Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Induced pluripotent stem cell-derived cardiomyocyte in vitro models: benchmarking progress and ongoing challenges

Abstract

Recent innovations in differentiating cardiomyocytes from human induced pluripotent stem cells (hiPSCs) have unlocked a viable path to creating in vitro cardiac models. Currently, hiPSC-derived cardiomyocytes (hiPSC-CMs) remain immature, leading many in the field to explore approaches to enhance cell and tissue maturation. Here, we systematically analyzed 300 studies using hiPSC-CM models to determine common fabrication, maturation and assessment techniques used to evaluate cardiomyocyte functionality and maturity and compiled the data into an open-access database. Based on this analysis, we present the diversity of, and current trends in, in vitro models and highlight the most common and promising practices for functional assessments. We further analyzed outputs spanning structural maturity, contractile function, electrophysiology and gene expression and note field-wide improvements over time. Finally, we discuss opportunities to collectively pursue the shared goal of hiPSC-CM model development, maturation and assessment that we believe are critical for engineering mature cardiac tissue.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: hiPSC culture and differentiation.
Fig. 2: Variability in hiPSC-CM platforms.
Fig. 3: Maturation techniques used in hiPSC-CM culture.
Fig. 4: Methods of assessing hiPSC-CM functionality and maturation.
Fig. 5: Quantification of hiPSC-CM functionality and maturation.

Similar content being viewed by others

Data availability

The data supporting the findings of this field-wide analysis are available within the paper and its Supplementary Information. Additionally, the dataset has been deposited at Dryad and will continue to be updated as new manuscripts are published in this area of research (https://doi.org/10.5061/dryad.ksn02v7bh)34.

References

  1. Wouters, O. J., McKee, M. & Luyten, J. Estimated research and development investment needed to bring a new medicine to market, 2009–2018. JAMA 323, 844–853 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Varga, Z. V., Ferdinandy, P., Liaudet, L. & Pacher, P. Drug-induced mitochondrial dysfunction and cardiotoxicity. Am. J. Physiol. Heart Circ. Physiol. 309, H1453–H1467 (2015).

    Article  CAS  Google Scholar 

  3. Bird, S. D. et al. The human adult cardiomyocyte phenotype. Cardiovasc. Res. 58, 423–434 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Milani-Nejad, N. & Janssen, P. M. L. Small and large animal models in cardiac contraction research: advantages and disadvantages. Pharmacol. Ther. 14, 235–249 (2014).

    Article  Google Scholar 

  5. Maltsev, V. A., Rohwedel, J., Hescheler, J. & Wobus, A. M. Embryonic stem cells differentiate in vitro into cardiomyocytes representing sinusnodal, atrial and ventricular cell types. Mech. Dev. 44, 41–50 (1993).

    CAS  Google Scholar 

  6. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Colatsky, T. et al. The Comprehensive in Vitro Proarrhythmia Assay (CiPA) initiative — update on progress. J. Pharmacol. Toxicol. Methods 81, 15–20 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. McKenna, W. J. & Judg, D. P. Epidemiology of the inherited cardiomyopathies. Nat. Rev. Cardiol. 18, 22–36 (2021).

    Article  PubMed  Google Scholar 

  9. Ho, C. Y. et al. Genotype and lifetime burden of disease in hypertrophic cardiomyopathy: insights from the Sarcomeric Human Cardiomyopathy Registry (SHaRe). Circulation 138, 1387–1398 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lippi, M. et al. Spectrum of rare and common genetic variants in arrhythmogenic cardiomyopathy patients. Biomolecules 12, 1043 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Haas, J. et al. Atlas of the clinical genetics of human dilated cardiomyopathy. Eur. Heart J. 36, 1123–1135 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Bhagwan, J. R. et al. Isogenic models of hypertrophic cardiomyopathy unveil differential phenotypes and mechanism-driven therapeutics. J. Mol. Cell. Cardiol. 145, 43–53 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mosqueira, D. et al. CRISPR/Cas9 editing in human pluripotent stemcell-cardiomyocytes highlights arrhythmias, hypocontractility, and energy depletion as potential therapeutic targets for hypertrophic cardiomyopathy. Eur. Heart J. 39, 3879–3892 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Loiben, A. M. et al. Cardiomyocyte apoptosis is associated with contractile dysfunction in stem cell model of MYH7 E848G hypertrophic cardiomyopathy. Int. J. Mol. Sci. 24, 4909 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Prondzynski, M. et al. Disease modeling of a mutation in α‐actinin 2 guides clinical therapy in hypertrophic cardiomyopathy. EMBO Mol. Med. 11, e11115 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang, K. et al. Plakophilin-2 truncating variants impair cardiac contractility by disrupting sarcomere stability and organization. Sci. Adv. 7, eabh3995 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cohn, R. et al. A contraction stress model of hypertrophic cardiomyopathy due to sarcomere mutations. Stem Cell Reports 12, 71–83 (2019).

    CAS  Google Scholar 

  18. Hinson, J. T. et al. Titin mutations in iPS cells define sarcomere insufficiency as a cause of dilated cardiomyopathy. Science 349, 982–986 (2015).

  19. Toepfer, C. N. et al. Myosin sequestration regulates sarcomere function, cardiomyocyte energetics, and metabolism, informing the pathogenesis of hypertrophic cardiomyopathy. Circulation 141, 828–842 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Briganti, F. et al. iPSC modeling of RBM20-deficient DCM identifies upregulation of RBM20 as a therapeutic strategy. Cell Rep. 32, 108117 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Knight, W. E. et al. Maturation of pluripotent stem cell-derived cardiomyocytes enables modeling of human hypertrophic cardiomyopathy. Stem Cell Reports 16, 519–533 (2021). An informative study using a combination of metabolic maturation and micropatterned surfaces to improve the maturation of hiPSC-CMs, increasing sensitivity to pathological stimuli.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Querdel, E. et al. Human engineered heart tissue patches remuscularize the injured heart in a dose-dependent manner. Circulation 143, 1991–2006 (2021). An informative study using dynamic mechanical stimulation of EHT patches to obtain improved maturation of hiPSC-CMs. Transplantation of the patches resulted in partial remuscularization of the injured heart in a guinea pig injury model.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu, Y. W. et al. Human embryonic stem cell-derived cardiomyocytes restore function in infarcted hearts of non-human primates. Nat. Biotechnol. 36, 597–605 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Karbassi, E. et al. Cardiomyocyte maturation: advances in knowledge and implications for regenerative medicine. Nat. Rev. Cardiol. 17, 341–359 (2020). A comprehensive review on the structural and functional characteristics of mature CMs.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Yang, X., Pabon, L. & Murry, C. E. Engineering adolescence: maturation of human pluripotent stem cell-derived cardiomyocytes. Circ. Res. 114, 511–523 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Feyen, D. A. M. et al. Metabolic maturation media improve physiological function of human iPSC-derived cardiomyocytes. Cell Rep. 32, 107925 (2020). An informative study using metabolic maturation techniques in 2D and 3D, obtaining improved functional maturation of hiPSC-CMs.

    Article  CAS  PubMed  Google Scholar 

  27. Tsan, Y. C. et al. Physiologic biomechanics enhance reproducible contractile development in a stem cell derived cardiac muscle platform. Nat. Commun. 12, 6167 (2021). An informative study using micropatterning on elastomer substrates to define tissue biomechanics and improve the maturation of hiPSC-CMs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Herron, T. J. et al. Extracellular matrix-mediated maturation of human pluripotent stem cell-derived cardiac monolayer structure and electrophysiological function. Circ. Arrhythm. Electrophysiol. 9, e003638 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Martella, D. et al. Liquid crystalline networks toward regenerative medicine and tissue repair. Small 13, 1702677 (2017).

  30. Lin, B. et al. Culture in glucose-depleted medium supplemented with fatty acid and 3,3′,5-triiodo-l-thyronine facilitates purification and maturation of human pluripotent stem cell-derived cardiomyocytes. Front. Endocrinol. 8, 253 (2017).

    Article  Google Scholar 

  31. Miki, K. et al. ERRγ enhances cardiac maturation with t-tubule formation in human iPSC-derived cardiomyocytes. Nat. Commun. 12, 3596 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mulieri, L. A., Hasenfuss, G., Leavitt, B., Allen, P. D. & Alpert, N. R. Altered myocardial force–frequency relation in human heart failure. Circulation 85, 1743–1750 (1992).

    Article  CAS  PubMed  Google Scholar 

  33. Melby, J. A. et al. Functionally integrated top–down proteomics for standardized assessment of human induced pluripotent stem cell-derived engineered cardiac tissues. J. Proteome Res. 20, 1424–1433 (2021). An informative study establishing a method allowing for the sequential assessment of functional properties and top–down proteomics for hiPSC-engineered cardiac tissue.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ewoldt, J. K. and DePalma, S.J. et al. Induced pluripotent stem cell-derived cardiomyocyte in vitro models: tissue fabrication protocols, assessment methods, and quantitative maturation metrics for benchmarking progress. Dryad https://doi.org/10.5061/dryad.ksn02v7bh (2024).

  35. Lapp, H. et al. Author Correction: Frequency-dependent drug screening using optogenetic stimulation of human iPSC-derived cardiomyocytes. Sci. Rep. 11, 1643 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schnabel, L. V., Abratte, C. M., Schimenti, J. C., Southard, T. L. & Fortier, L. A. Genetic background affects induced pluripotent stem cell generation. Stem Cell Res. Ther. 3, 30 (2012).

    CAS  Google Scholar 

  37. Rouhani, F. et al. Genetic background drives transcriptional variation in human induced pluripotent stem cells. PLoS Genet. 10, e1004432 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Mannhardt, I. et al. Comparison of 10 control hPSC lines for drug screening in an engineered heart tissue format. Stem Cell Reports 15, 983–998 (2020). An informative study comparing ten different control hiPSC-CM lines in EHT to demonstrate large baseline cell line-dependent differences in tissue function.

    CAS  Google Scholar 

  39. Marinho, P. A., Chailangkarn, T. & Muotri, A. R. Systematic optimization of human pluripotent stem cells media using design of experiments. Sci. Rep. 5, 9834 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Block, T. et al. Human perinatal stem cell derived extracellular matrix enables rapid maturation of hiPSC-CM structural and functional phenotypes. Sci. Rep. 10, 19071 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang, J. et al. Cardiac differentiation of human pluripotent stem cells using defined extracellular matrix proteins reveals essential role of fibronectin. eLife 11, e69028 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lian, X. et al. Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc. Natl Acad. Sci. USA 109, E1848–E1857 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mummery, C. L. et al. Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes: a methods overview. Circ. Res. 111, 344–358 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tohyama, S. et al. Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell 12, 127–137 (2013).

    CAS  Google Scholar 

  45. Xu, C. et al. Bioinspired onion epithelium-like structure promotes the maturation of cardiomyocytes derived from human pluripotent stem cells. Biomater. Sci. 5, 1810–1819 (2017).

    Article  CAS  PubMed  Google Scholar 

  46. Ma, Z. et al. Self-organizing human cardiac microchambers mediated by geometric confinement. Nat. Commun. 6, 7413 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Schulz, A. et al. Tyramine-conjugated alginate hydrogels as a platform for bioactive scaffolds. J. Biomed. Mater. Res. A 107, 114–121 (2019).

    Article  CAS  PubMed  Google Scholar 

  48. Hart, C. et al. Rapid nanofabrication of nanostructured interdigitated electrodes (NIDES) for long-term in vitro analysis of human induced pluripotent stem cell differentiated cardiomyocytes. Biosensors 8, 88 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sun, S. et al. Progressive myofibril reorganization of human cardiomyocytes on a dynamic nanotopographic substrate. ACS Appl. Mater. Interfaces 12, 21450–21462 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Martewicz, S. et al. Transcriptomic characterization of a human in vitro model of arrhythmogenic cardiomyopathy under topological and mechanical stimuli. Ann. Biomed. Eng. 47, 852–865 (2019).

    Article  PubMed  Google Scholar 

  51. Kujala, V. J., Pasqualini, F. S., Goss, J. A., Nawroth, J. C. & Parker, K. K. Laminar ventricular myocardium on a microelectrode array-based chip. J. Mater. Chem. B 4, 3534–3543 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. Pioner, J. M. et al. Isolation and mechanical measurements of myofibrils from human induced pluripotent stem cell-derived cardiomyocytes. Stem Cell Reports 6, 885–896 (2016).

    CAS  Google Scholar 

  53. Strimaityte, D. et al. Contractility and calcium transient maturation in the human iPSC-derived cardiac microfibers. ACS Appl. Mater. Interfaces 14, 35376–35388 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wheelwright, M. et al. Investigation of human iPSC-derived cardiac myocyte functional maturation by single cell traction force microscopy. PLoS ONE 13, e0194909 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Kit-Anan, W. et al. Multiplexing physical stimulation on single human induced pluripotent stem cell-derived cardiomyocytes for phenotype modulation. Biofabrication 13, 025004 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wanjare, M. et al. Anisotropic microfibrous scaffolds enhance the organization and function of cardiomyocytes derived from induced pluripotent stem cells. Biomater. Sci. 5, 1567–1578 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kumar, N. et al. Scalable biomimetic coaxial aligned nanofiber cardiac patch: a potential model for ‘clinical trials in a dish’. Front. Bioeng. Biotechnol. 8, 567842 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Depalma, S. J., Davidson, C. D., Stis, A. E., Helms, A. S. & Baker, B. M. Microenvironmental determinants of organized iPSC-cardiomyocyte tissues on synthetic fibrous matrices. Biomater. Sci. 9, 93–107 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Li, J. et al. Extracellular recordings of patterned human pluripotent stem cell-derived cardiomyocytes on aligned fibers. Stem Cells Int. 2016, 2634013 (2016).

    Google Scholar 

  60. Chun, Y. W. et al. Combinatorial polymer matrices enhance in vitro maturation of human induced pluripotent stem cell-derived cardiomyocytes. Biomaterials 67, 52–64 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Khan, M. et al. Evaluation of changes in morphology and function of human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) cultured on an aligned-nanofiber cardiac patch. PLoS ONE 10, e0126338 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Pushp, P. et al. Functional comparison of beating cardiomyocytes differentiated from umbilical cord-derived mesenchymal/stromal stem cells and human foreskin-derived induced pluripotent stem cells. J. Biomed. Mater. Res. A 108, 496–514 (2020).

    Article  CAS  PubMed  Google Scholar 

  63. Chen, Y., Chan, J. P. Y., Wu, J., Li, R. K. & Santerre, J. P. Compatibility and function of human induced pluripotent stem cell derived cardiomyocytes on an electrospun nanofibrous scaffold, generated from an ionomeric polyurethane composite. J. Biomed. Mater. Res. A 110, 1932–1943 (2022).

    Article  CAS  PubMed  Google Scholar 

  64. Tang, Y. et al. Induction and differentiation of human induced pluripotent stem cells into functional cardiomyocytes on a compartmented monolayer of gelatin nanofibers. Nanoscale 8, 14530–14540 (2016).

    Article  CAS  PubMed  Google Scholar 

  65. Takada, T. et al. Aligned human induced pluripotent stem cell-derived cardiac tissue improves contractile properties through promoting unidirectional and synchronous cardiomyocyte contraction. Biomaterials 281, 121351 (2022).

    Article  CAS  PubMed  Google Scholar 

  66. Pioner, J. M. et al. Optical investigation of action potential and calcium handling maturation of hiPSC-cardiomyocytes on biomimetic substrates. Int. J. Mol. Sci. 20, 3799 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Huethorst, E. et al. Customizable, engineered substrates for rapid screening of cellular cues. Biofabrication 12, 025009 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Carson, D. et al. Nanotopography-induced structural anisotropy and sarcomere development in human cardiomyocytes derived from induced pluripotent stem cells. ACS Appl. Mater. Interfaces 8, 21923–21932 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Smith, A. S. T. et al. NanoMEA: a tool for high-throughput, electrophysiological phenotyping of patterned excitable cells. Nano Lett. 20, 1561–1570 (2020).

    CAS  Google Scholar 

  70. Afzal, J. et al. Cardiac ultrastructure inspired matrix induces advanced metabolic and functional maturation of differentiated human cardiomyocytes. Cell Rep. 40, 111146 (2022).

    Article  CAS  PubMed  Google Scholar 

  71. Cui, H. et al. 4D physiologically adaptable cardiac patch: a 4-month in vivo study for the treatment of myocardial infarction. Sci. Adv. 6, eabb5067 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhang, Y. S. et al. Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials 110, 45–59 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gao, L. et al. Myocardial tissue engineering with cells derived from human-induced pluripotent stem cells and a native-like, high-resolution, 3-dimensionally printed scaffold. Circ. Res. 120, 1318–1325 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Feaster, T. K., Casciola, M., Narkar, A. & Blinova, K. Acute effects of cardiac contractility modulation on human induced pluripotent stem cell-derived cardiomyocytes. Physiol. Rep. 9, e15085 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lind, J. U. et al. Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing. Nat. Mater. 16, 303–308 (2017).

    Article  CAS  PubMed  Google Scholar 

  76. Jia, J. et al. Development of peptide-functionalized synthetic hydrogel microarrays for stem cell and tissue engineering applications. Acta Biomater. 45, 110–120 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Park, S. J. et al. Insights into the pathogenesis of catecholaminergic polymorphic ventricular tachycardia from engineered human heart tissue. Circulation 140, 390–404 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Parikh, S. S. et al. Thyroid and glucocorticoid hormones promote functional t-tubule development in human-induced pluripotent stem cell-derived cardiomyocytes. Circ. Res. 121, 1323–1330 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Garbern, J. C. et al. Inhibition of mTOR signaling enhances maturation of cardiomyocytes derived from human-induced pluripotent stem cells via p53-induced quiescence. Circulation 141, 285–300 (2020).

  80. Pasqualini, F. S., Sheehy, S. P., Agarwal, A., Aratyn-Schaus, Y. & Parker, K. K. Structural phenotyping of stem cell-derived cardiomyocytes. Stem Cell Reports 4, 340–347 (2015).

    CAS  Google Scholar 

  81. Buikema, J. W. et al. Wnt activation and reduced cell–cell contact synergistically induce massive expansion of functional human iPSC-derived cardiomyocytes. Cell Stem Cell 27, 50–63 (2020).

    CAS  Google Scholar 

  82. Guo, J. et al. Elastomer-grafted iPSC-derived micro heart muscles to investigate effects of mechanical loading on physiology. ACS Biomater. Sci. Eng. 7, 2973–2989 (2021).

    Article  CAS  PubMed  Google Scholar 

  83. Dou, W. et al. A microdevice platform for characterizing the effect of mechanical strain magnitudes on the maturation of iPSC-cardiomyocytes. Biosens. Bioelectron. 175, 112875 (2021).

    Article  CAS  PubMed  Google Scholar 

  84. Kroll, K. et al. Electro-mechanical conditioning of human iPSC-derived cardiomyocytes for translational research. Prog. Biophys. Mol. Biol. 130, 212–222 (2017).

    Article  CAS  PubMed  Google Scholar 

  85. Noor, N. et al. 3D printing of personalized thick and perfusable cardiac patches and hearts. Adv. Sci. 6, 1900344 (2019).

    Article  Google Scholar 

  86. Schwan, J. et al. Anisotropic engineered heart tissue made from laser-cut decellularized myocardium. Sci. Rep. 6, 32068 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Goldfracht, I. et al. Engineered heart tissue models from hiPSC-derived cardiomyocytes and cardiac ECM for disease modeling and drug testing applications. Acta Biomater. 92, 145–159 (2019).

    Article  CAS  PubMed  Google Scholar 

  88. Blazeski, A. et al. Functional properties of engineered heart slices incorporating human induced pluripotent stem cell-derived cardiomyocytes. Stem Cell Reports 12, 982–995 (2019).

    CAS  Google Scholar 

  89. Vannozzi, L. et al. Self-folded hydrogel tubes for implantable muscular tissue scaffolds. Macromol. Biosci. 18, e1700377 (2018).

    Article  PubMed  Google Scholar 

  90. Abecasis, B. et al. Unveiling the molecular crosstalk in a human induced pluripotent stem cell-derived cardiac model. Biotechnol. Bioeng. 116, 1245–1252 (2019).

    Article  CAS  PubMed  Google Scholar 

  91. Floy, M. E. et al. Direct coculture of human pluripotent stem cell-derived cardiac progenitor cells with epicardial cells induces cardiomyocyte proliferation and reduces sarcomere organization. J. Mol. Cell. Cardiol. 162, 144–157 (2022).

    Article  CAS  PubMed  Google Scholar 

  92. Peters, M. C. et al. Follistatin-like 1 promotes proliferation of matured human hypoxic iPSC-cardiomyocytes and is secreted by cardiac fibroblasts. Mol. Ther. Methods Clin. Dev. 25, 3–16 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hookway, T. A. et al. Phenotypic variation between stromal cells differentially impacts engineered cardiac tissue function. Tissue Eng. Part A 25, 773–785 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Rupert, C. E., Kim, T. Y., Choi, B. R. & Coulombe, K. L. K. Human cardiac fibroblast number and activation state modulate electromechanical function of hiPSC-cardiomyocytes in engineered myocardium. Stem Cells Int. 2020, 9363809 (2020).

    Google Scholar 

  95. Giacomelli, E. et al. Human-iPSC-derived cardiac stromal cells enhance maturation in 3D cardiac microtissues and reveal non-cardiomyocyte contributions to heart disease. Cell Stem Cell 26, 862–879 (2020). An informative study parsing the impact of co-culture with cardiac fibroblasts and ECs on the maturation of hiPSC-CMs in scaffold-free cardiac spheroids.

    CAS  Google Scholar 

  96. Ahrens, J. H. et al. Programming cellular alignment in engineered cardiac tissue via bioprinting anisotropic organ building blocks. Adv. Mater. 34, e2200217 (2022).

    Article  PubMed  Google Scholar 

  97. Feric, N. T. et al. Engineered cardiac tissues generated in the Biowire II: a platform for human-based drug discovery. Toxicol. Sci. 172, 89–97 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Tamargo, M. A. et al. MilliPillar: a platform for the generation and real-time assessment of human engineered cardiac tissues. ACS Biomater. Sci. Eng. 7, 5215–5229 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ulmer, B. M. et al. Contractile work contributes to maturation of energy metabolism in hiPSC-derived cardiomyocytes. Stem Cell Reports 10, 834–847 (2018).

    Google Scholar 

  100. Boudou, T. et al. A microfabricated platform to measure and manipulate the mechanics of engineered cardiac microtissues. Tissue Eng. Part A 18, 910–919 (2012).

    Article  CAS  PubMed  Google Scholar 

  101. Lee, S. et al. Contractile force generation by 3D hiPSC-derived cardiac tissues is enhanced by rapid establishment of cellular interconnection in matrix with muscle-mimicking stiffness. Biomaterials 131, 111–120 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Feaster, T. K. et al. A method for the generation of single contracting human-induced pluripotent stem cell-derived cardiomyocytes. Circ. Res. 117, 995–1000 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Jayne, R. K. et al. Direct laser writing for cardiac tissue engineering: a microfluidic heart on a chip with integrated transducers. Lab Chip 21, 1724–1737 (2021).

    CAS  Google Scholar 

  104. Rogers, A. J., Fast, V. G. & Sethu, P. Biomimetic cardiac tissue model enables the adaption of human induced pluripotent stem cell cardiomyocytes to physiological hemodynamic loads. Anal. Chem. 88, 9862–9868 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ng, R. et al. Contractile work directly modulates mitochondrial protein levels in human engineered heart tissues. Am. J. Physiol. Heart Circ. Physiol. 318, 1516–1524 (2020).

    Article  Google Scholar 

  106. Ma, X. et al. 3D printed micro-scale force gauge arrays to improve human cardiac tissue maturation and enable high throughput drug testing. Acta Biomater. 95, 319–327 (2019).

    Article  CAS  PubMed  Google Scholar 

  107. Ruan, J. L. et al. Mechanical stress promotes maturation of human myocardium from pluripotent stem cell-derived progenitors. Stem Cells 33, 2148–2157 (2015).

    CAS  Google Scholar 

  108. Kolanowski, T. J. et al. Enhanced structural maturation of human induced pluripotent stem cell-derived cardiomyocytes under a controlled microenvironment in a microfluidic system. Acta Biomater. 102, 273–286 (2020).

    Article  CAS  PubMed  Google Scholar 

  109. Marsano, A. et al. Beating heart on a chip: a novel microfluidic platform to generate functional 3D cardiac microtissues. Lab Chip 16, 599–610 (2016).

    CAS  Google Scholar 

  110. Gao, L. et al. Large cardiac muscle patches engineered from human induced-pluripotent stem cell-derived cardiac cells improve recovery from myocardial infarction in swine. Circulation 137, 1712–1730 (2018).

    Article  PubMed  Google Scholar 

  111. Ribeiro, A. J. S. et al. Contractility of single cardiomyocytes differentiated from pluripotent stem cells depends on physiological shape and substrate stiffness. Proc. Natl Acad. Sci. USA 112, 12705–12710 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Abilez, O. J. et al. Passive stretch induces structural and functional maturation of engineered heart muscle as predicted by computational modeling. Stem Cells 36, 265–277 (2018).

    CAS  Google Scholar 

  113. Leonard, A. et al. Afterload promotes maturation of human induced pluripotent stem cell derived cardiomyocytes in engineered heart tissues. J. Mol. Cell. Cardiol. 118, 147–158 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Bliley, J. M. et al. Dynamic loading of human engineered heart tissue enhances contractile function and drives a desmosome-linked disease phenotype. Sci. Transl. Med. 13, 1817 (2021).

    Article  Google Scholar 

  115. Ruan, J. L. et al. Mechanical stress conditioning and electrical stimulation promote contractility and force maturation of induced pluripotent stem cell-derived human cardiac tissue. Circulation 134, 1557–1567 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ronaldson-Bouchard, K. et al. Advanced maturation of human cardiac tissue grown from pluripotent stem cells. Nature 556, 239–243 (2018). An informative study demonstrating the effectiveness of electromechanical training for the maturation of hiPSC-CMs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Yoshida, S. et al. Maturation of human induced pluripotent stem cell-derived cardiomyocytes by soluble factors from human mesenchymal stem cells. Mol. Ther. 26, 2681–2695 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Yang, X. et al. Tri-iodo-l-thyronine promotes the maturation of human cardiomyocytes-derived from induced pluripotent stem cells. J. Mol. Cell. Cardiol. 72, 296–304 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Correia, C. et al. Distinct carbon sources affect structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells. Sci. Rep. 7, 8590 (2017). An informative study demonstrating the link between metabolic substrate utilization and functional maturation of hiPSC-CMs.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Zhao, B., Zhang, K., Chen, C. S. & Lejeune, E. Sarc-Graph: automated segmentation, tracking, and analysis of sarcomeres in hiPSC-derived cardiomyocytes. PLoS Comput. Biol. 17, e1009443 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Toepfer, C. N. et al. SarcTrack. Circ. Res. 124, 1172–1183 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Morrill, E. E. et al. A validated software application to measure fiber organization in soft tissue. Biomech. Model. Mechanobiol. 15, 1467–1478 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Stein, J. M. et al. Software tool for automatic quantification of sarcomere length and organization in fixed and live 2D and 3D muscle cell cultures in vitro. Curr. Protoc. 2, e462 (2022).

    Article  CAS  PubMed  Google Scholar 

  124. Sutcliffe, M. D. et al. High content analysis identifies unique morphological features of reprogrammed cardiomyocytes. Sci. Rep. 8, 1258 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Mills, R. J. et al. Functional screening in human cardiac organoids reveals a metabolic mechanism for cardiomyocyte cell cycle arrest. Proc. Natl Acad. Sci. USA 114, E8372–E8381 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Fukushima, H. et al. Specific induction and long-term maintenance of high purity ventricular cardiomyocytes from human induced pluripotent stem cells. PLoS ONE 15, e0241287 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Garay, B. I. et al. Dual inhibition of MAPK and PI3K/AKT pathways enhances maturation of human iPSC-derived cardiomyocytes. Stem Cell Reports 17, 2005–2022 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ergir, E. et al. Generation and maturation of human iPSC-derived 3D organotypic cardiac microtissues in long-term culture. Sci. Rep. 12, 17409 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Cui, N. et al. Doxorubicin-induced cardiotoxicity is maturation dependent due to the shift from topoisomerase IIα to IIβ in human stem cell derived cardiomyocytes. J. Cell. Mol. Med. 23, 4627–4639 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Jabbour, R. J. et al. In vivo grafting of large engineered heart tissue patches for cardiac repair. JCI Insight 6, e144068 (2021).

  131. Hatani, T. et al. Nano-structural analysis of engrafted human induced pluripotent stem cell-derived cardiomyocytes in mouse hearts using a genetic-probe APEX2. Biochem. Biophys. Res. Commun. 505, 1251–1256 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Kerscher, P. et al. Direct hydrogel encapsulation of pluripotent stem cells enables ontomimetic differentiation and growth of engineered human heart tissues. Biomaterials 83, 383–395 (2016).

    Article  CAS  PubMed  Google Scholar 

  133. Huang, C. Y. et al. Enhancement of human iPSC-derived cardiomyocyte maturation by chemical conditioning in a 3D environment. J. Mol. Cell. Cardiol. 138, 1–11 (2020).

    Article  CAS  PubMed  Google Scholar 

  134. Mannhardt, I. et al. Human engineered heart tissue: analysis of contractile force. Stem Cell Reports 7, 29–42 (2016).

    CAS  Google Scholar 

  135. Shadrin, I. Y. et al. Cardiopatch platform enables maturation and scale-up of human pluripotent stem cell-derived engineered heart tissues. Nat. Commun. 8, 1825 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Huebsch, N. et al. Automated video-based analysis of contractility and calcium flux in human-induced pluripotent stem cell-derived cardiomyocytes cultured over different spatial scales. Tissue Eng. Part C Methods 21, 467–479 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Sharma, A., Toepfer, C. N., Schmid, M., Garfinkel, A. C. & Seidman, C. E. Differentiation and contractile analysis of GFP-sarcomere reporter hiPSC-cardiomyocytes. Curr. Protoc. Hum. Genet. 96, 21.12.1–21.12.12 (2018).

    CAS  PubMed  Google Scholar 

  138. Maddah, M. et al. A non-invasive platform for functional characterization of stem-cell-derived cardiomyocytes with applications in cardiotoxicity testing. Stem Cell Reports 4, 621–631 (2015).

    CAS  Google Scholar 

  139. Psaras, Y. et al. CalTrack: high-throughput automated calcium transient analysis in cardiomyocytes. Circ. Res. 129, 326–341 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Yang, H. et al. Deriving waveform parameters from calcium transients in human iPSC-derived cardiomyocytes to predict cardiac activity with machine learning. Stem Cell Reports 17, 556–568 (2022).

    CAS  Google Scholar 

  141. Shroff, S. N. et al. Voltage imaging of cardiac cells and tissue using the genetically encoded voltage sensor archon1. iScience 23, 100974 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Lopaschuk, G. D., Spafford, M. A. & Marsh Cardiovascular, D. R. Glycolysis is predominant source of myocardial ATP production immediately after birth. Am. J. Physiol. 216, 1698–1705 (1991).

    Google Scholar 

  143. Murashige, D. et al. Comprehensive quantification of fuel use by the failing and nonfailing human heart. Science 370, 364–368 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Bhute, V. J. et al. Metabolomics identifies metabolic markers of maturation in human pluripotent stem cell-derived cardiomyocytes. Theranostics 7, 2078–2091 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Yang, X. et al. Fatty acids enhance the maturation of cardiomyocytes derived from human pluripotent stem cells. Stem Cell Reports 13, 657–668 (2019).

    CAS  Google Scholar 

  146. Horikoshi, Y. et al. Fatty acid-treated induced pluripotent stem cell-derived human cardiomyocytes exhibit adult cardiomyocyte-like energy metabolism phenotypes. Cells 8, 1095 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Zhang, J. Z. et al. A human iPSC double-reporter system enables purification of cardiac lineage subpopulations with distinct function and drug response profiles. Cell Stem Cell 24, 802–811 (2019).

    CAS  Google Scholar 

  148. Da Rocha, A. M. et al. hiPSC-CM monolayer maturation state determines drug responsiveness in high throughput pro-arrhythmia screen. Sci. Rep. 7, 13834 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Huebsch, N. et al. Metabolically driven maturation of human-induced-pluripotent-stem-cell-derived cardiac microtissues on microfluidic chips. Nat. Biomed. Eng. 6, 372–388 (2022). An informative study using microfluidic chips and metabolic maturation to improve the alignment and maturation of hiPSC-CMs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Lemcke, H., Skorska, A., Lang, C. I., Johann, L. & David, R. Quantitative evaluation of the sarcomere network of human hiPSC-derived cardiomyocytes using single-molecule localization microscopy. Int. J. Mol. Sci. 21, 2819 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Yang, B. et al. A net mold-based method of biomaterial-free three-dimensional cardiac tissue creation. Tissue Eng. Part C Methods 25, 243–252 (2019).

    Article  CAS  PubMed  Google Scholar 

  152. Piccini, I., Rao, J., Seebohm, G. & Greber, B. Human pluripotent stem cell-derived cardiomyocytes: genome-wide expression profiling of long-term in vitro maturation in comparison to human heart tissue. Genom. Data 4, 69–72 (2015).

    Google Scholar 

  153. Tsui, J. H. et al. Tunable electroconductive decellularized extracellular matrix hydrogels for engineering human cardiac microphysiological systems. Biomaterials 272, 120764 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Guyette, J. P. et al. Bioengineering human myocardium on native extracellular matrix. Circ. Res. 118, 56–72 (2016).

    Article  CAS  PubMed  Google Scholar 

  155. Zhao, Y. et al. A platform for generation of chamber-specific cardiac tissues and disease modeling. Cell 176, 913–927 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Pretorius, D. et al. Layer-by-layer fabrication of large and thick human cardiac muscle patch constructs with superior electrophysiological properties. Front. Cell Dev. Biol. 9, 670504 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Geng, L. et al. Rapid electrical stimulation increased cardiac apoptosis through disturbance of calcium homeostasis and mitochondrial dysfunction in human induced pluripotent stem cell-derived cardiomyocytes. Cell. Physiol. Biochem. 47, 1167–1180 (2018).

    Article  CAS  PubMed  Google Scholar 

  158. Dickerson, D. A. Advancing engineered heart muscle tissue complexity with hydrogel composites. Adv. Biol. 7, e2200067 (2023).

  159. Tani, H. et al. Heart-derived collagen promotes maturation of engineered heart tissue. Biomaterials 299, 122174 (2023).

    Article  CAS  PubMed  Google Scholar 

  160. Kaiser, N. J., Kant, R. J., Minor, A. J. & Coulombe, K. L. K. Optimizing blended collagen–fibrin hydrogels for cardiac tissue engineering with human iPSC-derived cardiomyocytes. ACS Biomater. Sci. Eng. 5, 887–899 (2019).

    Article  CAS  PubMed  Google Scholar 

  161. Lv, W., Babu, A., Morley, M. P., Musunuru, K. & Guerraty, M. Resource of gene expression data from a multiethnic population cohort of induced pluripotent cell-derived cardiomyocytes. Circ. Genom. Precis. Med. 17, e004218 (2024).

    Article  CAS  PubMed  Google Scholar 

  162. Soepriatna, A. H. et al. Action potential metrics and automated data analysis pipeline for cardiotoxicity testing using optically mapped hiPSC-derived 3D cardiac microtissues. PLoS ONE 18, e0280406 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Olivetti, G. et al. Aging, cardiac hypertrophy and ischemic cardiomyopathy do not affect the proportion of mononucleated and multinucleated myocytes in the human heart. J. Mol. Cell. Cardiol. 28, 1463–1477 (1996).

  164. Squire, J. M. Architecture and function in the muscle sarcomere. Curr. Opin. Struct. Biol. 7, 247–257 (1997).

    Article  CAS  PubMed  Google Scholar 

  165. Martin Gerdes, A. et al. Structural remodeling of cardiac myocytes in patients with ischemic cardiomyopathy. Circulation 86, 426–430 (1992).

    Article  Google Scholar 

  166. Feric, N. T. & Radisic, M. Maturing human pluripotent stem cell-derived cardiomyocytes in human engineered cardiac tissues. Adv. Drug Deliv. Rev. 96, 110–134 (2016).

    Article  CAS  PubMed  Google Scholar 

  167. Porter, G. A. et al. Bioenergetics, mitochondria, and cardiac myocyte differentiation. Prog. Pediatr. Cardiol. 31, 75–81 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Nagueh, S. F. et al. Altered titin expression, myocardial stiffness, and left ventricular function in patients with dilated cardiomyopathy. Circulation 110, 155–162 (2004).

    Article  CAS  PubMed  Google Scholar 

  169. Van Der Velden, J. et al. Isometric tension development and its calcium sensitivity in skinned myocyte-sized preparations from different regions of the human heart. Cardiovasc. Res. 42, 706–719 (1999).

    Article  Google Scholar 

  170. Hasenfuss, G. et al. Energetics of isometric force development in control and volume-overload human myocardium comparison with animal species. Circ. Res. 68, 836–846 (1990).

    Article  Google Scholar 

  171. Tenreiro, M. F., Louro, A. F., Alves, P. M. & Serra, M. Next generation of heart regenerative therapies: progress and promise of cardiac tissue engineering. NPJ Regen. Med. 6, 30 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Drouin, E., Charpentier, F., Gauthier, C., Laurent, K. & Le Marec, H. Electrophysiologic characteristics of cells spanning the left ventricular wall of human heart: evidence for presence of M cells. J. Am. Coll. Cardiol. 26, 185–192 (1995).

    Article  CAS  PubMed  Google Scholar 

  173. Koncz, I. et al. Electrophysiological effects of ivabradine in dog and human cardiac preparations: potential antiarrhythmic actions. Eur. J. Pharmacol. 668, 419–426 (2011).

    Article  CAS  PubMed  Google Scholar 

  174. Dangman, K. H. et al. Electrophysiologic characteristics of human ventricular and Purkinje fibers. Circulation 65, 362–368 (1982).

    Article  CAS  PubMed  Google Scholar 

  175. Carafoli, E., Santella, L., Branca, D. & Brini, M. Generation, control, and processing of cellular calcium signals. Crit. Rev. Biochem. Mol. Biol. 36, 107–260 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Science Foundation (NSF) Engineering Research Center on Cellular Metamaterials (EEC-1647837). J.K.E acknowledges financial support from the National Institutes of Health National Heart, Lung, and Blood Institute (F31 HL158195). S.J.D. and B.M.B. acknowledge financial support from the NSF (2033654). S.J.D. acknowledges support from the National Institutes of Health (T32-DE007057 and T32-HL125242). J.K.E. and X.G. acknowledge funding support from the NSF Graduate Research Fellowship Program. L.L. acknowledges support provided by the Florida Heart Research Foundation. C.S.C. acknowledges support from the NSF (CMMI-1548571 and DGE-2244366) and the Paul G. Allen Frontiers Group Allen Distinguished Investigator Program.

Author information

Authors and Affiliations

Authors

Contributions

J.K.E. and S.J.D. contributed equally, led and performed analysis, and wrote and reviewed the manuscript. B.M.B. and C.S.C. jointly supervised this work and wrote and reviewed the manuscript. M.E.J., M.Ç.K., Y.-M.L., P.M.H., X.G., L.L., M. McLellan, J.T., M. Ma and A.C.S.C. performed analysis and reviewed the manuscript. J.H., K.C.T., T.G.B., S.R., A.E.W., A.A. and E.L. supervised analysis and reviewed the manuscript.

Corresponding authors

Correspondence to Brendon M. Baker or Christopher S. Chen.

Ethics declarations

Competing interests

C.S.C. is a founder and owns shares of Satellite Biosciences, a company that is developing cell-based therapies; and Ropirio Therapeutics, a company that is developing pharmaceuticals. All other authors declare no competing interests.

Peer review

Peer review information

Nature Methods thanks Nathan Palpant and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Madhura Mukhopadhyay, in collaboration with the Nature Methods team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Table 1

Top 15 reported hiPSC lines and their sex and ancestry. Information was obtained from publications, references or https://www.cellosaurus.org.

Supplementary Data 1

Complete dataset compiled from analysis of 300 studies using hiPSC-CM models for their selection of hiPSC lines, hiPSC-CM differentiation protocols, types of in vitro models, maturation techniques and metrics used to assess CM functionality and maturity. The dataset has been deposited at Dryad and will continue to be updated as new manuscripts are published in this area of research (https://www.doi.org/10.5061/dryad.ksn02v7bh).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ewoldt, J.K., DePalma, S.J., Jewett, M.E. et al. Induced pluripotent stem cell-derived cardiomyocyte in vitro models: benchmarking progress and ongoing challenges. Nat Methods 22, 24–40 (2025). https://doi.org/10.1038/s41592-024-02480-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41592-024-02480-7

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research