385–3394 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Campbell, B. C. et al. mGreenLantern: a bright monomeric fluorescent protein with rapid expression and cell filling properties for neuronal imaging. Proc. Natl Acad. Sci. USA 117, 30710–30721 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schweikhard, V. et al. Application note: the Power HyD family of detectors. Nat. Methods https://www.nature.com/articles/d42473-020-00398-0 (2020).

  44. Lambert, T. J. FPbase: a community-editable fluorescent protein database. Nat. Methods 16, 277–278 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Yamada, Y. & Mikoshiba, K. Quantitative comparison of novel GCaMP-type genetically encoded Ca2+ indicators in mammalian neurons. Front. Cell Neurosci. 6, 41 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Han, L. et al. RFP tags for labeling secretory pathway proteins. Biochem. Biophys. Res. Commun. 447, 508–512 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Abdelfattah, A. S. et al. A bright and fast red fluorescent protein voltage indicator that reports neuronal activity in organotypic brain slices. J. Neurosci. 36, 2458–2472 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Costantini, L. M., Fossati, M., Francolini, M. & Snapp, E. L. Assessing the tendency of fluorescent proteins to oligomerize under physiologic conditions: fluorescent protein oligomerization assay. Traffic 13, 643–649 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Belousov, V. V. et al. Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat. Methods 3, 281–286 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Taniguchi, J. et al. Comment on ‘Accumbens cholinergic interneurons dynamically promote dopamine release and enable motivation’. eLife 13, e95694 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Heim, R., Prasher, D. C. & Tsien, R. Y. Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc. Natl Acad. Sci. USA 91, 12501–12504 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ma, Y., Sun, Q. & Smith, S. C. The mechanism of oxidation in chromophore maturation of wild-type green fluorescent protein: a theoretical study. Phys. Chem. Chem. Phys. 19, 12942–12952 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Takahashi, E. et al. Genetic oxygen sensor: GFP as an indicator of intracellular oxygenation. Adv. Exp. Med. Biol. 566, 39–44 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Ishii, T., Warabi, E. & Mann, G. E. Mechanisms underlying NRF2 nuclear translocation by non-lethal levels of hydrogen peroxide: p38 MAPK-dependent neutral sphingomyelinase2 membrane trafficking and ceramide/PKCζ/CK2 signaling. Free Radic. Biol. Med. 191, 191–202 (2022).

    Article  CAS  PubMed  Google Scholar 

  55. Covas, G., Marinho, H. S., Cyrne, L. & Antunes, F. Activation of NRF2 by H2O2: de novo synthesis versus nuclear translocation. Methods Enzymol. 528, 157–171 (2013).

  56. Görlach, A., Bertram, K., Hudecova, S. & Krizanova, O. Calcium and ROS: a mutual interplay. Redox Biol. 6, 260–271 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Nikolaienko, R., Bovo, E. & Zima, A. V. Redox dependent modifications of ryanodine receptor: basic mechanisms and implications in heart diseases. Front. Physiol. 9, 1775 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Johnstone, V. P. A. & Hool, L. C. Glutathionylation of the L-type Ca2+ channel in oxidative stress-induced pathology of the heart. Int. J. Mol. Sci. 15, 19203–19225 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gonnot, F. et al. SERCA2 phosphorylation at serine 663 is a key regulator of Ca2+ homeostasis in heart diseases. Nat. Commun. 14, 3346 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Goodman, J. B. et al. Redox-resistant SERCA [sarco(endo)plasmic reticulum calcium ATPase] attenuates oxidant-stimulated mitochondrial calcium and apoptosis in cardiac myocytes and pressure overload-induced myocardial failure in mice. Circulation 142, 2459–2469 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Akaike, T. et al. A sarcoplasmic reticulum localized protein phosphatase regulates phospholamban phosphorylation and promotes ischemia reperfusion injury in the heart. JACC Basic Transl. Sci. 2, 160–180 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Varghese, E. & Büsselberg, D. Auranofin, an anti-rheumatic gold compound, modulates apoptosis by elevating the intracellular calcium concentration ([Ca2+]i) in MCF-7 breast cancer cells. Cancers 6, 2243–2258 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Harper, M. T. Auranofin, a thioredoxin reductase inhibitor, causes platelet death through calcium overload. Platelets 30, 98–104 (2019).

    Article  CAS  PubMed  Google Scholar 

  64. Kernik, D. C. et al. A computational model of induced pluripotent stem-cell derived cardiomyocytes incorporating experimental variability from multiple data sources. J. Physiol. 597, 4533–4564 (2019).

    Article  CAS  PubMed  Google Scholar 

  65. Lee, Y.-K. et al. Calcium homeostasis in human induced pluripotent stem cell-derived cardiomyocytes. Stem Cell Rev. Rep. 7, 976–986 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Tu, C., Chao, B. S. & Wu, J. C. Strategies for improving the maturity of human induced pluripotent stem cell-derived cardiomyocytes. Circ. Res. 123, 512–514 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Goversen, B., van der Heyden, M. A. G., van Veen, T. A. B. & de Boer, T. P. The immature electrophysiological phenotype of iPSC-CMs still hampers in vitro drug screening: special focus on IK1. Pharmacol. Ther. 183, 127–136 (2018).

    Article  CAS  PubMed  Google Scholar 

  68. Itzhaki, I. et al. Calcium handling in human induced pluripotent stem cell derived cardiomyocytes. PLoS ONE 6, e18037 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Koivumäki, J. T. et al. Structural immaturity of human iPSC-derived cardiomyocytes: in silico investigation of effects on function and disease modeling. Front. Physiol. 9, 80 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Kritsiligkou, P. et al. Proteome-wide tagging with an H2O2 biosensor reveals highly localized and dynamic redox microenvironments. Proc. Natl Acad. Sci. USA 120, e2314043120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Montiel, V. et al. Inhibition of aquaporin-1 prevents myocardial remodeling by blocking the transmembrane transport of hydrogen peroxide. Sci. Transl. Med. 12, eaay2176 (2020).

    Article  CAS  PubMed  Google Scholar 

  72. Schattauer, S. S. et al. Peroxiredoxin 6 mediates Gαi protein-coupled receptor inactivation by cJun kinase. Nat. Commun. 8, 743 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Schattauer, S. S. et al. Reactive oxygen species (ROS) generation is stimulated by κ opioid receptor activation through phosphorylated c-Jun N-terminal kinase and inhibited by p38 mitogen-activated protein kinase (MAPK) activation. J. Biol. Chem. 294, 16884–16896 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Terzi, A. & Suter, D. M. The role of NADPH oxidases in neuronal development. Free Radic. Biol. Med. 154, 33–47 (2020).

    Article  CAS  PubMed  Google Scholar 

  75. Ma, M. W. et al. NADPH oxidase in brain injury and neurodegenerative disorders. Mol. Neurodegener. 12, 7 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Schröder, K. NADPH oxidases: current aspects and tools. Redox Biol. 34, 101512 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Sies, H. et al. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat. Rev. Mol. Cell Biol. 23, 499–515 (2022).

    Article  CAS  PubMed  Google Scholar 

  78. Miller, E. W., Dickinson, B. C. & Chang, C. J. Aquaporin-3 mediates hydrogen peroxide uptake to regulate downstream intracellular signaling. Proc. Natl Acad. Sci. USA 107, 15681–15686 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Thiagarajah, J. R., Chang, J., Goettel, J. A., Verkman, A. S. & Lencer, W. I. Aquaporin-3 mediates hydrogen peroxide-dependent responses to environmental stress in colonic epithelia. Proc. Natl Acad. Sci. USA 114, 568–573 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Haskew-Layton, R. E. et al. Controlled enzymatic production of astrocytic hydrogen peroxide protects neurons from oxidative stress via an NRF2-independent pathway. Proc. Natl Acad. Sci. USA 107, 17385–17390 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Niemczyk, E. et al. A possible involvement of plasma membrane NAD(P)H oxidase in the switch mechanism of the cell death mode from apoptosis to necrosis in menadione-induced cell injury. Acta Biochim. Pol. 51, 1015–1022 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Thor, H. et al. The metabolism of menadione (2-methyl-1,4-naphthoquinone) by isolated hepatocytes. A study of the implications of oxidative stress in intact cells. J. Biol. Chem. 257, 12419–12425 (1982).

    Article  CAS  PubMed  Google Scholar 

  83. Yamashoji, S., Ikeda, T. & Yamashoji, K. Extracellular generation of active oxygen species catalyzed by exogenous menadione in yeast cell suspension. Biochim. Biophys. Acta 1059, 99–105 (1991).

    Article  CAS  PubMed  Google Scholar 

  84. Suzuki, Y. & Ono, Y. Involvement of reactive oxygen species produced via NADPH oxidase in tyrosine phosphorylation in human B- and T-lineage lymphoid cells. Biochem. Biophys. Res. Commun. 255, 262–267 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. Shu, X. et al. A genetically encoded tag for correlated light and electron microscopy of intact cells, tissues, and organisms. PLoS Biol. 9, e1001041 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Barnett, M. E., Baran, T. M., Foster, T. H. & Wojtovich, A. P. Quantification of light-induced miniSOG superoxide production using the selective marker, 2-hydroxyethidium. Free Radic. Biol. Med. 116, 134–140 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Seo, M. J. et al. Dual inhibition of thioredoxin reductase and proteasome is required for auranofin-induced paraptosis in breast cancer cells. Cell Death Dis. 14, 42 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Renken, S. et al. Targeting of NRF2 improves antitumoral responses by human NK cells, TIL and CAR T cells during oxidative stress. J. Immunother. Cancer 10, e004458 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Koren, S. A. et al. All-optical spatiotemporal mapping of ROS dynamics across mitochondrial microdomains in situ. Nat. Commun. 14, 6036 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Woo, H. A. et al. Inactivation of peroxiredoxin I by phosphorylation allows localized H2O2 accumulation for cell signaling. Cell 140, 517–528 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. DeYulia, G. J. Jr, Cárcamo, J. M., Bórquez-Ojeda, O., Shelton, C. C. & Golde, D. W. Hydrogen peroxide generated extracellularly by receptor–ligand interaction facilitates cell signaling. Proc. Natl Acad. Sci. USA 102, 5044–5049 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Xu, C., Peng, B. & Liu, S. Using intra-brain drug infusion to investigate neural mechanisms underlying reward-seeking behavior in mice. STAR Protoc. 3, 101221 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Xavier, A. L. R. et al. Cannula implantation into the cisterna magna ofrodents. J. Vis. Exp. https://doi.org/10.3791/57378 (2018).

  94. Farrants, H. et al. A modular chemigenetic calcium indicator for multiplexed in vivo functional imaging. Nat. Methods 21, 1916–1925 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Grimm, J. B. et al. A general method to optimize and functionalize red-shifted rhodamine dyes. Nat. Methods 17, 815–821 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Lee, J. D. et al. Data and code for “Monitoring in real time and far-red imaging of H2O2 dynamics with subcellular resolution”. figshare https://doi.org/10.6084/m9.figshare.28306691 (2025).

  97. Lee, J. D. et al. FUSE: fluorescent signal engine. GitHub https://github.com/justindaholee/FUSE (2025).

  98. García-Nafría, J., Watson, J. F. & Greger, I. H. IVA cloning: a single-tube universal cloning system exploiting bacterial in vivo assembly. Sci. Rep. 6, 27459 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Catapano, L. A., Arnold, M. W., Perez, F. A. & Macklis, J. D. Specific neurotrophic factors support the survival of cortical projection neurons at distinct stages of development. J. Neurosci. 21, 8863–8872 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Martin, D. L. Synthesis and release of neuroactive substances by glial cells. Glia 5, 81–94 (1992).

    Article  CAS  PubMed  Google Scholar 

  101. McKenna, M. et al. Organotypic whole hemisphere brain slice models to study the effects of donor age and oxygen-glucose-deprivation on the extracellular properties of cortical and striatal tissue. J. Biol. Eng. 16, 14 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lian, X. et al. Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/β-catenin signaling under fully defined conditions. Nat. Protoc. 8, 162–175 (2013).

    Article  CAS  PubMed  Google Scholar 

  103. Bremner, S. B. et al. Full-length dystrophin deficiency leads to contractile and calcium transient defects in human engineered heart tissues. J. Tissue Eng. 13, 20417314221119628 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Tohyama, S. et al. Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell 12, 127–137 (2013).

    Article  CAS  PubMed  Google Scholar 

  105. Yoo, D. Studying the Role of Mechanical Contraction in Cardiac Muscle Development Using Genetically Engineered Non-Contractile Human Stem Cell-Derived Cardiomyocytes. PhD thesis, Univ. of Washington (2021).

  106. Young, J. E. et al. Elucidating molecular phenotypes caused by the SORL1 Alzheimer’s disease genetic risk factor using human induced pluripotent stem cells. Cell Stem Cell 16, 373–385 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Shin, Y. J. et al. Amyloid β peptides (Aβ) from Alzheimer’s disease neuronal secretome induce endothelial activation in a human cerebral microvessel model. Neurobiol. Dis. 181, 106125 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Knupp, A. et al. Depletion of the AD risk gene SORL1 selectively impairs neuronal endosomal traffic independent of amyloidogenic APP processing. Cell Rep. 31, 107719 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Stringer, C., Wang, T., Michaelos, M. & Pachitariu, M. Cellpose: a generalist algorithm for cellular segmentation. Nat. Methods 18, 100–106 (2021).

    Article  CAS  PubMed  Google Scholar 

  110. Pachitariu, M. & Stringer, C. Cellpose 2.0: how to train your own model. Nat. Methods 19, 1634–1641 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Plank, G. et al. The openCARP simulation environment for cardiac electrophysiology. Comput. Methods Prog. Biomed. 208, 106223 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

J.D.L. was supported by 1F31DA056121-01A1 and the ISCRM Fellowship. A.B. was supported by the Brain Research Foundation, UW Royalty Research Fund, UW ISCRM IPA, NIGMS R01 GM139850-01, P30 DA048736-01-Pilot, NIMH RF1MH130391, NINDS U01NS128537, NIDA R21DA051193 and the McKnight Foundation’s Technologies in Neuroscience Award. S.J.W. was supported by the National Science Foundation DGE-2140004 and the Herbold Foundation. K.M.E. was supported by T32AG066574. A.A. was supported by the National Institute of General Medical Sciences grant RM1 GM131981, the National Institute of Arthritis and Musculoskeletal and Skin Diseases grant P30 AR074990, American Heart Association supplement grant AHA872208 and BCTP-NIH–NIBIB-5T32EB032787-02. We would like to thank the Janelia Materials program from Howard Hughes Medical Institute Janelia Research Campus for generous sharing of their Janelia Fluors essential for this study. This research received additional support from the Lynn and Mike Garvey Imaging Core, the UW NAPE Center, ISCRM Shared Equipment and Leica Center of Excellence for Cellular Imaging in Fred Hutch Cancer Research Center (H. West-Foyle and L. Schroeder). We also want to thank R. Moon for his support.

Author information

Authors and Affiliations

Authors

Contributions

J.D.L. and A.B. conceived the study design and oROS-HT635 engineering strategies, performed experiments, and analyzed the data. J.D.L, A.N., S.Z. and A.S. cloned and screened the sensor variants. J.D.L., Y.W., A.M. and V.C. constructed constructs for chemigenetic/optogenetic demonstration of subcellular H2O2 and performed analysis. J.D.L, S.J.W. and H.C. performed purified protein assays and analysis. J.D.L., C.E.G. and P.M.B. performed in silico hiPS cell-CM simulations and analysis. J.D.L. and Z.R.J. performed maturation studies under hypoxia, and brain slice imaging and analysis. K.M.E., A.A., S.B.B., I.K.A.P. and C.A.W. differentiated and prepared hiPS cell-derived cells. A.B., P.M.B., E.N. D.L.M., J.E.Y., D.B., M.R. and F.M.-H. supervised the preparation of materials, experiments, analyses and paper writing.

Corresponding author

Correspondence to Andre Berndt.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Biology thanks Marc Fransen, Celien Lismont and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

oROS-HT amino acid sequence, Supplementary Table 1 and Figs. 1–11.

Reporting Summary

Supplementary Data

Source data for the Supplementary figures.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J.D., Nguyen, A., Gibbs, C.E. et al. Monitoring in real time and far-red imaging of H2O2 dynamics with subcellular resolution. Nat Chem Biol (2025). https://doi.org/10.1038/s41589-025-01891-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41589-025-01891-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing